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Abstract. This paper investigates the performance of a parallel Newton, first-order system
least-squares (FOSLS) finite-element method with local adaptive refinement and algebraic multi-
grid (AMG) applied to incompressible, resistive magnetohydrodynamics. In particular, an island
coalescence test problem is studied that models magnetic reconnection in a 2D reduced model of a
tokamak fusion reactor. The results show that, using an appropriate temporal and spatial resolution,
these methods are capable of resolving the physical instabilities accurately at a minimal amount of
computational cost. The time-dependent, nonlinear system of partial differential equations is solved
using work equivalent to about 50-60 simple relaxation sweeps (Gauss-Seidel iterations) per time
step. Experiments show that, unless the time step is sufficiently small, nonphysical numerical insta-
bilities may occur. Further, decreasing the time step size does not proportionally increase the cost of
the computation, because AMG convergence is enhanced due to an effective implementation of the
methods in parallel, including keeping load balancing issues to a minimum. Various quantities, such
as the reconnection rate and the “sloshing” effect of the plasma instability, are measured to confirm
that the correct physics is computed.
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1. Introduction. The island coalescence problem for studying fast magnetic re-
connection in a plasma has been studied extensively (e.g. in [6, 8, 23, 29, 33, 38]).
Many numerical algorithms have been implemented to simulate this problem using
various types of physical and mathematical models [1, 10, 16, 18, 19, 24, 25, 26, 29,
32, 34, 35, 36, 37]. The aim of this paper is to extend the results of [2, 3, 4] and show
that by using the first-order system least-squares (FOSLS) finite-element method
along with nested iteration (NI), algebraic multigrid (AMG), and an efficiency-based
adaptive local refinement scheme (ACE) in parallel, the relevant physics of the re-
connection is modeled with a minimal amount of computational cost. Preliminary
results are obtained in [2, 3, 4] using an incompressible resistive magnetohydrody-
namics (MHD) model with the above methods. However, limitations with the com-
putational resources used exposed several deficiencies in the method. Namely, at high
Lundquist numbers (low resistivity), time integration was not resolving the magnetic
instabilities, resulting in numerical oscillations in the current density peak. These, in
turn, affected the performance of the solvers and the convergence of the discrete meth-
ods. With an efficient implementation of the method on computers with a distributed
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memory architecture, including a parallel version of the ACE adaptive refinement
algorithm [11], higher spatial and temporal resolutions are obtained. This higher res-
olution removes the numerical instability, produces an accurate solution, and verifies
the asymptotic efficiency of the NI-Newton-FOSLS-ACE-AMG methodology. This
paper shows that decreasing the time step size of the simulations not only increases
the accuracy of the numerical solutions, but does so without significantly increasing
the amount of computational work. The aim here is to show these results and demon-
strate the powerful performance of the NI-Newton-FOSLS-ACE-AMG methodology
on a parallel machine. In addition, load balancing issues are easily managed. After
each refinement, a new partitioning is created based on a parallel quadtree structure
and a space filling curve (SFC). This preserves the locality of the mesh, so that most
communication happens among nearest neighboring processors. Also, the ACE al-
gorithm is designed to equally distribute local errors, which leads to nearly uniform
refinement on successively finer grids. This, in turn, eliminates load balancing on finer
levels. Numerical results show that the methods developed here are highly efficient
for solving complex physical problems, such as the MHD system.

This paper starts in Section 2 with a description of the nested iteration, FOSLS,
AMG, and ACE algorithms, as well as a description of the parallel considerations
that are needed to obtain an efficient algorithm. In Section 3, a brief background of
the MHD system and the island coalescence problem are presented. Then, in Section
4, the numerical results for various resistivities including qualitative measures of the
accuracy and quantitative measures of the efficiency of the simulation are shown.
Finally, Section 5 contains concluding remarks and a discussion of future work.

2. NI-Newton-FOSLS-ACE-AMG. This section briefly describes the basic
concepts behind the NI-Newton-FOSLS-AMG approach and introduce the notation
used in the rest of the paper.

