2013
 APPM 6640 Multigrid Methods

Lectures: Mondays \& Wednesdays $10-10^{50} \mathrm{am}$ ECCR 1B51
Computing Lab: Mondays 12-1250 ECCR 143
Office: Mondays 11-1150 \& Wednesdays 9-950 ECCR 257

Steve McCormick

stevem@colorado.edu
Toby Jones
Tobias.Jones@colorado.edu

Chris Leibs

chris.leibs@gmail.com
303-492-0662 (email is better!)
http://amath.colorado.edu/faculty/stevem

Sources

MGNet Newsletter \& software repository http://www.mgnet.org

MathSciNet Many papers electronically available http://www.ams.org/mathscinet

Copper Mountain Conference March 17-22, 2013
http://grandmaster.colorado.edu/~copper
We plan to support your attendance there

Course web site:
http://grandmaster.colorado.edu/appm6640/
These slides are there.

Team project \dagger

main objective: understand applied math research

- Group into teams of possible common interest.
- Meet in lab as time permits later in the semester.
- Identify an application area of interest.
- Identify a problem in that area \& learn about it.
- Learn current methods \& their limitations.
- Get experience with these methods on typical cases.
- Try cases where these methods (begin to) fail.
- Brainstorm a better (multilevel?) method.
- Implement \& test your idea.
- Inform the rest of the class along the way.

Prolog: Multigrid in Action

The following soldier slides were created by

Irad Yavneh

Department of Computer Science Technion - Israel Institute of Technology irad@cs.technion.ac.il

Basic Concepts: Local vs. Global processing.

- Imagine a large number of soldiers who need to be arranged in a straight line and at equal distances from each other.
- The two soldiers at the ends of the line are fixed. Suppose we number the soldiers 0 to N , and that the length of the entire line is L.

Global processing. Let soldier number j stand on the line connecting soldier 0 to soldier N at a distance jL/N from soldier number 0 .

This method solves the problem directly, but requires substantial sophistication: recognition of the extreme soldiers and some pretty fancy arithmetic.

Local processing (iterative method). Suppose that the initial position of inner soldier j is x_{j}. Then if every j moves all at once to the point midway between the initial locations of neighboring soldiers, j-1 \& j+1, we get

$$
x_{j} \leftarrow\left(x_{j-1}+x_{j+1}\right) / 2
$$

(Assume for simplicity that the soldiers have guides to make sure they're evenly spaced, so they only have to get in a straight line. Thus, x_{j} is their signed distance from that line.)

- This is an iterative process.
- Each step brings us closer to the solution (convergence).
- The arithmetic is trivial.
- The process is local.

1 !

CU-Boulder
Local solution: damping

i i i i i i i

Local solution: damping

The multiscale idea: Employ the local processing with simple arithmetic. But do this on all the different scales.

How much work do we save?

Jacobi needs about N^{2} iterations \& $N^{2} \times N=N^{3}$ ops to improve accuracy by an order of magnitude.

Brandt solves the problem in only about N operations.

Example: for $N=1000, M G$ needs about
1,000 operations
instead of about
1,000,000,000 operations ! ! !

How important is computational efficiency?

Suppose we have 3 different algorithms for a given problem, with different computational complexities for input size N :

$$
\begin{array}{lr}
\text { Algorithm 1: } & 10^{6} \mathrm{~N} \text { ops } \\
\text { Algorithm 2: } & 10^{3} \mathrm{~N}^{2} \text { ops } \\
\text { Algorithm 3: } & \mathrm{N}^{3} \text { ops }
\end{array}
$$

Suppose N is such that algorithm 1 requires one second.

How long do the others require?

The catch

In less trivial problems, we can't construct appropriate equations on the large scales without first propagating information from the small scales.

Skill in developing efficient multigrid is needed for:

1. Choosing a good local iteration.
2. Choosing appropriate coarse-scale variables.
3. Choosing inter-scale transfer operators.
4. Constructing coarse-scale approximations to fine scales.

Computer Speed $(0 p s / s e c)$	N	Algorithm 1 $O(N)$	Algorithm 2 $O\left(N^{2}\right)$	Algorithm 3 $O\left(N^{3}\right)$
$1 M\left(\sim 10^{6}\right)$ $\left(1980^{\prime} \mathrm{s}\right)$	1	1 sec	0.001 sec	0.000001 sec
$1 G\left(\sim 10^{9}\right)$ $\left(1990^{\prime} \mathrm{s}\right)$	1 K	1 sec	1 sec	1 sec
$1 \mathrm{~T}\left(\sim 10^{12}\right)$ $\left(2000^{\prime} \mathrm{s}\right)$	1 M	1 sec	17 min	12 days
$1 P\left(\sim 10^{15}\right)$ $\left(2010^{\prime} \mathrm{s}\right)$	$1 G$	1 sec	12 days	31,710 years

$$
\text { Stronger computers } \Rightarrow \text { more gain! }
$$

What about two dimensions?

Put points midway between horizontal (or vertical) neighbors.
This is just imposing $x_{i}=\left(x_{i-1}+x_{i+1}\right) / 2$ on each row j or

$$
2 x_{i}-x_{i-1}-x_{i+1}=0
$$

The hitch is that this is not a common physical problem. More common is to ask that some physical quantity at each point be an average of its FOUR neighbors (Poisson). cu-Boulder

48 of 396

Outline

A Multigrid Tutorial
 $2^{\text {nd }}$ Edition, $2^{\text {nd }}$ Printing

By
William L. Briggs
CU-Denver
Van Emden Henson
LLNL
Steve McCormick

CU-Boulder

1. Model Problems
2. Basic Iterative Methods Convergence tests Analysis
3. Elements of Multigrid Relaxation Coarsening
4. Implementation Complexity Diagnostics
5. Some Theory Spectral vs. algebraic
6. Nonlinear Problems Full approximation scheme
7. Selected Applications Neumann boundaries Anisotropic problems Variable meshes Variable coefficients
8. Algebraic Multigrid (AMG)

Matrix coarsening
9. Multilevel Adaptive Methods FAC
10. Finite Elements

Variational methodology

Suggested reading

CHECK THE MG LIBRARY \& MGNET REPOSITORY

- A. Brandt, "Multi-level Adaptive Solutions to Boundary Value Problems," Math Comp., 31, 1977, pp 333-390.
- A. Brandt, "Multigrid techniques: 1984 guide with applications to computational fluid dynamics," GMD, 1984.
- W. Hackbusch \& U. Trottenberg, "Multigrid Methods", Springer-Verlag, 1982.
- S. McCormick, ed., "Multigrid Methods," SIAM Frontiers in Applied Math. III, 1987
- U. Trottenberg, C. Oosterlee, \& A. Schüller, "Multigrid," Academic Press, 2000
- P. Wesseling, "An Introduction to Multigrid Methods," Wylie, 1992.

