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We will present a new method for constructing the prolongation operator in
aggregation multilevel methods. Suppose a fine grid has been partitioned by
nodes into aggregates. For scalar elliptic problems, the error is often represented
(roughly) by a piecewise constant function, i.e., the error is represented by a
constant function over each aggregate. This constant function is called a basis
function for the aggregate.

The performance of methods like the above can be improved for various types of
problems by increasing the number of basis functions. This is particularly im-
portant when the dimension of the near null-space of the operator is greater than
unity, for example in elasticity problems. For elasticity, the rigid body modes
are used as basis functions. For other problems, it is not clear how to choose
the basis functions, however, they are generally chosen to be smooth functions,
e.g., functions of the coordinates of the grid nodes. Related current research has
proposed using low-energy eigenvectors of the local stiffness matrices associated
with each aggregate.

The prolongation operator P should be able to represent, as well as possible,
slow-to-converge error. We thus propose the following method. First, generate
m samples of algebraically smooth error by applying the smoother to Ax = 0
with a random initial guess. For a given aggregate, let V denote the matrix of k
basis vectors being sought, and let S denote the matrix of sample vectors over
that aggregate. We seek

min
V,X

‖V X − S‖.

The minimum is achieved when V X is the rank-k matrix nearest to S. The
matrix V is thus the first k left singular vectors from the singular value decom-
position of S. The singular values can be used to select k. V is used to construct
P . Note that a different k may be used for each aggregate.

This technique produces basis vectors that are matrix-dependent. In particular,
anisotropies and physical jumps in the smoothed error are reflected in the basis
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vectors. The method can easily be extended to multiple levels. Our experiments
show that for an arbitrarily scaled linear elasticity problem, the method can
perform as well as if the scaled rigid body modes were known. The method can
also be used adaptively, by using V-cycles to generate the smooth error vectors
S.
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