2.1. FOSLS methodology. First-order system least squares (FOSLS) is a finite-
element method that is based on reformulating a set of PDEs as a system of first-order
equations. The problem is posed as the minimization of a functional in which the first-
order differential terms appear quadratically, so that the functional norm is equivalent
to a norm that is meaningful for the given problem. In equations of elliptic type, this is
usually a product H1 norm. Some of the compelling features of the FOSLS methodol-
ogy include: self-adjoint discrete equations stemming from the minimization principle;
good operator conditioning stemming from the use of first-order formulations of the
PDE; and finite-element and multigrid performance that is optimal and uniform in
certain parameters (e.g., Reynolds number for the Navier-Stokes equations), stem-
ming from uniform product-norm equivalence. Many large-scale physical problems,
including those described by self-adjoint elliptic partial differential equations, can be
solved by minimizing a known “energy” functional over an infinite-dimensional space
of admissible functions. When properly posed, such optimization problems have the
advantage that they can be discretized by the Rayleigh-Ritz process of minimizing
the functional over a finite-dimensional subspace of the admissible function space. If
done with a correct formulation and an appropriate function space, this leads to a
continuous and coercive weak form of the problem.

To illustrate the basic concept of FOSLS, consider a PDE written abstractly as
Lu = f . Introducing new variables, a first-order system is given:

Liu = fi, i = 1, 2, ...,M, (2.1)
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where M is the number of equations in the system. Assuming fi ∈ L2(Ω), consider
the associated FOSLS functional given by

G(u, f) =

M∑
i=1

||Liu− fi||20,Ω, (2.2)

where ||u||0,Ω =
√∫

Ω
|u|2 is the L2-norm. This functional is then minimized over an

appropriate Hilbert space, V, such that

u = arg min
v∈V
G(v; f). (2.3)

Usually, V is equivalent to a product of H1, H(div), and H(curl) spaces. Under
general regularity assumptions, the homogeneous part, G(v; 0), is equivalent to the
squared V-norm:

c1 ≤
G(v; 0)

||v||2V
≤ c2, (2.4)

for some positive constants c1 and c2 and for every v ∈ V. In this case, the functional
is said to be “elliptic” with respect to the V-norm; see, e.g., [14, 15]. This ellipticity
enables the existence and uniqueness of the solution u. Next, let Vh ⊂ V be a finite-
dimensional subspace of V, which often consists of continuous piecewise polynomials.
Then, the discretization can be written as a minimization problem:

uh = arg min
vh∈Vh

G(vh; f). (2.5)

Well-posedness of (2.5) follows directly from ellipticity, since the weak form obtained
comes from a minimization principle. Therefore, the FOSLS formulation is not re-
stricted by any LBB condition. While not a necessary condition, if V is a product
of H1 spaces, then ellipticity also enables an optimal multigrid solver of the discrete
system [15, 41], that is, standard multigrid solvers converge with factors bounded
uniformly in the mesh size, h.

The introduction of new dependent variables increases the number of degrees
of freedom, much like in the mixed finite-element methods. However, unlike mixed
methods, FOSLS yields a symmetric positive definite algebraic system that is, in
general, amenable to multilevel solution techniques. As a result, it is often possible
to obtain a specified accuracy with much smaller computational cost.

2.1.1. Newton-FOSLS. In the context of this paper, a nonlinear PDE is con-
sidered. Therefore, the functional of the nonlinear operator, referred to as the “non-
linear functional,” needs to be minimized. One way to accomplish this is by directly
minimizing the nonlinear functional, yielding a nonlinear discrete system to solve.
This can be solved using nonlinear multigrid methods such as the Fast Approxima-
tion Scheme [12]. A simpler approach, Newton-FOSLS, consists of linearizing the
PDE itself and then performing the minimization on this “linearized functional.” In
this way, standard Newton steps can be used in conjunction with classical AMG it-
erations on the resulting discrete linear systems. This approach is described in more
detail in [4, 21].
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2.2. Efficiency-Based Adaptive Refinement (ACE). Another direct result
of FOSLS is that its functional is equivalent to the error in the solution-space norm. In
general, this induces a semi-norm on a subdomain, which is then available for use as a
local a posteriori error estimator. The FOSLS functional provides a unique capability
for adaptive refinement: a sharp error indicator at no additional computational cost
[7]. Since the functional value is zero at the solution, the FOSLS functional itself
is a measure of the total error in a given approximation. It provides both absolute
and relative error measures, as well as global and local error estimates that are much
simpler and potentially sharper than conventional error estimators. To illustrate this,
for any element τ ∈ T , define the local FOSLS functional as

Gτ (uh; f) =

M∑
i=1

||Liuh − fi||20,τ . (2.6)

Writing ετ =
√
Gτ (uh; f), then the ellipticity expressed in (2.4) implies that

1

c2
ε2τ =

1

c2
Gτ (uh − u; 0) ≤ ||uh − u||2V,τ (2.7)

and

||uh − u||2V ≤
1

c1
G(uh − u; 0) =

1

c1

∑
τ∈T

ε2τ . (2.8)

An error estimator, ετ , that satisfies an inequality of type (2.7) is called locally sharp.
It implies that if ετ is large, then the error is large within that element. In the
literature, an inequality of type (2.8) is called a reliability bound; see [40]. Note that
a small sum of local estimators, ετ , implies a small global error.