Multilevel methods have been developed for...

- PDEs, CFD, porous media, elasticity, electromagnetics.
- Purely algebraic problems, with no physical grid; for example, network \& geodetic survey problems.
- Image reconstruction \& tomography.
- Optimization (e.g., the traveling salesman \& long transportation problems).
- Statistical mechanics, Ising spin models.
- Quantum chromodynamics.
- Quadrature \& generalized FFTs.
- Integral equations.

Everyone uses multilevel methods

- Multigrid, multilevel, multiscale, multiphysics, Use local "governing rules" at the finest resolution to resolve details of the state of the system, but use coarser resolution to resolve larger scales. Continual feedback is essential because improving one scale impacts other scales.
- Common uses

Sight, art, team sports, politics, society, thinking, scientific research,

Approximate u " (x) via Taylor series

$O\left(h^{2}\right)$ means a quantity bounded in norm by Ch^{2} for some constant C.

- Approximate $2^{\text {nd }}$ derivative using Taylor series:

- Summing \& solving:

$$
u^{\prime \prime}\left(x_{i}\right)=\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}+O\left(h^{2}\right)
$$

1. Model problems

- 1-D boundary value problem:

```
\(-u^{\prime \prime}(x)+\sigma u(x)=f(x) \quad 0<x<1, \quad \sigma \geq 0\)
    \(u(0)=u(1)=0\)
```

- Grid:

$$
h=\frac{1}{n}, \quad x_{i}=i h, \quad i=0,1, \ldots, n
$$

- Let $v_{i} \approx u\left(x_{i}\right) \& f_{i} \approx f\left(x_{i}\right)$ for $i=0,1, \ldots, n$

This discretizes the variables, but what about the equations?

Approximate equation via finite differences

Approximate the BVP

$$
\begin{aligned}
-u^{\prime \prime}(x) & +\sigma u(x)=f(x) \quad 0<x<1, \quad \sigma \geq 0 \\
u(0) & =u(1)=0
\end{aligned}
$$

by a finite difference scheme:

$$
\begin{gathered}
\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}=-\frac{\frac{v_{i+1}-v_{i}}{h}-\frac{v_{i}-v_{i-1}}{h}}{h} v_{0}=v_{n}=0
\end{gathered}
$$

Discrete model problem

Letting $v=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)^{\top} \& f=\left(f_{1}, f_{2}, \ldots, f_{n-1}\right)^{\top}$,
we obtain the matrix equation

$$
A v=f
$$

where A is $(n-1) \times(n-1)$, symmetric, positive definite,

57 of 396

Stencil notation

$$
A=\left[\begin{array}{lll}
-1 & 2 & -1
\end{array}\right]
$$

dropping h^{-2} \& σ for convenience

2-D model problem

- Consider the problem

$$
\begin{array}{cc}
-u_{x x}-u_{y y}+\sigma u=f(x, y), \quad 0<x<1, & 0<y<1 \\
\mathrm{u}=0 \text { when } \mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \text { or } \mathrm{y}=1 & \sigma \geq 0
\end{array}
$$

- Consider the grid
$h_{x}=\frac{1}{l}, \quad h_{y}=\frac{1}{m}$,
$\left(x_{i}, y_{j}\right)=\left(i h_{x}, j h_{y}\right)$
$0 \leq i \leq l$
$0 \leq j \leq m$

Discretizing the 2-D problem

- Let $v_{i j} \approx u\left(x_{i}, y_{j}\right) \& f_{i j} \approx f\left(x_{i}, y_{j}\right)$. Again, using $2^{\text {nd }}$ - order finite differences to approximate $u_{x x} \& u_{y y}$ we arrive at the approximate equation for the unknown $u\left(x_{i}, y_{j}\right)$,

$$
\begin{aligned}
& \text { for } \mathrm{i}=1,2, \ldots, \mathrm{l}-1 \& \mathrm{j}=1,2, \ldots, \mathrm{~m}-1: \\
& \frac{-v_{i-1, j}+2 v_{i j}-v_{i+1, j}}{h_{x}^{2}}+\frac{-v_{i, j-1}+2 v_{i j}-v_{i, j+1}}{h_{y}^{2}}+\sigma v_{i j}=f_{i j} \\
& v_{i, j}=0: \quad i=0, \quad i=l, \quad j=0, \text { or } j=m
\end{aligned}
$$

- Order the unknowns (\& also the vector f) lexicographically by y-lines:

$$
v=\left(v_{1,1}, v_{1,2}, \ldots, v_{1, m-1}, v_{2,1}, v_{2,2}, \ldots, v_{2, m-1}, \ldots, v_{l-1,1}, v_{l-1,2}, \ldots, v_{l-1, m-1}\right)^{T}
$$

Stencils

preferred for grid issues

Stencils are much better for showing the grid picture:

Stencils show local relationships--grid point interactions.

Resulting linear system

We obtain a block-tridiagonal system $A v=f$:

where I_{x} is the h_{x}^{-2} times the identity matrix \&

62 of 396

Inhomogeneous boundary conditions

superposition

- Consider a boundary-value problem on domain Ω with nonzero data, g, on the boundary, $\partial \Omega$:

$$
L u=f \quad \text { on } \Omega, \quad M u=g \quad \text { on } \partial \Omega . \quad \text { Dirichlet: } M=I
$$

- Find a suitable w satisfying the boundary condition:

$$
M w=g \quad \text { on } \partial \Omega
$$

- Now just find z to correct w so that $w+z=u$, that is, $z=u-w$:

$$
L z=f-L w \equiv \hat{f} \quad \text { on } \Omega, \quad M z=g-M w=0 \quad \text { on } \partial \Omega
$$

- Message: Don't look for u. Instead, look for w so that $M w=g$ on $\partial \Omega$ \& then look for $z=u-w$ such that $L z=f-L w$ on $\Omega \& M z=0$ on $\partial \Omega$.
- In the discrete Dirichlet case, set w^{h} to g^{h} on $\partial \Omega$ and 0 inside Ω.
- So we consider only the homogeneous case from now on.

CU-Boulder

Outline

- Elements of Multipriomework Důe popic problems

Chapters 1-5:

- $\sqrt{ }$ Model Problems
- Basic Iterative Methods
- Convergence tests
- Analysis

CU-Boulder

Chapters 6-10:

- Nonlinear Problems
- Full approximation scheme
- Selected Applications
- Neumann boundaries
- Relaxation
- Coarsening
- Implementation
- Complexity
- Diagnostics
- Some Theory
- Spectral vs. algebraic
- Relaxation
- Variable coefficients
- Algebraic Multigrid (AMG)
- Matrix coarsening
- Multilevel Adaptive Methods
- FAC
- Finite Elements
- Variational methodology

Residual correction

- Note: $e=u-v \Rightarrow A e=A(u-v)=f-A v=r$.
- Residual Equation:

$$
A e=r
$$

What does this do for us?

