Smoothed Aggregation (SA)

- Two most common types of AMG
- Classic F/C-style AMG, covered previously
- Smoothed Aggregation-Based AMG (SA)
- Smoothed Aggregation-Based AMG
- New setup phase, but goal is same, i.e., build coarse grids
- Select coarse grids based on "aggregation", not C-points
- Define "smoothed" interpolation: $I_{m+1}^{m}, m=1,2, \ldots$
- Define coarse-grid operators as before:

$$
A^{m+1}=\left(I_{m+1}^{m}\right)^{T} A^{m} I_{m+1}^{m}, m=1,2, \ldots
$$

- Identical solve phase
- Same old V-cycles, W-cycles, F-cycles, etc...

Smoothed Aggregation (SA)

- New setup phase, but same goal of building coarse grids
- Construct prolongation to capture algebraically smooth error
- SA assumes a priori knowledge of algebraically smooth error
- Given user-provided "near null-space" mode(s) denoted B_{1}
- Assuming these modes is not "cheating"
- F/C-style AMG assumes slowly varying smooth error
- For many problems, these modes are known
- Look to null-space of PDE with no boundary conditions
- For diffusion, $B_{1}=1$
- For elasticity, B_{1} represents rigid body modes

Constructing Prolongation

Algorithm Desired Properties of I_{m+1}^{m} SA Algorithm Step

1 Sparse
Sparsity outline determined by aggregation
2 Each block column describes Construct I_{m+1}^{m} by smooth error locally for a injecting B_{m} into neighborhood of dofs
sparsity outline
$3 \operatorname{span}\left(I_{m+1}^{m}\right)$ globally describes algebraically smooth error

Globally smooth I_{m+1}^{m} e.g., with
weighted-Jacobi

Basic Aggregation Algorithm

- Aggregate by applying greedy graph algorithm to strength-of-connection graph
- Each aggregate Ω_{j}^{m} is a set of locally connected dofs
- Aggregates are disjoint, $\Omega_{j}^{m} \cap \Omega_{k}^{m}=\emptyset$, if $j \neq k$
- Aggregates cover the set of all dofs on level m

$$
\bigcup_{j} \Omega_{j}^{m}=\left\{0,1, \ldots, n_{m}\right\}
$$

- where n_{m} is the number of dofs on level m
- Each aggregate defines a local interpolation neighborhood

Basic Aggregation Algorithm

Sample 1D Laplace Strength-of-Connection Graph

Basic Aggregation Algorithm

Choose initial unaggregated dof

Basic Aggregation Algorithm

Place neighbor(s) into first aggregate

Basic Aggregation Algorithm

$$
\Omega_{1}^{1}=\{1,2\}
$$

First aggregate contains dofs 1 and 2

Aggregate 1

Basic Aggregation Algorithm

Choose next unaggregated dof, that has all unaggregated neighbors

Basic Aggregation Algorithm

Place neighbor(s) into second aggregate

Basic Aggregation Algorithm

$$
\Omega_{2}^{1}=\{3,4,5\}
$$

Second aggregate contains dofs 3, 4 and 5

Aggregate 2

Basic Aggregation Algorithm

Choose next unaggregated dof, that has all unaggregated neighbors

Basic Aggregation Algorithm

Place neighbor(s) into third aggregate

Basic Aggregation Algorithm

$$
\Omega_{3}^{1}=\{6,7,8\}
$$

Third aggregate contains dofs 6, 7 and 8

Aggregate 3

Basic Aggregation Algorithm

Repeat process to obtain last two aggregates

Sparsity Outline for I_{m+1}^{m}

- Aggregation induces sparsity outline
- Each aggregate corresponds to one block column
- Each block column is nonzero only for dofs in that aggregate
- Example yields sparsity outline with 5 block columns