Specifically, this property of FOSLS helps make it possible to efficiently solve
complex systems. At each step in the solution algorithm, a local measure of the
functional is available. This allows judgements in the grid-refinement process to be
made based on estimates of the increase of accuracy that results from an increase in
computational cost. As a result, the elements are ordered in terms of estimated error
and an optimal refinement pattern is then chosen that optimizes the effective error
reduction. In other words, the refinement that obtains the highest accuracy with the
least amount of computational cost is found [2, 22].

2.3. Nested Iteration and Algebraic Multigrid. Along with the FOSLS
discretization and local adaptive grid refinement, multigrid is applied to solve the
discrete systems. Nested iteration (NI), or full-multigrid [12] (FMG) in the multigrid
context, involves starting the solution process on a relatively coarse grid, where the
computational cost is relatively low. The solution on the coarse grid is used as an
initial guess for the problem on the next finer grid. Since the objective on each grid
is to minimize the FOSLS functional, the coarse-grid solution should provide a good
starting guess. On each refinement level, solving the discrete minimization problem,
(2.5), involves fast iterative solvers applied to the matrix equations. If the FOSLS
functional is equivalent to a product H1 norm, then there exists an optimal multilevel
solution algorithm [41]. Experience shows that, in this context, AMG also yields an
approximate solution to the discrete equations associated with quasi-uniform grids
in optimal time with convergence factor, ρ, bounded uniformly below 1, independent
of mesh size h. AMG methods, together with the NI strategy and local refinement,
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provide a powerful approach for approximating solutions of PDEs. Numerical and the-
oretical results confirm that the overall cost of such a scheme resides predominantly
in the cost of the finest-level processing. Due to the good initial approximation ob-
tained inexpensively from the coarse grids, the total cost is usually much cheaper than
solving the problem directly on the finest grid, which generally is not even known in
advance.

Finally, the nested iteration approach complements the Newton-FOSLS method.
Since, on each successively finer grid, the initial guess is a better approximation to
the discrete solution, the convergence of Newton’s method will take fewer and fewer
iterations. As a result, when the desired grid resolution is reached, only one Newton
iteration is usually needed to solve the nonlinear problem. This greatly reduces the
cost of the algorithm, because the setup cost for construction of the Jacobian in the
relinearization can be expensive on fine grids.

2.4. Parallel FOSLS. In this section, application of the method in parallel is
discussed, with special attention to the adaptive refinement scheme, ACE. An efficient
parallel extension of the ACE algorithm to massively parallel distributed memory
machines relies on binning strategies that group elements on the basis of local error
(cf. [11]). At each refinement level, the global maximum local functional found in
element τ , ε2max,τ , is obtained through a local search in each processor followed by a
simple global “all-reduce” communication. Elements are then grouped into bins such
that the ith bin contains elements with local functional in the range

[qi−1ε2max,τ , q
iε2max,τ ).

Here, 0 < q < 1 is chosen based on the polynomial degree of the finite-element
subspace, Vh, such that, if an element in bin i is refined and bin i+ 1 is not refined,
then children elements from refining bin i will land in the bin i + 1. Refinement
decisions are then made on the basis of treating each bin as an abstract element in
order to minimize the effective error reduction. Various numerical results show that
this parallel ACE (pACE) algorithm produces results similar to the original serial
algorithm with low communication cost [11]. On finer levels, almost all error falls
in one or two bins, which implies that the error is almost equidistributed. Once
the error has become equidistributed, subsequent refinement becomes uniform global
refinement, which mitigates load balancing requirements as described below.

To address load balancing issues, the parallel quadtree (octree in 3D) based mesh
([13, 39]) is used. Starting on coarser grids, where computation and communication
are relatively cheap, and after performing local refinement, a pre-order traversal of
the associated quadtree generates a Lebesgue space filling curve (SFC) (or Morton
ordering of the elements). Equal partition of the curve yields the new partition of
elements. For example, in Figure 2.4, leafs are ordered as

I → J → K → L→ F → G→ H → B → C → D,

which leads to the new partition as illustrated by the picture in the right.