- Residual Correction:

$$
u=v+e .
$$

```
Solve Au = f with guess v
or Ae = r with guess 0.

\section*{Jacobi in matrix form}
- Let \(A=D-L-U\), where \(D\) is diagonal \& \(-L\) \& \(-U\) are the strictly lower \& upper triangular parts of \(A\).
- Then \(\mathrm{Au}=\mathrm{f}\) becomes
\[
\begin{aligned}
& (D-L-U) u=f \\
& D u=(L+U) u+f \\
& u=D^{-1}(L+U) u+D^{-1} f
\end{aligned}
\]
- Let \(R_{J}=D^{-1}(L+U) . \quad R_{J}=D^{-1}(D-A)=I-D^{-1} A\)
"Error propagation or iteration matrix".
- Then the iteration is
\[
v^{(n e w)}=R_{J} v^{(o l d)}+D^{-1} f
\]

CU-Boulder
69 of 396

\section*{Error propagation matrix \& the error}

From the derivation,
\[
\begin{aligned}
& u=D^{-1}(L+U) u+D^{-1} f \\
& u=R_{J} u+D^{-1} f
\end{aligned}
\]
the iteration is
\[
v^{(\text {new })}=R_{J} v^{(o l d)}+D^{-1} f
\]
subtracting,
\[
u-v^{(n e w)}=R_{J} u+D^{-1} f-\left(R_{J} v^{(o l d)}+D^{-1} f\right)
\]
or
\[
u-v^{(n e w)}=R_{J} u-R_{J} v^{(o l d)}
\]
hence,
Error propagation!

\[
R_{J}=I-D^{-1} A
\]

CU-Boulder
70 of 396

\section*{A picture}

1D Poisson
\[
R_{J}=D^{-1}(L+U)=\left[\begin{array}{lll}
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
\]
so Jacobi is an error averaging process:
\[
e_{i}^{(\text {new })} \leftarrow\left(e_{i-1}^{(\text {old })}+e_{i+1}^{(\text {old })}\right) / 2
\]


\section*{Another matrix look at Jacobi}
\[
\begin{aligned}
v^{\text {(new })} & \leftarrow D^{-1}(L+U) v^{\text {(old })}+D^{-1} f \quad(L+U=D-A) \\
& =\left(I-D^{-1} A\right) v^{\text {(old })}+D^{-1} f \\
v^{\text {(new })} & =v^{\text {(old })}-D^{-1}\left(A v^{\text {(old })}-f\right)=v^{\text {(old })}+D^{-1} r
\end{aligned}
\]
- Exact: u =u - \(D^{-1}(A u \quad-f)\)
- Subtracting: \(e^{\text {(new) }}=e^{\text {(old) }}-D^{-1} A e^{\text {(old) }}=\left(I-D^{-1} A\right) e^{\text {(old) }}\)
- Exact: \(u=u-A^{-1}(A u-f)=A^{-1} f\)
- General form: \(u=u-B(A u-f)\) with \(B \sim A^{-1}\)
- Damped Jacobi: \(u=u-\omega D^{-1}(A u-f)\) with \(0<\omega<2 / \rho\left(D^{-1} A\right)\)
- Gauss-Seidel: \(u=u-(D-L)^{-1}(A u-f)\)

Note that \(R_{\omega}=I-\omega D^{-1} A\) is a polynomial in \(A\) when \(D=I\).
We exploit this simplicity (symmetry, etc.) in what follows
!!!This special property doesn't usually hold in practice!!!
CU-Boulder
73 of 396

\section*{Weighted Jacobi}
safer changes: \(0<\omega<2 / \rho\left(D^{-1} A\right) \approx 1\)
- Consider the iteration
\[
v_{i}^{(\text {new })} \leftarrow(1-\omega) v_{i}^{(o l d)}+\frac{\omega}{2}\left(v_{i-1}^{(\text {old })}+v_{i+1}^{(\text {old })}+h^{2} f_{i}\right)
\]
- Letting \(A=D-L-U\), the matrix form is
\[
\begin{aligned}
v^{(\text {new })}= & {\left[(1-\omega) I+\omega D^{-1}(L+U)\right] v^{(o l d)}+\omega h^{2} D^{-1} f } \\
& =R_{\omega} v^{(\text {old })}+\omega h^{2} D^{-1} f
\end{aligned}
\]
- Note that
\[
R_{\omega}=\left[(1-\omega) I+\omega R_{J}\right]
\]
- It is easy to see that if \(e^{(a p p r o x)}=u-v^{(a p p r o x)}\), then
\[
e^{(n e w)}=R_{\omega} e^{(o l d)}
\]

CU-Boulder

\section*{Gauss-Seidel (1-D)}
- Solve equation ifor \(u_{i}\) \& update immediately.
- Equivalently: set each component of \(r\) to zero in turn.
- Component form: for \(i=1,2, \ldots, n-1\), set
\[
v_{i} \leftarrow \frac{1}{2}\left(v_{i-1}+v_{i+1}+h^{2} f_{i}\right)
\]
- Matrix form: \(A=(D-L-U)\)
\[
(D-L) u=U u+f
\]
- Let \(R_{G}=(D-L)^{-1} U \quad \mathbf{R}_{G}=(D-L)^{-1}(D-L-A)=I-(D-L)^{-1} A\)
- Then iterate:
- Error propagation: \(e^{(\text {new })} \leftarrow R_{G} e^{(\text {old })}\)

\section*{Red-black Gauss-Seidel}
- Update the EVEN points:
\[
v_{2 i}-\frac{1}{2}\left(v_{2 i-1}+v_{2 i+1}+h^{2} f_{2 i}\right)
\]
- Update the ODD points:
\[
v_{2 i+1} \leftarrow \frac{1}{2}\left(v_{2 i}+v_{2 i+2}+h^{2} f_{2 i+1}\right)
\]
\[
u=(D-L)^{-1} U u+(D-L)^{-1} f
\]
- 2-D:


\section*{Test?}
\[
A u=f
\]

Need to know how we're doing!!!
- What f?
\[
A u=0
\]
- What v?
\[
v=\text { rand }
\]

CU-Boulder

Convergence factors differ for different error components

Error, \(\|e\|_{\infty}\), in weighted \((\omega=2 / 3)\) Jacobi on \(A u=0\)
using initial guesses \(v_{1}, v_{3}, \& v_{6} \& n=64\) :


\section*{Numerical experiments}
- Solve \(A u=0,-u_{i-1}+2 u_{i}-u_{i+1}=0\)
- Use Fourier modes as initial iterates, with \(n=64\) :
\[
v_{\mathrm{k}}=\sin \left(\mathrm{k} \pi x_{\mathrm{i}}\right), \quad x_{i}=i / n, \underset{\substack{1 \\
\text { component }}}{1 \leq i \leq n-1,} \begin{gathered}
1 \leq k \leq n-1 \\
\text { mode }
\end{gathered}
\]


\section*{Stalling convergence}
relaxation shoots itself in the foot
- Weighted ( \(\omega=2 / 3\) ) Jacobi on 1-D problem \& \(n=64\).
