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The Interoperability Based Environment for Adaptive Meshes (IBEAM) is a
NASA funded object-oriented framework for astrophysical simulations on high-
performance, distributed memory, parallel computing platforms. In this project,
we aim to solve radiation-hydrodynamic models of Gamma-Ray bursts. As such
models require a high variation in the resolution of the computational grid, we
use the PARAMESH package to support adaptive mesh refinement (AMR) on
parallel machines. The PARAMESH package is developed by the Computa-
tional Technologies Team of NASA Goddard Space Flight Center.

PARAMESH was originally designed for explicit finite difference methods. A
drawback for our problems is that excessively small time steps may be required
for stability. To avoid this problem, we are implementing implicit methods on
the PARAMESH package. These methods demand efficient solvers for large
sparse linear systems. However, in principle PARAMESH refines and unrefines
the grids at every time step. Moreover, PARAMESH stores the grids as a large
collection of relatively small grid blocks (with pointers for neighbors, children
and parent blocks), which are redistributed frequently over the processors for
load balancing. The user has no control over the distribution of grid blocks
over the processors. Finally, the matrix is typically not computed explicitly.
These features make many preconditioners typically used with Krylov subspace
methods difficult to implement and/or expensive to use, such as domain decom-
position type preconditioners and ILU type preconditioners.

Multigrid is in principle well-suited for such an environment. However, typi-
cal problems may involve strong convection, jumps in coefficients, and strong
anisotropy. Such features typically require robust versions of the multigrid al-
gorithm. However, these features,too, may be difficult to implement and/or
expensive. Therefore, we study a number of combinations of preconditioned
Krylov subspace methods and multigrid methods. An important feature of our
problems (and many other dynamic AMR discretizations) is that most refine-
ments and unrefinements occur above a certain level (which may vary over the
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computational domain). Hence, we can often identify a (relatively high) level
where changes in the grid are relatively rare. More expensive computations,
such as computing a very good preconditioner, at this level can be amortized
over many time steps.

The multigrid method consists of two main components: smoothing, to reduce
high-frequency error, and coarse grid correction, to reduce low-frequency error.
For hard problems such as diffusion-convection problems, problems with jumps
in the coefficients, and problems with strong anisotropy, robust smoothers are
needed. In the PARAMESH environment, line, and plane smoothers are hard to
implement, relatively expensive, and (parallel) direct solvers for such subprob-
lems may need to be recomputed at every time step. Therefore, we experiment
with other block smoothers. For the coarse grid correction, the full approxi-
mate scheme (FAS) is used instead of the usual residual-error correction. This
is required on AMR type meshes, because some parts of the domain are not
covered by finer grids, so that we have to solve for the solution itself. In order
to improve robustness in the coarse grid solves we experiment with a relatively
high level ’direct’ solver using a preconditioned Krylov method at levels where
changes in the grid(s) are relatively infrequent. As preconditioner we consider
explicit sparse approximate inverse preconditioners. These preconditioners are
fairly insensitive to the redistribution of blocks over the processors, and can be
updated for changes in the grid. Techniques for doing such updates will be pre-
sented by Shun Wang (UIUC) in a separate presentation. Sparse approximate
inverses can also be used effectively in block smoothers.

Based on the designs discussed above, we have implemented several variations
of multigrid/Krylov subspace solvers on PARAMESH, including multigrid with
a direct solver on the coarsest grid level, multigrid with a Krylov subspace itera-
tive solver on a specified grid level, and multigrid with a preconditioned Krylov
iterative solver on a specified grid level, all with several types of block smoothers.
Some of these variations are built on top of Krylov subspace methods. More
specifically, rather than carrying out a V-cycle (or other scheme) to the coars-
est grid level and then using a direct solver, we carry out the V-cycle (or other
scheme) to some relatively finer grid level, and then use a Krylov subspace solver
as a replacement for a direct solver on that level. We use an iterative solver
instead of a direct solver here since the matrix is not stored explicitly, which
makes a direct solver difficult without assembling the large sparse matrix. Fur-
thermore, it would be hard to deal with the redistribution of grid blocks and the
grid adaptations in a direct solver. Moreover, preconditioned iterative methods
will typically achieve better parallel efficiency. Sparse Approximate inverse pre-
conditioners are efficient for the same reasons as we mentioned above. Notice
that these methods can also be considered as Krylov subspace methods at the
more static grid levels enhanced with multigrid techniques to deal with the more
dynamic grid levels.
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Detailed experiment results will be presented and discussed in the talk.

The IBEAM project is sponsored under a Round III Grand Challenge Cooper-
ative Agreement with NASA’s Computational Technolgies Project.
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