
CU-Boulder of 44 

Smoothed Aggregation (SA)
• Two most common types of AMG

– Classic F/C-style AMG, covered previously
– Smoothed Aggregation-Based AMG (SA)

• Smoothed Aggregation-Based AMG
– New setup phase, but goal is same, i.e., build coarse grids

• Select coarse grids based on “aggregation”, not C-points
• Define “smoothed” interpolation:
• Define coarse-grid operators as before:

– Identical solve phase
• Same old V-cycles, W-cycles, F-cycles, etc...
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Imm+1, m = 1, 2, . . .

Am+1 = (Imm+1)
TAmImm+1, m = 1, 2, . . .
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Smoothed Aggregation (SA)

• New setup phase, but same goal of building coarse grids
– Construct prolongation to capture algebraically smooth error
– SA assumes a priori knowledge of algebraically smooth error

• Given user-provided “near null-space” mode(s) denoted 
• Assuming these modes is not “cheating”

– F/C-style AMG assumes slowly varying smooth error

– For many problems, these modes are known
• Look to null-space of PDE with no boundary conditions
• For diffusion,
• For elasticity,      represents rigid body modes
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Constructing Prolongation

3

Algorithm 
Step

Desired Properties of SA Algorithm

1 Sparse Sparsity outline 
determined by 
aggregation

2 Each block column describes 
smooth error locally for a 
neighborhood of dofs

Construct         by 
injecting       into 
sparsity outline  

3                     globally 
describes algebraically 
smooth error

Globally smooth                   
          e.g., with 
weighted-Jacobi

Imm+1

span(Imm+1)
Imm+1

Imm+1

Bm
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Basic Aggregation Algorithm
• Aggregate by applying greedy graph algorithm to 

strength-of-connection graph
• Each aggregate        is a set of locally connected dofs

– Aggregates are disjoint,
– Aggregates cover the set of all dofs on level

• where        is the number of dofs on level     

• Each aggregate defines a local interpolation 
neighborhood
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Ωm
j

Ωm
j ∩ Ωm

k = ∅, if j �= k

m�

j

Ωm
j = {0, 1, . . . , nm}

nm m
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Basic Aggregation Algorithm

5

Sample 1D Laplace Strength-of-Connection Graph
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Basic Aggregation Algorithm

6

Choose initial unaggregated dof
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Basic Aggregation Algorithm

7

Place neighbor(s) into first aggregate



Ω1
1 = {1, 2}
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Basic Aggregation Algorithm

8

First aggregate contains dofs 1 and 2



CU-Boulder of 44 

Basic Aggregation Algorithm

9

Choose next unaggregated dof, that has all unaggregated neighbors



CU-Boulder of 44 

Basic Aggregation Algorithm

10

Place neighbor(s) into second aggregate



Ω1
2 = {3, 4, 5}
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Basic Aggregation Algorithm

11

Second aggregate contains dofs 3, 4 and 5



CU-Boulder of 44 

Basic Aggregation Algorithm

12

Choose next unaggregated dof, that has all unaggregated neighbors
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Basic Aggregation Algorithm

13

Place neighbor(s) into third aggregate



Ω1
3 = {6, 7, 8}
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Basic Aggregation Algorithm

14

Third aggregate contains dofs 6, 7 and 8
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Basic Aggregation Algorithm

15

Repeat process to obtain last two aggregates
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Sparsity Outline for 
• Aggregation induces sparsity outline

– Each aggregate corresponds to one block column
– Each block column is nonzero only for dofs in that aggregate
– Example yields sparsity outline with 5 block columns
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b1,:
b2,:
b3,:
b4,:
b5,:
b6,:
b7,:
b8,:
b9,:
b10,:
b11,:
b12,:
b13,:




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b1,: 0 0 0 0
b2,: 0 0 0 0
0 b3,: 0 0 0
0 b4,: 0 0 0
0 b5,: 0 0 0
0 0 b6,: 0 0
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0 0 b8,: 0 0
0 0 0 b9,: 0
0 0 0 b10,: 0
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Construct Tentative
• Goal: each block column locally describes smooth error over its aggregate

• Solution: inject        into sparsity outline

• Let        be ith row of  
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Bm
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Construct Tentative
• For diffusion,      is all ones
• Yielding this tentative 
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Construct Tentative

• Plotting only the nonzero portion of each column
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Imm+1
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Construct Tentative

• Plotting only the nonzero portion of each column
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Q(k)

Bm+1 R(k)

Imm+1Bm+1 = Bm

Bm+1 =





R(1)

R(2)

R(3)

R(4)

R(5)




, Imm+1 =





Q(1) 0 0 0 0
0 Q(2) 0 0 0
0 0 Q(3) 0 0
0 0 0 Q(4) 0
0 0 0 0 Q(5)





Q(k)R(k)
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Construct Tentative
• Compute QR factorization of each nonzero block

– Let                be factorization of kth nonzero block 

• Replace each nonzero block with corresponding 
• Improves conditioning of interpolation functions