- Initial guess:
\[
v=\frac{1}{3}\left[\left(\sin \left(\frac{1 i \pi}{n}\right)\right)+\left(\sin \left(\frac{6 i \pi}{n}\right)\right)+\left(\sin \left(\frac{32 i \pi}{n}\right)\right)\right]
\]
- Error, \(\|e\|_{\infty}\), plotted against iteration number:


\section*{Analysis of stationary linear iteration}
- The iteration is
\(v^{\text {(new) }}=R v^{\text {(old) }}+g\).
- Exact solution doesn't change: \(u=R u+g\).
- Subtracting:
\(e^{\text {(new) }}=\operatorname{Re}{ }^{\text {(old) }}\).
- Let \(e^{(0)}\) be the initial error \(\& e^{(i)}\) be the error after the \(i^{\text {th }}\) iteration. After \(n\) iterations, we have
\[
e^{(m)}=R e^{(m-1)}=R^{2} e^{(m-2)}=\ldots=R^{m} e^{(0)}
\]

We can deal with \(2^{4}\), but \(\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)\) ??? What if \(\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)^{4} e=2^{4} e\) ???

\section*{Review of eigenvectors \& eigenvalues}

Bold for vectors here temporarily
- The real number \(\lambda\) is an eigenvalue of matrix \(B \& w \neq 0\) is its associated eigenvector if \(B w=\lambda w\).
- The eigenvalues \& eigenvectors are characteristics of a given matrix.
- Eigenvectors are linearly independent, \& if there is a complete set of N distinct eigenvectors for an \(\mathrm{N} \times \mathrm{N}\) matrix, then they form a basis: for any \(v\), there exist unique scalars \(v_{k}\) such that
\[
\begin{aligned}
\mathbf{V} & =\sum_{k=1}^{N} V_{k} W_{k} \\
B^{m} \boldsymbol{V} & =\sum_{k=1}^{N} \lambda^{m} V_{k} W_{k}
\end{aligned}
\]

Why is an eigenvector useful???

\section*{"Fundamental Theorem of Iteration"}
\(R\) is convergent ( \(R^{m} \rightarrow 0\) as \(m \rightarrow \infty\) ) iff
\[
\rho(R)=\max |\lambda|<1 .
\]

Thus, \(v^{(m)}=R^{m} v^{(0)} \rightarrow 0\) for any initial vector \(v^{(0)}\) iff \(\rho(R)<1\).
\(\rho(R)<1\) assures convergence of \(R\) iteration.
\(\rho(R)\) is the spectral convergence factor.
But \(\rho\) doesn't tell you much by itself--it's
generally valid only asymptotically. It's useful for the symmetric case in particular because it's equal to \(\|R\|_{2}\), so we'll use it here.

Rayleigh quotient vs. spectral radius
assume \(A\) is symmetric ( \(w_{\mathrm{k}}\) orthonormal ) \& nonnegative definite \((\lambda \geq 0)\)
- \(R Q(v) \leq \rho(A): \quad v=\sum v_{k} w_{k}\)
\(R Q(v)\)
\[
\begin{aligned}
& =\frac{\langle A \mathbf{v}, \mathbf{v}\rangle}{\langle\mathbf{V}, \mathbf{v}\rangle}=\frac{\left\langle A \sum v_{k} \mathbf{w}_{k}, \sum v_{k} \mathbf{w}_{k}\right\rangle}{\left\langle\sum v_{k} \mathbf{W}_{k}, \sum v_{k} \mathbf{w}_{k}\right\rangle} \\
& =\frac{\left\langle\sum \boldsymbol{\lambda}_{k} v_{k} \mathbf{w}_{k}, \sum v_{k} \mathbf{w}_{k}\right\rangle}{\left\langle\sum v_{k} \mathbf{W}_{k}, \sum v_{k} \mathbf{W}_{k}\right\rangle}=\frac{\sum \boldsymbol{\lambda}_{k} v_{k}^{2}}{\sum v_{k}^{2}} \underline{x} \boldsymbol{\lambda}_{\mathbf{N}}=\rho(\mathbf{A})
\end{aligned}
\]
- \(\sup _{v \neq 0} R Q(v)=\rho(A):\)
\(R Q\left(\mathbf{w}_{N}\right)=\frac{<A \mathbf{w}_{N}, \mathbf{w}_{N}>}{\left\langle\mathbf{w}_{N}, \mathbf{w}_{N}\right\rangle}=\frac{<\lambda_{N} \mathbf{w}_{N}, \mathbf{w}_{N}>}{\left\langle\mathbf{w}_{N}, \mathbf{w}_{N}\right\rangle}=\lambda_{N}=\rho(A)\)

\section*{Euclidean norm vs. spectral radius}
use RQ
- \(\|R\|_{2}=\rho^{1 / 2}\left(R^{\top} R\right):\)
\[
\begin{aligned}
& \|R\|_{2}{ }^{2}=\sup _{e \neq 0}\|\operatorname{Re}\|_{2}{ }^{2} /\|e\|_{2}{ }^{2} \\
& =\sup _{e \neq 0}\langle R e, R e\rangle /\langle e, e\rangle \\
& \left.=\sup _{e \neq 0}<R^{\top} R e, e\right\rangle /\langle e, e\rangle=\rho\left(R^{\top} R\right) \\
& \text { note: }\|R e\|_{2} \leq\|R\|_{2}\|e\| \|_{2}
\end{aligned}
\]
- \(\|A\|_{2}=\rho^{1 / 2}\left(A^{2}\right)=\rho(A)\) for symmetric A!!!
\[
\begin{array}{ll}
\rho(R)=\inf | | R \| & \rho(R)=\|R\|_{2} \\
\text { over all norms. } & \text { for symmetric } R .
\end{array}
\]

Example: \(R=\left(\begin{array}{ll}0 & k \\ 0 & 0\end{array}\right), k \gg 0\) large
\[
\rho(R)=0 \text { but }\|R\|_{2}=\rho^{1 / 2}\left(R^{\top} R\right)=\rho^{1 / 2}\left(\begin{array}{cc}
k^{2} & 0 \\
0 & 0
\end{array}\right)=K!
\]
\[
e^{(0)}=\binom{0}{1} \Rightarrow \frac{\left\|e^{(1)}\right\|_{2}}{\left\|e^{(0)}\right\|_{2}}=\frac{\left\|R e^{(0)}\right\|_{2}}{\left\|e^{(0)}\right\|_{2}}=K
\]

Thus, 1 iteration with \(e^{(0)}\) shows dramatic \(L^{2}\) divergence!
\[
\text { But } R^{2}=0 \text {, so } e^{(2)}=R e^{(1)}=R^{2} e^{(0)}=0!
\]