Finally, the parallel quadtree structures are used to help in tracking solutions of
time-dependent problems, where each time step may use a different locally-refined
spatial mesh. Assuming that every time step starts with the same coarsest grid, the
tree structures associated with the previous time step’s mesh is used to evaluate the
previous time step’s solution at any point. By using the parent-child tree structure,
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Fig. 2.1. Parallel Quadtree-based adaptive mesh refinement and load-balancing. The left dia-
gram is the associated parallel quadtree structure and the right is the actual mesh. Dashed circles
represent inactive parent elements and solid circles represent currently active elements on the finest
grid. Double-arrow lines represent off-processor parent-child connections. Post-order traversal of
the active leafs gives the Lebesgue space filling curve (SFC) that connects active elements in the
finest mesh. Equal partition of the curve yields the new partition of elements.

the finest region in the previous mesh that includes any given set of quadrature nodes
is located with low cost.

3. Incompressible Resistive Magnetohydrodynamics. The incompressible
resistive MHD equations are a time-dependent, nonlinear set of PDEs that model the
movement of charged particles as a plasma [23]. While there are many physical and
mathematical models to describe a plasma, the single fluid approach is taken here. As
a result, the system is a coupling of the incompressible Navier-Stokes and Maxwell’s
equations. The primitive variables are defined to be the fluid velocity, u, the fluid
pressure, p, the magnetic field, B, the current density, j, and the electric field, E. In
addition, a resistive form of Ohm’s law,

j = σ(E + u×B), (3.1)

is used to eliminate the electric field, E, from the equations. After a nondimensional-
ization using Alfvén units, the following equations for incompressible resistive MHD
are obtained (i.e., Navier-Stokes coupled with Maxwell’s equations) [33]:

∂u

∂t
+ u · ∇u− j×B +∇p− 1

Re
∇2u = f , (3.2)

∂B

∂t
−B · ∇u + u · ∇B +

1

SL
(∇× j) = g, (3.3)

∇×B = j, (3.4)

∇ ·B = 0, (3.5)

∇ · u = 0, (3.6)

∇ · j = 0. (3.7)
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Here, Re is the fluid Reynolds Number and SL is the Lundquist Number, both of which
are assumed to be constants and adjusted for different types of physical behavior.
The Lundquist number is inversely proportional to the resistivity of the system and,
therefore, large values of this parameter coincide with small resistivities. The lower
the resistivity, the more “ideal” the plasma behaves and the more the PDE becomes
advection dominated. For this paper, the Reynolds number is equal to the Lundquist
number.

3.1. Island Coalescence. In this section, a test problem that investigates mag-
netic reconnection in a tokamak fusion model is considered [16, 29, 34, 37, 38]. A
reduced set of MHD equations is obtained that models a “large-aspect-ratio” toka-
mak, with non-circular cross-sections. The magnetic B-field along the z-direction, or
the toroidal direction, is very large and mostly constant. In this context, the plasma
behavior of interest occurs in the poloidal cross-section. Using the FOSLS methodol-
ogy, the system is first put into a differential first-order system of equations. This is
done based on a vorticity-velocity-pressure-current formulation. Since explicit vortic-
ity boundary conditions are provided in all the test problems, this is an appropriate
formulation. A scaling analysis is performed in [3], which yields a nice block structure
for the MHD system.

Vorticity, ω = ∇× u, is introduced and the final formulation is

1√
Re
∇× u−

√
Reω = 0, (3.8)

1√
Re
∇ · u = 0, (3.9)

1√
Re

∂u

∂t
− u× ω − j×B−

√
Re∇p+

1√
Re
∇⊥ω = f , (3.10)

1√
SL
∇×B−

√
SLj = 0, (3.11)

1√
SL
∇ ·B = 0, (3.12)

1√
SL

∂B

∂t
+

1√
ReSL

(u · ∇B−B · ∇u) +
1√
SL
∇⊥j = g. (3.13)

The x-direction denotes the periodic poloidal direction in the tokamak, while the y-
direction represents a thin annulus in the poloidal cross section. In this 2D setting,
vorticity, ω, and current density, j, are both scalar variables. The vector notation for
these variables makes the cross product well-defined: ω = (0, 0, ω)

T
and j = (0, 0, j)

T
.

The equations have been scaled using the Reynolds number, Re, and the Lundquist
number, SL, so that, in the context of a FOSLS discretization, the resultant discrete
linear system is more amenable to solution by AMG.

