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TRANAIR is a general geometry computational fluid dynamics (CFD) tools
used by Boeing Commercial Airplanes for aerodynamic design, optimization,
and analysis and is run thousands of times a year. It is applied to large scale
problems containing millions of variables and is Boeing Commercial main CFD
“work horse”. It can be used to analyze or design aerodynamic configurations us-
ing the nonlinear full potential equation with a coupled integral boundary layer.
In the far field the full potential equation reduces to the linear Prandtl-Glauert
equation. Unsteady TRANAIR computes the effects of a linear harmonic per-
turbation about the steady velocity field, representing a flow solution about
an aircraft configuration. In the far field the latter reduces to the convective
Helmholtz equation.

For exterior flow problems the far field boundary condition is a non-trivial issue
that needs careful care. To achieve high accuracy a charge formulation is im-
plemented in TRANAIR. Assuming the flow is linear at the far field, the charge
formulation amounts to having the far field boundary at infinity. The variables
are split into two major sets: global grid (X) and refined grid (Y ) variables.
The global grid variables are transformed to charge variables by X = T−1Q,
where T is a linear operator that is fast to invert, and Q is different than zero
only where the non linear operator, L, is not equal to T . This approach is rem-
iniscent of a two level multigrid method where Q and T are the “coarse grid”
variable and operator respectively. An inexact Newton solver in combination
with GMRES (Generalized Minimum Residual Method) is applied to this prob-
lem taking advantage of the fact that it is very inexpensive to multiply a vector
of Q by T−1 and by L. The calculation of the preconditioned residual, R, is
computed by R = N−1×L×T−1×Q,Y ]. The left preconditioning matrix, N , is
approximating L excluding the far field. It is large and sparse and therefore it is
feasible to apply a direct sparse incomplete factorization of N . A drop tolerance

1



can be introduced into the sparse elimination process allowing small elements
in the decomposition to be dropped as they are generated. A grid based nested
dissection ordering is generated, which reduces fill during elimination.

Most preconditioning techniques assume a given matrix that represents the lin-
ear system at hand. One difficulty with the far field charge formulation approach
is that the full Jacobian matrix of the linearized system is not accessible, limit-
ing the scope of preconditioning opportunities (such as right preconditioning).
Recently, a new approach has been developed in which the charges are elimi-
nated and instead a discrete integral equation is applied at the far field. That
equation was obtained by calculating the discrete Green’s identity in the domain
between the computational box and infinity using the discrete Greens function.
The resulting Jacobian matrix is mostly sparse but significantly denser at the
far field. Given a uniform N3 grid in 3 space dimensions, O(N2) of the Jaco-
bian rows will have O(N2) elements while the remaining rows will have O(1)
elements.

In the talk recent preconditioning results using TRANAIR will be presented,
focusing on the role of the far field condition in exterior flow. Among the issues
that are addressed are right and left preconditioning, and reordering schemes
to account for the denser parts of the Jacobian matrix.
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