Thus, 2 iterations with \(e^{(0)}\) show complete convergence! On one hand, this is special ( \(\lambda=0\), large \(K, 2 \times 2\) ), so this behavior would be more subtle \& persistent in general.
On the other, this behavior would vanish for symmetric \(R\).

Convergence analysis: Weighted Jacobi
\[
\begin{aligned}
R_{\omega} & =(1-\omega) I+\omega D^{-1}(L+U) \\
& =I-\omega D^{-1} A
\end{aligned}
\]
\[
R_{\omega}=I-\frac{\omega}{2}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \ddots & \ddots & \ddots \\
& & & -1 & 2
\end{array}\right)
\]

For our 1-D model, the eigenvectors of weighted Jacobi \(R_{\omega}\) \& the eigenvectors of \(A\) are the same!
\[
\lambda\left(R_{\omega}\right)=1-\frac{\omega}{2} \lambda(A)
\]

Remember that \(A\) is without \(h^{2}\) here!

Eigenpairs of (scaled) A
The eigenvectors of \(A\) are (discrete) Fourier modes!
\[
\lambda_{k}(A)=4 \sin ^{2}\left(\frac{k \pi}{2 n}\right), \quad w_{k, i}=\sin \left(\frac{i k \pi}{n}\right) \begin{gathered}
{[-12-1]} \\
\lambda_{n-1} \cong 4 \\
\boldsymbol{\lambda}_{1} \cong \pi^{2} \mathbf{h}^{2}
\end{gathered}
\]




CU-Boulder

Eigenvectors of \(R_{\omega}=\) eigenvectors of \(A\)
\[
\lambda_{k}\left(R_{\omega}\right)=1-2 \omega \sin ^{2}\left(\frac{k \pi}{2 n}\right)
\]
- Expand the initial error in terms of the eigenvectors:
\[
e^{(0)}=\sum_{k=1}^{n} c_{k} w_{k} \leftarrow \begin{aligned}
& \text { drop bold } \\
& \text { for vectors }
\end{aligned}
\]
- After miterations:
\[
R^{m} e^{(0)}=\sum_{k=1}^{n} c_{k} \lambda_{k}^{m} w_{k}
\]
- The \(k^{\text {th }}\) error mode is reduced by \(\lambda_{k}\left(R_{\omega}\right)\) each iteration.

Relaxation suppresses eigenmodes unevenly
\[
\text { Look carefully at } \lambda_{k}\left(R_{\omega}\right)=1-2 \omega \sin ^{2}\left(\frac{k \pi}{2 n}\right) \text {. }
\]


Note that if \(0<\omega \leq 1\), then \(\left|\lambda_{k}\left(R_{\omega}\right)\right|<1\) for \(k=1,2, \ldots, n-1\).
For \(0<\omega \leq 1\), \(\lambda_{1}=1-2 \omega \sin ^{2}\left(\frac{\pi}{2 n}\right)\)
\(=1-2 \omega \sin ^{2}\left(\frac{\pi h}{2}\right)\)
\(=1-O\left(h^{2}\right) \approx 1\)
CU-Boulder
\(k\) axis

\section*{Low frequencies are "undamped"}

Notice that no value of \(\omega\) will efficiently damp out long waves or low frequencies.


\section*{Smoothing factor}
- The smoothing factor is the largest magnitude of the iteration matrix eigenvalues corresponding to the oscillatory Fourier modes: smoothing factor \(=\max \left|\lambda_{k}(R)\right|\) for \(n / 2 \leq k \leq n-1\).
-Why only the upper spectrum?
" \(M G\) " spectral radius?
- For \(R_{\omega}\) with \(\omega=2 / 3\), the smoothing factor is \(1 / 3\) :
\[
\left|\lambda_{n / 2}\right|=\left|\lambda_{n-1}\right|=1 / 3 \quad \& \quad\left|\lambda_{k}\right|<1 / 3 \text { for } n / 2<k<n-1 \text {. }
\]
- But \(\left|\lambda_{k}\right| \approx 1-\omega k^{2} \pi^{2} h^{2}\) for long waves ( \(k \ll n / 2\) ).


- Jacobi on Au \(=0\) with \(n=64\). Number of iterations needed to reduce initial error \(\|e\|_{\infty}\) by 0.01.
- Initial guess :
\[
v_{k, i}=\sin \left(\frac{i k \pi}{n}\right)
\]

\section*{Convergence of Jacobi on \(\mathrm{Au}=0\)}

Weighted Jacobi \(=\) smoother (error)
Initial error: \(v_{i}=\sin \left(\frac{2 i \pi}{n}\right)+\frac{1}{2} \sin \left(\frac{16 i \pi}{n}\right)+\frac{1}{2} \sin \left(\frac{32 i \pi}{n}\right)\)
not solution
approximation!!!
Many relaxation schemes are smoothers: oscillatory error modes are quickly eliminated, but smooth modes are slowly damped.


\section*{Similar analysis for other smoothers}
- Gauss-Seidel relaxation applied to the 3-point difference matrix \(A\) (1-D model problem):
\[
R_{G}=(D-L)^{-1} U .
\]
- A little algebra \& trigonometry shows that


What's \(w_{k}\) look like for large \(k\) ?
97 of 396

Gauss-Seidel eigenvectors





These are VERY different from Jacobi's eigenvectors.
It's not clear how smoothness depends on \(k\).
You cannot expect G-S to quickly reduce Fourier modes.
You can only hope that G-S produces smooth results! CU -Boulder

\section*{Gauss-Seidel convergence}

Eigenvectors of \(R_{G}\) are not the same as those of A!!! Gauss-Seidel mixes the modes of \(A\).
\[
\text { Gauss-Seidel on } \mathrm{Au}=0 \text {, with }
\]
 \(n=64\). Number of iterations needed to reduce initial error \(\|e\|_{\infty}\) by 0.01 .

Initial guess (modes of \(A\) ):
\[
v_{k i}=\sin \left(\frac{i k \pi}{n}\right)
\]

So G-S does reduce oscillatory Fourier modes.


CU-Boulder
101 of 396
CU-Boulder



CU-Boulder
105 of 396




CU-Boulder
109 of 396


CU-Boulder
110 of 396


CU-Boulder


113 of 396

CU-Boulder
114 of 396



CU-Boulder
117 of 396