One physical instability that can arise in a tokamak fusion reactor is an island
coalescence in the current density arising from perturbations in an initial current
density sheet. This instability causes a reconnection in the magnetic field lines and
the merging of two islands in the current density field, producing a sharp peak in
current density where the magnetic field lines reconnect. This region is known as the
reconnection zone, and the point at which the magnetic field lines break is known as
the X point. See [6, 29] for more detail. For the simulations shown in this paper, the
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domain Ω = [−1, 1]× [−1, 1] is used. The initial conditions at equilibrium are

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

(
sinh(2πy)
k sin(2πx)

)
, (3.14)

u0(x, y) = 0, (3.15)

ω0(x, y) = 0, (3.16)

j0(x, y) = ∇×B0 =
2π(k2 − 1)

(cosh(2πy) + 0.2 cos(2πx))2
, (3.17)

p0(x, y) =
(1− k2)

2

(
1 +

1

(cosh(2πy) + 0.2 cos(2πx))2

)
, (3.18)

where k = 0.2. These initial conditions are perturbed away from equilibrium as
follows:

δB0(x, y) =

(
−ε 1

π cos(πx) sin(π y2 )
1
2ε

1
π cos(π y2 ) sin(πx)

)
, (3.19)

δj0(x, y) = ε cos(π
y

2
) cos(πx), (3.20)

where ε = −0.01. The boundary conditions are periodic in x and Dirichlet for the
current density and vorticity on the top and bottom of the domain. Also, n · u and
n ·B are known on the top and bottom. With these boundary conditions, the FOSLS
formulation, (3.8)-(3.13), is elliptic in a product H1 norm.

4. Numerical Results. With these boundary conditions, it is shown here that
the appropriate physical behavior is efficiently captured by the NI-Newton-FOSLS-
ACE-AMG algorithm. A range of Lundquist values from high resistivity to low resis-
tivity is modeled. In this range, variations in the reconnection rate of the system are
seen. Here, the reconnection rate is defined as the time rate of change of the poloidal
flux function, Ψ, where B = −∇⊥Ψ, evaluated at the X -point [6, 23, 29, 38]. Using
the first-order formulation, this is rewritten in terms of the Lundquist number and
the current density,

R =
∂Ψ

∂t

∣∣
X =

1

SL
(j(X )− j0(X )) , (4.1)

where j0 is the equilibrium state of the current density. At low Lundquist numbers,
the reconnection zone is wider with a less steep gradient in the current density when
the peak occurs. As the Lundquist number increases, this reconnection zone narrows,
resulting in a sharper, yet shorter, peak. In addition, a “sloshing” effect occurs, where
the islands bounce a little before fully merging into one. This yields several peaks in
the reconnection rate as the islands come together.

In all test cases, the problem was run to time 15τA with varying time step sizes,
using a BDF-2 implicit time-stepping scheme. Here, τA is the time in Alfvén units.
It is the time needed for an Alfvén wave to travel across the domain [6, 29]. By this
time, the islands have coalesced and the large peak in current density has occurred
at the reconnection point. All simulations were performed on an IBM Blue Gene/L
machine using up to 1024 cores in the co-processor mode so that communication and
computation can overlap in a way that improves parallel efficiency. The linear system
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on each refinement level is solved by the conjugate gradient method with a single
V(1, 1) AMG cycle used as a preconditioner. BoomerAMG from the HYPRE package
developed by Lawrence Livermore National Laboratory was used, with symmetric
hybrid Gauss-Seidel (Gauss-Seidel on nodes within the processor and block Jacobi
across processors) as the smoother. In the previous results shown in [2, 4], a serial
machine was used and, thus, the spatial resolution was limited. With the use of a
parallel machine, the results were greatly improved, in both accuracy and efficiency
of the methods, by using finer spatial resolutions as well as smaller time step sizes.

For high resistivities, the NI-Newton-FOSLS-ACE-AMG method is able to cap-
ture the reconnection fairly easily. Figure 4.1 shows the current density at time
t = 6τA, when the peak reconnection occurs. A time step of 0.1τA is used. Figure 4.2
shows the reconnection rate versus time for these simulations, as well as the position
of the “o-point” or center of the island over time. Notice that, as the Lundquist
number is increased, more “sloshing” of the islands occurs.

Fig. 4.1. Current density plot at t = 6τa for SL = 5, 000 (left) and SL = 10, 000 (right) using
a time step of ∆t = 0.1.

When lower resistivities or higher Lundquist numbers are simulated, still using
a time step of 0.1, numerical instabilities are introduced. Figure 4.3 shows that, for
SL = 25, 000 and SL = 50, 000, a double peak occurs. This instability comes from
not capturing the solenoidal constraints as accurately as possible, due to a lack of
temporal resolution in the simulation. In the FOSLS setting, the system is written
as a set of differential algebraic equations (DAEs) [28], where not all variables are
time evolved and auxiliary non-time-dependent equations need to be satisfied, such
as the solenoidal constraint. Since the FOSLS discretization minimizes the residual of
all the equations in the system equally, these auxiliary equations are not solved any
more accurately than the rest of the system. As a result, errors in these equations or
variables may feed back into the time-evolved equations, resulting in a lower accuracy
than expected when using a standard implicit time-stepping scheme. However, as the
time step size is cut down, the solutions better approximate the reconnection peak.
Figure 4.4 shows plots similar to those in Figure 4.3, but with smaller time step
sizes. Plots of the “o-point” positions in Figure 4.4 also indicate that the appropriate
“sloshing” effect of the islands remains stable.