•            becomes concatenation of all         
– Resulting in this powerful relationship 

Imm+1
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Construct Tentative
• Plotting only the nonzero portion of each column

• For diffusion example, QR normalizes each column and each        is scalar
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Smooth Tentative

• Apply a smoother to tentative prolongation
•                  better describes globally smooth error

– Widens interpolation stencil
– Smoothes out jumps in tentative prolongation
– Lowers the energy of each column, i.e., each column better 

approximates smooth error

• Classic prolongation smoothing is weighted-Jacobi
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Imm+1

span(Imm+1)

Imm+1 = (I − ωD−1
m Am)Imm+1
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Smooth Tentative
• Plotting only the nonzero portion of each column
• Apply weighted-Jacobi to only first column
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Smooth Tentative
• Plotting only the nonzero portion of each column
• Apply weighted-Jacobi to only second column
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Smooth Tentative
• Plotting only the nonzero portion of each column
• Apply weighted-Jacobi to only third column
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Smooth Tentative
• Plotting only the nonzero portion of each column
• Apply weighted-Jacobi to only fourth column
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Smooth Tentative
• Plotting only the nonzero portion of each column
• Apply weighted-Jacobi to only fifth column
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Imm+1



Algorithm 1: sa setup(A, B)

1 A1 ⇐ A
2 B1 ⇐ B
3 f o r m = 1, 2, . . .
4 Sm ⇐ strength(Am)
5 Aggm ⇐ aggregate(Sm)
6 Imm+1, Bm+1 ⇐ inject(Aggm, Bm)
7 Imm+1 ⇐ smooth prolongator(Am, Imm+1)
8 Am+1 ⇐ (Imm+1)

TAmImm+1
9

10 r e turn A0 . . . Am, P0 . . . Pm−1
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Basic SA Setup Phase

29



CU-Boulder of 44 

2D Example Aggregation

30

Example Section of Matrix Graph for 2D Diffusion
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2D Example Aggregation

31

Choose initial unaggregated dof
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2D Example Aggregation

32

Place neighbors into first aggregate
Aggregate 1
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2D Example Aggregation

33

Choose next unaggregated dof, that has all unaggregated neighbors
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2D Example Aggregation

34

Place neighbors into second aggregate
Aggregate 1

Aggregate 2
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2D Example Aggregation

35

Repeat process, until no dof remains that 
has only unaggregated neighbors
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2D Example Aggregation

36

Cleanup phase, placing unaggregated dofs with nearest aggregate
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2D Example Prolongation Smoothing

37

Unsmoothed column of tentative prolongation
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2D Example Prolongation Smoothing

38

Smoothed column of prolongation






−1 −4 −1
2 8 2
−1 −4 −1








−1 −1 −1
−1 8 −1
−1 −1 −1




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Sample aggregates for the Laplacian
9-pt FE (quads), & 9-pt FE (stretched quads) 

9-pt FE (quads)9-pt FE 
(stretched quads)
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SA Performance:
Sometimes a Success Story

• For diffusion, SA broadly similar to F/C-style AMG
– Optimal for model problem (Poisson’s equation, regular grid)
– Efficient and scalable for diffusion on unstructured grids
– Handles anisotropic diffusion relatively well

• Typically, smaller operator complexity than F/C-style AMG

40

Stencil
Convergence 

per Cycle
Operator 

Complexity

5-pt 0.15 1.33

9-pt (-1, 8) 0.09 1.11

Regular grid, plain, old, vanilla problem, 

unit square, n = 64, Dirichlet boundaries



CU-Boulder of 44 

SA for Systems

• Solving PDE systems simple with SA framework
• k unknowns at each finest-level grid point

– Group each set of k unknowns into a “supernode”
– Coarsen only supernodes, not individual dofs

•     typically contains multiple vectors, yielding k x j 
blocks in prolongation, where j is the number of 
vectors in 
– For 3D elasticity, j=6 vectors in and k=3

• Coarse grids have supernodes of size j 

41
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Elasticity Performance
• 3D Isotropic Linearized 

Elasticity on a Tripod
– Downward force applied
– How does it deform?
– 6 near null-space modes 

(i.e., rigid body modes)
– Size 3 supernodes on 

finest level

42

Num. Dofs
Convergence 

per Cycle
Operator 

Complexity

2,757 0.70 1.56
16,341 0.82 1.54

109,551 0.86 1.54
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SA Recap
• User-provided     roughly describes smooth error

– F/C-style AMG also makes smooth error assumptions

• SA approach directly allows multigrid to capture 
arbitrary near null-spaces
– Just change      !
– This flexibility is advantage over F/C-style AMG

• Define prolongation through aggregation, injection   
of     into sparsity outline, and prolongation smoothing
– No more C-points, and interpolation formulas

• Naturally handles systems of PDEs (arguably better 
than F/C-style AMG)

• Identical Solve phases for F/C-style AMG and SA
43
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