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Introduction. In this abstract we will study three different (block) precondi-
tioners for two alternative formulations of the Bidomain model. The Bidomain
model describes the electrical activity in the heart and is of importance to under-
stand cardiac diseases, which are a major problem in particular in the western
world. Here, we will study preconditioners for the following linearized version
of the Bidomain model,

vt = ∇ · (Mi∇v) +∇ · (Mi∇u), (1)
0 = ∇ · (Mi∇v) +∇ · ((Mi + Me)∇u), (2)

where u and v are the extracellular potential and the transmembrane poten-
tial, respectively, and Mi and Me are conductivity tensors in the heart. An
alternative formulation can be obtained by expressing the equations with the
intracellular potential, w = u + v instead of v. These equations are,

wt = ∇ · (Mi∇w) + ut, (3)
ut = wt +∇ · (Me∇u). (4)

The problems (1)-(2) and (3)-(4) must be equipped with suitable boundary and
initial conditions. More details on these equations can be found in, e.g. [2] and
[3].

The two alternative formulations have the same solution, but give rise to two
different linear systems to be solved. The first one reads,(
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We have used a Crank-Nicholson scheme in time and a finite element discretiza-
tion in space. Hence, I is the mass matrix, while the various versions of Aα,
where α = i, e, i+e, are ”similar” to a discrete Laplacian, because the M tensors
are positive definite and bounded. Notice further that preconditioners for I, Aα

and I + ∆t
2 Aα are off-the-shelves preconditioners that are order optimal (with

respect to both h and ∆t). These preconditioner can be made by e.g., multigrid
or domain decomposition.

We will investigate the efficiency of the three following (block) preconditioners
for both formulations of the Bidomain model,
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, symmetric block GS.

To check the efficiency of the preconditioner we measure the condition number
of the preconditioned matrix, BA . The condition number is computed via
singular value decomposition.

Numerical Experiments. In all the experiments we have partioned the unit
square into bilinear elements with size h and used the standard Galerkin finite
element method to generate the matrices.

In Table 1 and 2 the three different exact preconditioners are checked for the
two alternative formulations. It seems that the preconditioners for the second
formulation (6) are the best. However, the condition numbers seem to increase
as ∆t decreases. In contrast, the condition numbers for the first formulation
(5) seem to be bounded independent of both h and ∆t. In Table 3 and 4 we
investigate this behavior further, but we use a multigrid preconditioner instead
of the exact preconditioner, due to the large number of unknowns. The condi-
tion number is estimated as a bi-product of the Conjugate-Gradient method as
described in [where-ever-this-was]. The Conjugate-Gradient method is stopped
when the relative residual is less than 10−18. The condition number for the
preconditioned matrix using the second formulation is clearly dependent on ∆t.
Therefore, it seems that the first formulation should be applied if ∆t is small,
while the second formulation is better when ∆t is large.

This study is an extension of the work in [2] and [3]. The above block algorithms
are described in e.g., [1].
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Prec BJ BGSA BSGSA
h\∆t 2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−4 2−2 2−3 2−4 2−5

2−1 5.0 4.3 3.4 2.7 2.3 2.2 2.0 1.9 1.9 1.7 1.5 1.3
2−2 6.2 6.0 5.7 5.3 2.6 2.6 2.6 2.5 2.1 2.1 2.0 1.9
2−3 6.3 6.3 6.2 6.1 2.6 2.7 2.7 2.7 2.2 2.1 2.1 2.1
2−4 6.3 6.3 6.3 6.3 2.6 2.7 2.7 2.7 2.2 2.2 2.2 2.2

Table 1: Condition numbers for the exact preconditioners, using the first for-
mulation.

Prec BJ BGSA BSGSA
h\∆t 2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−4 2−2 2−3 2−4 2−5

2−1 1.3 1.7 2.3 3.7 1.2 1.3 1.6 2.2 1.0 1.1 1.2 1.6
2−2 1.4 1.8 2.5 4.1 1.2 1.3 1.7 2.4 1.0 1.1 1.3 1.7
2−3 1.4 1.8 2.6 4.2 1.2 1.4 1.7 2.4 1.0 1.1 1.3 1.7
2−4 1.4 1.8 2.6 4.2 1.2 1.4 1.7 2.4 1.0 1.1 1.3 1.8

Table 2: Condition numbers for exact preconditioners, using the second formu-
lation.

h\∆t 2−2 2−3 2−4 2−5 2−6 2−7

2−2 5.7 5.6 5.4 5.0 4.4 3.7
2−3 5.8 5.8 5.7 5.6 5.5 5.2
2−4 5.9 5.9 5.8 5.8 5.7 5.6
2−5 6.1 6.0 5.9 5.9 5.8 5.8
2−6 6.2 6.1 6.1 6.0 5.9 5.9

Table 3: Condition numbers for Jacobi preconditioner with multigrid, first ver-
sion.

h\∆t 2−2 2−3 2−4 2−5 2−6 2−7

2−2 1.4 1.8 2.5 4.1 7.2 13.3
2−3 1.4 1.8 2.6 4.2 7.4 13.8
2−4 1.4 1.8 2.6 4.2 7.5 13.9
2−5 1.4 1.8 2.6 4.2 7.5 14.0
2−6 1.4 1.8 2.6 4.2 7.5 14.0

Table 4: Condition numbers for Jacobi preconditioner with multigrid, second
version.
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