In addition, the reconnection rates are captured accurately when using the ap-
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Fig. 4.2. Simulations for SL = 5, 000 (left) and SL = 10, 000 (right) using a time step of
∆t = 0.1.

(a) SL = 25, 000 (b) SL = 50, 000

Fig. 4.3. Current density plot at t = 6τA using a time step of ∆t = 0.1.

propriate time step size. Figure 4.5 gives the reconnection rates for SL = 25, 000 and
SL = 50, 000 using various time step sizes. As ∆t gets smaller, the solution more
accurately approximates the magnetic reconnection. In Figure 4.6, using the highest
resolution simulations, the peak reconnection rate versus Lundquist number is com-
pared and the expected square root decay in maximum peak height of the current
density at the reconnection point is seen [29].

Next, the performance of the algorithm is discussed. To understand the efficiency
of the method, computational cost is given in terms of a work unit (WU), defined to
be the amount of work required to perform a single iteration of a simple relaxation
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(a) Current density at t = 6τA using a time step of ∆t = 0.025 (left) and ∆t = 0.0125 (right).
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Fig. 4.4. Left plots show SL = 25, 000 with ∆t = 0.025. Right plots show SL = 50, 000 with
∆t = 0.0125.

method, such as Gauss-Seidel or Jacobi, on the linear system obtained from the
Newton-FOSLS method on a nearly optimal grid. A grid is said to be optimal if it
yields a discrete solution with total functional less than a given tolerance, while using
a minimal number of degrees of freedom. One objective of the ACE algorithm is to
produce a nearly optimal grid. The minimal cost to solve a problem is, then, directly
tied to the cost of forming a residual, or performing a simple relaxation method on
the linear system corresponding to this optimal grid. This cost is the equivalent of
performing one matrix-vector multiplication on this optimal grid. However, at each
time step, this measure changes as a different optimal grid is found, depending on the
evolving solution. Therefore, in order to compare the results evenly across time steps
and across simulations, a “standard” work unit is considered. For the simulations
presented in this paper, this standard work unit is defined on a uniformly-refined
grid using 1024 by 1024 biquadratic rectangular elements. Thus, since the 2D MHD
system has 8 unknowns (a stream function is introduced to system (3.8)-(3.13) in
order to better enforce incompressibility), this corresponds to a system with over 33
million degrees of freedom. In Figure 4.7, the amount of standard work units needed
per time step for the various Lundquist numbers are shown. In each figure, the work
due to the setup of the method is separated from the work due to the linear solves,
noting that the setup phase is more costly than the solve phase. Also, it is interesting
to note that the work units increase during the time when the reconnection occurs,
or when steep gradients are introduced into the solutions.

At higher Lundquist numbers, specifically SL = 50, 000, AMG performance im-
proves when using a smaller time step. As the temporal resolution is improved, the
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Fig. 4.5. Reconnection rates using various time step sizes for the low viscosity (high Lundquist
number) cases.

reconnection is captured more accurately as shown above. In addition, the efficiency
of the method improves. When no numerical instabilities are introduced, the approxi-
mate solution is smoother and, therefore, the AMG solver performs better. Thus, the
amount of work units required to solve the system decreases. Figure 4.8 shows the
average number of iterations required to get one digit of accuracy in the solution using
AMG at each time step. This is related to the convergence factor of the AMG solves,
ρ, by solving for the number of iterations, q, in ρq = 0.1. Thus, q = − 1

log10(ρ) . For

the smaller time step size, the average convergence factor and, therefore, the number
of iterations is reduced. However, this simulation requires twice as many time steps.
Comparing with twice the number of iterations per digit of accuracy at each time
step shows that this does not correspond to twice the number of iterations. To make
this more concrete, Table 4 compares the average standard WUs per time step for
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Fig. 4.7. Work Units per time step. Setup cost (dashed curve) and solve cost (solid line) are
separated.

the solve over the whole simulation, as well as the maximum amount of standard
work units needed at some time step (usually when the reconnection just starts).
Less work is being done with the smaller time step size during the solve phase per
time step. During the reconnection, when the maximum amount of work is being
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performed, halving the time step almost halves the work per time step. For the entire
simulation, the ratio of work units for the smaller time step size to the bigger one is
2∗32.68
44.15 = 1.48. Thus, the smaller time step size simulation requires only 48% more

work, while performing twice as many time steps. This is because fewer V-cycles are
needed per iteration due to better convergence. Since accuracy is better in this case
and work is about equal, the overall accuracy per computational cost is much better
and the system is solved more efficiently.
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Fig. 4.8. Average iterations per digit of accuracy for AMG solves at each time step for SL =
50, 000. Results for ∆t = 0.025 and ∆t = 0.0125 are shown as well as twice the number of iterations
for ∆t = 0.0125 for comparison.