\section*{Outline}
\begin{tabular}{lc} 
Chapters 1-5: & Chapters 6-10: \\
\(\cdot \sqrt{ }\) Model Problems & Nonlinear Problems \\
\(\cdot \sqrt{ }\) Basic Iterative Methods & - Full approximation scheme \\
- Convergence tests & Selected Applications \\
- Analysis & - Neumann boundaries \\
- Elements of Multilfilomework Duisotlopic problems \\
- Relaxation & - Variable meshes \\
- Coarsening & Algebraic Multigrid (AMG) \\
Implementation & - Matrix coarsening \\
- Complexity & Multilevel Adaptive Methods \\
- Diagnostics & - FAC \\
Some Theory & Finite Elements \\
- Spectral vs. algebraic & - Variational methodology
\end{tabular}

\section*{3. Elements of multigrid}
\(1^{\text {st }}\) observation toward multigrid
- Many relaxation schemes have the smoothing property: oscillatory error modes are quickly eliminated, while smooth modes are often very slow to disappear.
- We'll turn this adversity around: the idea is to use coarse grids to take advantage of smoothing.


\section*{Reason \#1 for coarse grids:}

\section*{Nested iteration}
- Coarse grids can be used to compute an improved initial guess for the fine-grid relaxation. This is advantageous because:
- Relaxation on the coarse-grid is much cheaper: half as many points in 1-D, one-fourth in 2-D, one-eighth in 3-D ,...
- Relaxation on the coarse grid has a marginally faster convergence factor \(\left(\left|\lambda_{1}(R)\right| \approx 1-\omega \pi^{2} h^{2}\right)\) :
\(1-O\left(4 h^{2}\right)\) instead of \(1-O\left(h^{2}\right)\).

\section*{Reason \#2 for coarse grids:}

\section*{- A smooth function:}

can be represented by linear interpolation from a coarser grid:


On the coarse grid smooth error appears to be relatively higher in frequency: in this example it's the 4-mode out of a possible 15 on the fine grid, \(\sim 1 / 4\) the way up the spectrum. On the coarse grid, it's the 4-mode out of a possible 7, \(\sim 1 / 2\) the way up the spectrum.

Relaxation on 2 h is cheaper \& faster on this mode!!!


\[
w_{k, 2 i}^{h}=\sin \left(\frac{2 i k \pi}{n}\right)=\sin \left(\frac{i k \pi}{n / 2}\right)=w
\]

Also, note that
\[
w_{n / 2}^{h} \rightarrow 0
\]
on the coarse grid.

\section*{What happens}
to the modes
\[
k>n / 2 ?
\]

CU-Boulder



For \(k>n / 2, w_{k}{ }^{h}\) is disguised on the coarse grid: aliasing!!

For \(k>n / 2\), the \(k^{\text {th }}\) mode on the fine grid is aliased \& appears as the \((n-k)^{\text {th }}\) mode on the coarse grid:
\[
\begin{aligned}
\left(w_{k}^{h}\right)_{2 i} & =\sin \left(\frac{(2 i) \pi k}{n}\right) \\
& =-\sin \left(\frac{2 \mathrm{i} \pi(n-k)}{n}\right) \\
& =-\sin \left(\frac{i \pi(n-k)}{n / 2}\right) \\
& =-\left(w_{n-k}^{2 h}\right)_{i}
\end{aligned}
\]



CU-Boulder
126 of 396

\section*{} grid 2 h functions to grid h functions...

Values at points on the coarse grid map unchanged to the fine grid.
- Values at fine-grid points NOT on the coarse grid are the averages of their coarse-grid neighbors.


We will often identify \(\Omega^{2 h}\) with a subset of \(\Omega^{h}\).

\section*{1-D interpolation (prolongation)}
to migrate from coarse to fine grids
- Mapping from the coarse grid to the fine grid:
\[
I_{2 h}^{h}: \Omega^{2 h} \Longrightarrow \Omega^{h} \quad\left(\Omega^{h}=\Re^{n-1}\right)
\]
- Let \(v^{h}, v^{2 h}\) be defined on \(\Omega^{h}, \Omega^{2 h}\). Then
\[
I_{2 h}^{h} v^{2 h}=v^{h}
\]
where
\[
\begin{aligned}
& v_{2 i}^{h}=v_{i}^{2 h} \quad \text { for } 0 \leq i \leq \frac{n}{2} \text { (including boundaries), } \\
& v_{2 i+1}^{h}=\frac{1}{2}\left(v_{i}^{2 h}+v_{i+1}^{2 h}\right) \quad \text { for } 0 \leq i \leq \frac{n}{2}-1 .
\end{aligned}
\]

\section*{1-D prolongation operator \(P\)}
- \(P=I_{2 h}^{h}\) is a linear operator: \(\mathfrak{R}^{n / 2-1} \Longrightarrow \mathfrak{R}^{n-1}\).
- \(n=8:\)

- \(I_{2 h}^{h}\) has full rank, so \(\eta(P)=\{0\}\).
rank = max \# linearly
independent cols or rows
When is \(I_{2 h}^{h} v^{2 h}=0\) ?
"Scatter" stencil for \(P\)
\[
\text { ] } 1 / 2 \quad 1 \quad 1 / 2[
\]
\(0 \times 162 * 162 \times 0\)

\section*{How well could \(v^{2 h}\) approximate \(u\) ?}
- Imagine that a coarse-grid approximation \(v^{2 h}\) has been found. How well could it approximate the exact solution u?

- If \(u\) is smooth, a coarse-grid interpolant \(v^{2 h}\) might do very well.

\section*{How well could \(v^{2 h}\) approximate \(u\) ?}
- Imagine that a coarse-grid approximation \(v^{2 h}\) has been found. How well could it approximate the exact solution u?

- If \(u\) is oscillatory, a coarse-grid interpolant \(v^{2 h}\) cannot work well.

\section*{Where do we stand?}