Construct Tentative I_{m+1}^{m}

- Goal: each block column locally describes smooth error over its aggregate
- Solution: inject B_{m} into sparsity outline
- Let $b_{i, \text { : }}$ be ith row of B_{m}

$$
\begin{gathered}
B_{m} \quad \Rightarrow I_{m+1}^{m} \\
{\left[\begin{array}{c}
b_{1,:} \\
b_{2,:} \\
b_{3,:} \\
b_{4,:} \\
b_{5,:} \\
b_{6,:} \\
b_{7,:} \\
b_{8,:} \\
b_{9,:} \\
b_{10,:} \\
b_{11,:} \\
b_{12,:} \\
b_{13,:}
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
b_{1,:} & 0 & 0 & 0 & 0 \\
b_{2,:} & 0 & 0 & 0 & 0 \\
0 & b_{3,:} & 0 & 0 & 0 \\
0 & b_{4,:} & 0 & 0 & 0 \\
0 & b_{5,:} & 0 & 0 & 0 \\
0 & 0 & b_{6,:} & 0 & 0 \\
0 & 0 & b_{7,:} & 0 & 0 \\
0 & 0 & b_{8,:} & 0 & 0 \\
0 & 0 & 0 & b_{9,:} & 0 \\
0 & 0 & 0 & b_{10,:} & 0 \\
0 & 0 & 0 & b_{11,:} & 0 \\
0 & 0 & 0 & 0 & b_{12,:} \\
0 & 0 & 0 & 0 & b_{13,:}
\end{array}\right]}
\end{gathered}
$$

Construct Tentative I_{m+1}^{m}

- For diffusion, B_{1} is all ones
- Yielding this tentative I_{2}^{1}

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Construct Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column

Construct Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column

Construct Tentative I_{m+1}^{m}

- Compute QR factorization of each nonzero block
- Let $Q^{(k)} R^{(k)}$ be factorization of kth nonzero block
- Replace each nonzero block with corresponding $Q^{(k)}$
- Improves conditioning of interpolation functions
- B_{m+1} becomes concatenation of all $R^{(k)}$
- Resulting in this powerful relationship $I_{m+1}^{m} B_{m+1}=B_{m}$

$$
B_{m+1}=\left[\begin{array}{c}
R^{(1)} \\
R^{(2)} \\
R^{(3)} \\
R^{(4)} \\
R^{(5)}
\end{array}\right], \quad I_{m+1}^{m}=\left[\begin{array}{ccccc}
Q^{(1)} & 0 & 0 & 0 & 0 \\
0 & Q^{(2)} & 0 & 0 & 0 \\
0 & 0 & Q^{(3)} & 0 & 0 \\
0 & 0 & 0 & Q^{(4)} & 0 \\
0 & 0 & 0 & 0 & Q^{(5)}
\end{array}\right]
$$

Construct Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- For diffusion example, QR normalizes each column and each $R^{(k)}$ is scalar

Smooth Tentative I_{m+1}^{m}

- Apply a smoother to tentative prolongation
- $\operatorname{span}\left(I_{m+1}^{m}\right)$ better describes globally smooth error
- Widens interpolation stencil
- Smoothes out jumps in tentative prolongation
- Lowers the energy of each column, i.e., each column better approximates smooth error
- Classic prolongation smoothing is weighted-Jacobi $I_{m+1}^{m}=\left(I-\omega D_{m}^{-1} A_{m}\right) I_{m+1}^{m}$

Smooth Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- Apply weighted-Jacobi to only first column

Smooth Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- Apply weighted-Jacobi to only second column

Smooth Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- Apply weighted-Jacobi to only third column

Smooth Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- Apply weighted-Jacobi to only fourth column

Smooth Tentative I_{m+1}^{m}

- Plotting only the nonzero portion of each column
- Apply weighted-Jacobi to only fifth column