SL = 50, 000 Standard Work Units
∆t Average WU Max WU Average V-cycles

0.025 44.15 129.71 16.5
0.0125 32.68 69.32 12.9

Table 4.1
Standard work units are calculated based on a 1024 by 1024 biquadratic grid for each time step.

Average and maximum are computed over all time steps. The average number of V-cycles on the
finest grid are also shown to give an idea of what the actual work units are.

Furthermore, the effectiveness of the nested iteration algorithm is analyzed. Over
all time steps, the average number of degrees of freedom needed at each grid level is
calculated, as is the average number of Newton steps required to solve the nonlinear
system at that level. Here, 1 corresponds to the coarsest grid. As can be seen in Table
4.2, the average number of Newton steps approaches 1 before the finest grid is reached,
where the Newton iterations are the most computationally expensive. Thus, the extra
overhead of many linearizations is avoided by performing this work on coarser grids,
which involve many fewer elements. Also, the average number of V-cycles performed
at each level is given. At the finest level, only a handful of cycles are needed. Thus,
in terms of actual work units (i.e., the smallest amount of work needed to form the
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residual on the finest grid of the given time step), the problem is being solved quite
effectively.

SL = 5, 000 ∆t = 0.1000 SL = 10, 000 ∆t = 0.1000
Level DOFs Newton V-cycles DOFs Newton V-cycles

1 8, 712 1.993 17.06 8, 712 1.993 18.89
2 33, 800 1.540 11.86 33, 800 1.613 15.37
3 50, 935 1.286 10.67 50, 700 1.387 11.93
4 103, 850 1.213 13.45 98, 261 1.360 16.07
5 312, 940 1.140 13.87 256, 903 1.353 19.56
6 747, 591 1.000 13.37 643, 268 1.295 22.71
7 1, 378, 802 1.000 13.55 1, 398, 085 1.130 22.57
8 2, 321, 583 1.000 13.47 1, 914, 774 1.000 21.89
9 7, 050, 189 1.000 14.31 4, 908, 584 1.000 21.88

SL = 25, 000 ∆t = 0.0250 SL = 50, 000 ∆t = 0.0125
Level DOFs Newton V-cycles DOFs Newton V-cycles

1 33, 800 1.998 12.60 33, 800 1.999 10.31
2 133, 128 1.543 7.92 133, 128 1.083 4.84
3 184, 355 1.000 7.45 189, 181 1.000 4.56
4 320, 833 1.614 13.25 303, 223 1.722 10.20
5 618, 366 1.236 12.54 484, 576 1.574 10.95
6 877, 089 1.495 18.44 799, 240 1.606 16.52
7 1, 574, 753 1.000 15.25 1, 592, 414 1.000 15.59
8 3, 480, 815 1.000 14.51 2, 965, 895 1.000 13.90
9 9, 869, 081 1.000 14.80 8, 837, 814 1.000 14.01
10 29, 946, 167 1.000 10.64 27, 971, 981 1.000 12.88

Table 4.2
Average number of degree of freedoms (8 unknowns for each node on the grid) and average

number of Newton steps at each nested iteration grid level per time step.