\begin{tabular}{|l|c|c|}
\hline & \begin{tabular}{c} 
smooth \\
components
\end{tabular} & \begin{tabular}{c} 
oscillatory \\
components
\end{tabular} \\
\hline relaxation \\
\begin{tabular}{c} 
nested \\
iteration
\end{tabular} & & \\
\hline
\end{tabular}

\section*{\(2^{\text {nd }}\) observation toward multigrid}
- The residual equation: Let \(v\) be an approximation to the solution of \(A u=f\), where the residual \(r=f-A v\). Then the error \(e=u-v\) satisfies \(A e=r\).
- After relaxing on \(A u=f\) on the fine grid, e will be smooth, so the coarse grid can approximate e well. This will be cheaper \& e should be more oscillatory there, so relaxation will be more effective.
- Therefore, we go to a coarse grid \& relax on the residual equation \(\mathrm{Ae}=r\).

What's a good initial guess on grid \(2 h ? \quad e=0\) !
How do we get to grid \(2 h\) ?
Stay tuned...

\section*{The Key Step to Multigrid}
- If what we want to compute is smooth, a coarse-grid interpolant could do very well.
- If what we want to compute is oscillatory, a coarse-grid interpolant cannot do very well.
- What if \(u\) is not smooth? Can we make it so?
- Can we make something smooth?
\(\rightarrow\) error \(\leftarrow\)
- Can we smooth \(e\) ? Can we get \(e\) \& use it to get \(u\) ?
\[
A e=r \& u \leftarrow v+e!
\]
- So, use nested iteration on the residual equation to approximate the error after smoothing!!!
- Just because the coarse grid can approximate e well doesn't mean we know how to do it! But we will soon!

\section*{Idea! Coarse-grid correction}

\section*{2-grid}
- Relax on \(A u=f\) on \(\Omega^{h}\) to get an approximation \(v^{h}\).
- Computer \(=f-A v^{h}\).
- Transfer \(A e=r\) to \(\Omega^{2 h}\) somehow \& relax on it to obtain an approximation to the error, \(e^{2 h}\).
- Correct the approximation \(v^{h} \leftarrow v^{h}+I_{2 h}^{h} e^{2 h}\).

This is the essence of multigrid.
\[
\text { We need a way to transfer } A e=r \text { to } \Omega^{2 h} \text {. }
\]

\section*{A way to coarsen \(A e=r\) \\ Galerkin}
- Assume we've relaxed so much that \(e\) is smooth.
- Ansatz: \(e=P^{2 h}\) for some coarse-grid \(v^{2 h}\).
when grids understood else \(I_{2 h}^{h}\).
- How do we characterize e so we can hope to compute it?
\[
A e=r \quad \Rightarrow \quad A P V^{2 h}=r ~ \begin{aligned}
A \\
7 \times 77 \times 33 \times 1=7 \times 1
\end{aligned}
\]
- Too many equations now \& too few unknowns!
- How about just eliminating every other equation?
- How about multiplying both sides by some \(3 \times 7\) matrix?
\[
\begin{aligned}
& P^{A^{2 h}} \begin{array}{l}
A^{\top} \\
\left(\begin{array}{l}
7 \times 7 \\
3 \times 7 \\
3 \times 3
\end{array}\right) v^{2 h}=P T_{r}
\end{array} \quad \begin{array}{l}
\text { We might write } \\
R \text { instead of }
\end{array} \\
& P^{\top} \text { or maybe } I_{h}^{2 h}
\end{aligned}
\]

CU-Boulder

\section*{1-D restriction by injection}
- Mapping from the fine grid to the coarse grid:
\[
R=I_{h}^{2 h}: \Omega^{h} \rightarrow \Omega^{2 h} . \quad R \text { is not } \mathrm{P}^{\top} \text { here!!!! }
\]
- Let \(v^{h}, v^{2 h}\) be defined on \(\Omega^{h}, \Omega^{2 h}\). Then
\[
R v^{h}=I_{h}^{2 h} v^{h}=v^{2 h},
\]
where \(v_{i}^{2 h}=v_{2}^{h}\).


\section*{1-D restriction by full weighting}
- Let \(v^{h}, v^{2 h}\) be defined on \(\Omega^{h}, \Omega^{2 h}\). Then
\[
R v^{h}=I_{h}^{2 h} v^{h}=v^{2 h}, \quad R \text { is } c P^{\top} \text { here!!! }
\]
where
\[
v_{i}^{2 h}=\frac{1}{4}\left(v_{2 i-1}^{h}+2 v_{2 i}^{h}+v_{2 i+1}^{h}\right) .
\]


\section*{1-D restriction (full-weighting)}
- \(\mathrm{R}=I_{h}^{2 h}\) is a linear operator: \(\mathfrak{R}^{n-1} \longrightarrow \mathfrak{R}^{n / 2-1}\).

Don't confuse \(R\) here with error propagator notation.
- \(n=8\) :

- \(I_{h}^{2 h}\) has rank \(\frac{n}{2}-1\) because \(\operatorname{dim}(\operatorname{Range}(\mathrm{R}))=\frac{n}{2}-1\). Look at the columns of \(R\) associated with grid \(2 h\).

\section*{Prolongation \& restriction are often nicely related}
- For the 1-D examples, linear interpolation \& full weighting are
\[
I_{2 h}^{h}=\frac{1}{2}\left(\begin{array}{ccc}
1 & & \\
2 & & \\
1 & 1 & \\
& 2 & \\
& 1 & 1 \\
& & 2 \\
& & 1
\end{array}\right), \quad I_{h}^{2 h}=\frac{1}{4}\left(\begin{array}{cccccc}
1 & 2 & 1 & & & \\
& & 1 & 2 & 1 & \\
& & & & 1 & \\
& & & & 1 & 1
\end{array}\right)
\]
- So they're related by the variational condition
\[
I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T}, \quad c \text { in } \mathfrak{R}
\]
\[
P=c R^{\top}
\]

\section*{2-D prolongation}
```