Basic SA Setup Phase

Algorithm 1: sa_setup (A, B)

```
1 }\mp@subsup{A}{1}{}\Leftarrow
2 }\mp@subsup{B}{1}{}\Leftarrow
3 for m=1,2,\ldots.
4
5 Aggm }\Leftarrow\mathrm{ aggregate ( }\mp@subsup{S}{m}{}
```



```
7 I Im+1 m}\Leftarrow \Leftarrow smooth_prolongator ( A Am, Immerm
8 A Am+1 }\Leftarrow(\mp@subsup{I}{m+1}{m}\mp@subsup{)}{}{T}\mp@subsup{A}{m}{}\mp@subsup{I}{m+1}{m
9
10 return }\mp@subsup{A}{0}{}\ldots\mp@subsup{A}{m}{},\mp@subsup{P}{0}{}\ldots\mp@subsup{P}{m-1}{
```


2D Example Aggregation

Example Section of Matrix Graph for 2D Diffusion

2D Example Aggregation

Choose initial unaggregated dof

2D Example Aggregation

Aggregate 1

2D Example Aggregation

Choosenext unaggregated dof, that has all unaggregated neighbors

2D Example Aggregation

Aggregate 1

2D Example Aggregation

Repeat process, until no dof remains that
has only unaggregated neighbors

2D Example Aggregation

Cleanup phase, placing unaggregated dofs with nearest aggregate

2D Example Prolongation Smoothing

Unsmoothed column of tentative prolongation

2D Example Prolongation Smoothing

Smoothed column of prolongation

Sample aggregates for the Laplacian

9-pt FE (quads), \& 9-pt FE (stretched quads)
9-pt FE
(stretched quads)

$$
\left(\begin{array}{ccc}
-1 & -4 & -1 \\
2 & 8 & 2 \\
-1 & -4 & -1
\end{array}\right)
$$

SA Performance:

Sometimes a Success Story

- For diffusion, SA broadly similar to F/C-style AMG
- Optimal for model problem (Poisson's equation, regular grid)
- Efficient and scalable for diffusion on unstructured grids
- Handles anisotropic diffusion relatively well
- Typically, smaller operator complexity than F/C-style AMG

Regular grid, plain, old, vanilla problem, unit square, $n=64$, Dirichlet boundaries

Stencil	Convergence per Cycle	Operator Complexity
$5-\mathrm{pt}$	0.15	1.33
$9-\mathrm{pt}(-1,8)$	0.09	1.11

SA for Systems

- Solving PDE systems simple with SA framework
- k unknowns at each finest-level grid point
- Group each set of k unknowns into a "supernode"
- Coarsen only supernodes, not individual dofs
- B_{1} typically contains multiple vectors, yielding $k \times j$ blocks in prolongation, where j is the number of vectors in B_{1}
- For 3D elasticity, $j=6$ vectors in and $k=3$
- Coarse grids have supernodes of size j

Elasticity Performance

- 3D Isotropic Linearized Elasticity on a Tripod
- Downward force applied
- How does it deform?
- 6 near null-space modes (i.e., rigid body modes)
- Size 3 supernodes on finest level

Num. Dofs	Convergence per Cycle	Operator Complexity
2,757	0.70	1.56
16,341	0.82	1.54
109,551	0.86	1.54

SA Recap

- User-provided B_{1} roughly describes smooth error
- F/C-style AMG also makes smooth error assumptions
- SA approach directly allows multigrid to capture arbitrary near null-spaces
- Just change B_{1} !
- This flexibility is advantage over F/C-style AMG
- Define prolongation through aggregation, injection of B_{1} into sparsity outline, and prolongation smoothing
- No more C-points, and interpolation formulas
- Naturally handles systems of PDEs (arguably better than F/C-style AMG)
- Identical Solve phases for F/C-style AMG and SA

Classic SA References

(1) Vaněk, P. and Mandel, J. and Brezina, M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 1996. pp. 179-196.
(2)Vaněk, P. and Mandel, J. and Brezina, M. Convergence of algebraic multigrid based on smoothed aggregation. Numerische Mathematik, 2001. pp. 559-579.