Finally, performance of the parallel ACE algorithm and the load balancing method
are discussed. Details of the strong scalability and weak scalability results for the par-
allel ACE approach applied to various problems can be found in [11]. Due to the great
complexity required to solve the MHD system and hardware limitations, scalability
results for the MHD system are not listed here. Instead, for various Lundquist num-
bers and time step sizes, a breakdown of the overall runtime is plotted nto two major
categories: numerical PDE solves (assembly of matrices, AMG solver setup, and linear
systems solve) and adaptive refinement routines (estimating error, marking, refining,
and load balancing); see Figure 4.9. The cost of all ACE routines is controlled within
10% of the overall runtime for all time steps and Lundquist numbers. In particu-
lar, the CPU time corresponding to the load balancing cost (the light blue strip)
is barely recognized, which confirms the efficiency of the load balancing approach
applied to complex system such as the MHD equations. Even for a low Lundquist
number SL = 5, 000, which requires fewer newton iterations and AMG cycles to solve
the problem, the overall cost of the parallel ACE algorithm and the load balancing is
a lot smaller than the numerical PDE solves, 10% versus 90%. Thus, the parallel scal-
ability of the NI-Newton-FOSLS-AMG-ACE approach is mainly determined by the
three components of the numerical PDE solves: assembling matrices, AMG setup,
and AMG solve. The first component is almost embarrassingly parallel. Matrices
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are assembled block-wise within each processor without communication. The third
component usually has nice parallel scalability up to tens of thousand processors. The
issue, then, is the second component, AMG setup. Depending on the specific problem,
it can be expensive. For example, for high Lundquist numbers (right of Figure 4.9),
AMG setup takes roughly 50% of the overall simulation time, since more Newton
iterations are required. Therefore, improving AMG setup in the context of nested
iteration remains an open problem. However, as shown above, reducing the time step
size improves the efficiency of the nested iteration algorithm by using fewer nonlinear
iterations and, thus, less of these setup phases are needed.

Fig. 4.9. Breakdown of total runtime into different components related to ACE routines (light
and dark blue) and numerical PDE routines (green, yellow, orange, and red) at each time step for
SL = 5, 000 (left) and SL = 50, 000 (right).

5. Discussion. Using the NI-Newton-FOSLS-ACE-AMG scheme, reconnection
rates are accurately captured. Using an appropriate time step size and spatial resolu-
tion, the discrete systems are solved using about 50-60 standard WU per time step,
or the equivalent of that many matrix-vector operations on a linear system with 33
million degrees of freedom. The key features are the efficiency-based local adaptive
refinement and nested iteration, which allow for most of the computationally expen-
sive work to be performed on coarse grids reducing the cost. Also, implementation of
a scalable parallel scheme for these methods allow for the system to be solved much
more efficiently. Care is taken in parallelization of the adaptive refinement routine so
that load balancing issues are minimized and so that the MHD system is solved with
much better resolution.

For higher values of the Lundquist number, numerical instabilities appear when
the spatial and temporal scales are not resolved. With the aid of a parallel ma-
chine, however, appropriate accuracy is regained and the correct physical results are
obtained. It is also demonstrated that the numerical methods are converging asymp-
totically at their expected rates. As stated above, the issue comes from the fact that
the FOSLS formulation yields a system of DAEs, and more care has to be taken in
the analysis of the time-stepping accuracy. The reduced, resistive, MHD system used
above is classified as a nonlinear semi-explicit index-two DAE. It is semi-explicit in
the sense that none of the nonlinearities involve the time derivatives. In other words,
the time derivatives, ∂u

∂t and ∂B
∂t , can be explicitly solved for in terms of the other

variables. The index of a DAE is the minimal number of constraint equation differen-
tiations needed to get explicit time-evolving equations for all the dependent variables.
In [28], it is shown that backward differencing formulas (BDF) of order k < 7 are
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convergent and accurate for DAE systems of this type assuming the constraint equa-
tions are solved to a sufficient accuracy. This affects any discretization method that
introduces auxiliary equations into the system (for instance mixed methods). How-
ever, with the numerical techniques used here, the accuracy of the approximation is
easily measured. Future work will examine how the different first-order formulations
affect the accuracy of the time-stepping schemes in this manner. Preliminary analysis
on using FOSLS for the time-dependent Stokes’ equations shows that the stability
is dependent on the time step size and Reynolds number. Since the MHD system
shares many of the properties of the Stokes’ system, it is not surprising that, as the
Lundquist number is increased, the time step must be decreased in order to get the
expected stability of the numerical scheme. The plan is to investigate this further and
find a better relationship between these parameters. Nevertheless, as shown above,
cutting the time step size in half, thus doubling the number of time steps, did not
double the computational cost.

Another aspect to consider is that these physical systems are governed by an
energy law that is satisfied exactly at the continuous level. Any discretization method
can only approximate this energy law and, therefore, it is important to analyze how
this affects the numerical solution. For instance, understanding how accurately one
needs to solve a solenoidal or incompressibility constraint can be studied by looking
at the “discrete” energy laws that are produced. Future work will look at the FOSLS
discretization and attempt to understand how well it approximates the energetics of
the system.

Finally, a future goal is to apply these methods to MHD in more complex geome-
tries and to introduce more physics into the model, such as Hall terms and electron
inertia [17, 23, 33]. These more complex equations are more accurate for models of
fusion reactors and in space physics [8]. The algorithms presented in this paper show
the potential to efficiently resolve these more complicated models.
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