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Diffuse optical tomographic (DOT) medical imaging makes use of modulated,
near-infrared light transmitted into tissue from photodiodes placed on the body.
Optical detectors then measure the photon fluence resulting from the scatter-
ing and absorption of photons within the region of interest. The goal is to
reconstruct three-dimensional images of the scattering and absorption within
the tissue. In the case of breast tissue imaging, for example, anomalous regions
of absorption and scattering may indicate the presence of a tumor.

We utilize a frequency-domain diffusion equation model for data generation. We
parameterize the diffusion (related to the scattering) and absorption in terms
of a small number of unknown parameters, represented by the entries in the
vector p. Under the diffusion model, the synthetic data, h(p), is a non-linear
function of absorption and scattering. If y represents our measured data then
the problem we wish to solve is the weighted, non-linear least squares problem

min
p
‖R− 1

2 (y − h(p))‖2,

where R is related to the noise in the measured data.

We use a damped Gauss-Newton method to solve the optimization problem.
The major difficulty is that computing h(p) and the entries in the Jacobian re-
quires the solution of several large-scale linear systems. The size of each system
depends on the number of voxels in the 3D image. If Ns denotes the number of
sources, Nd denotes the number of detectors and Nw is the number of frequen-
cies, the total number of linear systems that must be solved is O((Ns +Nd)Nw)
per Gauss-Newton step. Thus the linear solves are a huge computational bot-
tleneck for the imaging problem.

In this talk, we analyze characteristics of our matrices and discuss techniques
for reducing the computational complexity of the forward solves. We consider
preconditioned and unpreconditioned Krylov-subspace methods for solving the
systems at every outer (i.e. Gauss-Newton) iteration. In particular, we focus
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on exploiting relationships among the systems that help minimize the compu-
tational effort at a fixed iteration as well as over successive outer iterations.
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