 v vi,2j}=\mp@subsup{v}{ij}{2h
 v2i+1,2j}=\frac{1}{2}(\mp@subsup{v}{ij}{2h}+\mp@subsup{v}{i+1,j}{h}
 v vi,2j+1
 v}\mp@subsup{v}{2i+1,2j+1}{h}=\frac{1}{4}(\mp@subsup{v}{ij}{2h}+\mp@subsup{v}{i+1,j}{h}+\mp@subsup{v}{i,j+1}{h}+\mp@subsup{v}{i+1,j+1}{h}

```

We denote the operator by using a "scatter" stencil ] [. Centered over a C-point \(\bullet\), it shows what fraction of the C-point's value contributes to a neighboring F-point

"Gather" interpolation stencil
\[
\left[\begin{array}{cc}
1 / 4 & 1 / 4 \\
& \\
1 / 4 & 1 / 4
\end{array}\right]
\]

Centered over a fine-grid point


\section*{2-D restriction (full weighting)}
\[
\left[\begin{array}{ccc}
\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{16} & \frac{1}{8} & \frac{1}{16}
\end{array}\right]
\]


\section*{Now we put all these ideas together}
- Nested Iteration (Relaxation on Coarse Grids)
- effective on smooth solution (components).
- Relaxation on Fine Grid
- effective on oscillatory error (components).
- Residual Equation on Fine Grid
- characterizes the error.
- enables nested iteration for smooth error (components)!!!
- Prolongation (variables) \& Restriction (equations)
- provides pathways between coarse \& fine grids.

\section*{2-grid coarse-grid correction}


\section*{2-grid coarse-grid correction}
\(\underline{v^{h} \leftarrow C G\left(v^{h}, f^{h}\right)}\)
1) Relax \(\alpha_{1}\) times on \(A^{h} v^{h}=f^{h}\) on \(\Omega^{h}\) with arbitrary initial guess \(v^{h}\). If \(h=h_{\text {coarsest }}\), then go to 6 .
2) Compute \(r^{h}=f^{h}-A^{h} v^{h} . \quad A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h}=R A P\)
3) Compute \(r^{2 h}=I_{h}^{2 h} r^{h}\).
4) "Solve" \(A^{2 h} e^{2 h}=r^{2 h}\) on \(\Omega^{2 h}\).
5) Correct fine-grid solution \(v^{h} \leftarrow v^{h}+I_{2 h}^{h} e^{2 h}\).
6) Relax \(\alpha_{2}\) times on \(A^{h} v^{h}=f^{h}\) on \(\Omega^{h}\).

What does \(e^{2 h}\) represent here?

How do we "solve" \(A^{2 h} e^{2 h}=r^{2 h} ?\)


\section*{V-cycle (recursive form)}
\(\underline{v^{h} \leftarrow M V^{h}\left(v^{h}, f^{h}\right)}\)
1) Relax \(\alpha_{1}\) times on \(A^{h} u^{h}=f^{h}\) with initial \(v^{h}\) given.
2) If \(\Omega^{h}\) is the coarsest grid, go to 4;
else:
\[
\begin{aligned}
& f^{2 h} \leftarrow I_{h}^{2 h}\left(f^{h}-A^{h} v^{h}\right) \\
& v^{2 h} \leftarrow 0 \\
& v^{2 h} \leftarrow M V^{2 h}\left(v^{2 h}, f^{2 h}\right)
\end{aligned}
\]
3) Correct: \(v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}\).
4) Relax \(\alpha_{2}\) times on \(A^{h} u^{h}=f^{h}\) with initial guess \(v^{h}\).

\section*{4. Implementation}

Storage cost: \(v^{h} \& f^{h}\) on each level.
Estimates are approximate ( \(n, d, \ldots\) ).
- In 1-D, a coarse grid has about half as many points as the fine grid
- In 2-D, a coarse grid has about one-fourth as many points as the fine grid.
- In d-dimensions, a coarse grid has about \(2^{-d}\) as many points as the fine grid.
- Total storage cost: \(n^{d}\left(1+2^{-d}+2^{-2 d}+2^{-3 d}+\ldots+2^{-m d}\right)<\frac{n^{d}}{1-2^{-d}}\) less than \(2,4 / 3, \& 8 / 7\) the cost of storage on the fine grid for 1-D, 2-D, \& 3-D problems, respectively.

Chapters 1-5:
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
\(\sqrt{ }\) Elements of M
- Relaxation
- Coarsening

Implementation
- Complexity
- Diagnostics

Some Theory
- Spectral vs. algebraic

CU-Boulder

\section*{Outline}

Chapters 6-10:
Nonlinear Problems
- Full approximation scheme

Selected Applications
- Neumann boundaries

Dûin
而
- Variable coefficients

Algebraic Multigrid (AMG)
- Matrix coarsening

Multilevel Adaptive Methods - FAC

Finite Elements
- Variational methodology

\section*{Computational cost}
- Let one Work Unit (WU) be the cost of one relaxation sweep on the fine grid.
- Ignore the cost of restriction \& interpolation (typically about \(20 \%\) of the total cost).
- Consider a V-cycle with 2 pre-coarse-grid correction sweep ( \(\alpha_{1}=2\) ) \& 1 post-coarse-grid correction sweep \(\left(\alpha_{2}=1\right)\).
- Cost of a V-cycle (in WUs):
\[
3\left(1+2^{-d}+2^{-2 d}+2^{-3 d}+\ldots+2^{-m d}\right)<\frac{3}{1-2^{-d}}
\]
- Cost is about 2, 4/3, \& 8/7 \(\times 3\) WUs per V-cycle
in \(1,2, \& 3\) dimensions, respectively.

\section*{Convergence analysis}

First, a heuristic argument:
- The convergence factor for the oscillatory error modes (smoothing factor) is small \& bounded uniformly in \(h\).
\[
\text { smoothing factor }=\max \left|\lambda_{k}(R)\right| \quad \text { for } n / 2 \leq k \leq n-1 .
\]
- Multigrid focuses the relaxation process on attenuating the oscillatory components on each level.

\(\Rightarrow\) The overall multigrid convergence factor is small \& bounded uniformly in h!

Bounded uniformly in \(h \neq\) independent of \(h\).
\[
\begin{aligned}
& A \text { has } h^{-2} \text { in it here } \\
& A u^{(h)}+O\left(h^{2}\right)=f \quad \Rightarrow \quad A u^{(h)} \quad=f+O\left(h^{2}\right) \\
& \Rightarrow \quad A u^{h} \quad=f \quad\left(u^{h}=\operatorname{discrete} \text { sol' } n\right) \\
& \Rightarrow \quad A\left(u^{(h)}-u^{h}\right)=O\left(h^{2}\right) \\
& \Rightarrow \quad A E \quad=O\left(h^{2}\right) . \leftarrow \text { consistency } \\
& \text { ( } \mathrm{E}=\text { discretization error) } \\
& \text { So } \quad\|E\|=\left\|A^{-1} O\left(h^{2}\right)\right\| \\
& \leq\left\|A^{-1}\right\| \cdot\left\|O\left(h^{2}\right)\right\| \\
& =\lambda_{\max }\left(A^{-1}\right) \cdot O\left(h^{2}\right)=O\left(h^{2}\right) / \lambda_{\min }(A) \sim O\left(h^{2}\right) / \pi^{2} \\
& \text { stability } \\
& \|E\|=O\left(h^{2}\right) . \leftarrow \text { convergence } \\
& \text { or } \\
& \text { stability }
\end{aligned}
\]

\section*{}
\(O\left(h^{2}\right)\) means a quantity bounded in norm by \(\mathrm{Ch}^{2}\) for some constant \(C\).
- The BVP:
- Approxixirate whd derivative uling Taylor series:

- Suthining \({ }^{h} y_{0}^{h}\) sotving:
 \(\frac{u_{u}^{\prime \prime}\left((x)_{i}\right)+=2 u_{i}^{(h)}-u_{i}^{(h)}+1}{h^{2}}+\mathrm{O}\left(h^{2}\right)=f_{i} \quad i=1,2, \ldots, n-1\)
CU-Boulder
earlier
page \(\sqrt{55}\) of 396

\section*{Overall goal of computation}
- Continuous problem: \(A u=f, u_{i}=u\left(x_{i}\right)\)
- Discrete problem: \(A^{h} u^{h}=f f^{h}, v^{h} \approx u^{h}\)
- Global/discretization error: \(E_{i}=u\left(x_{i}\right)-u_{i}^{h}\) \(\|E\| \leq K h^{p}\)
( \(p=2\) for model problem \& proper norm)
- Algebraic error: \(e_{i}^{h}=u_{i}^{h}-v_{i}^{h}\)
- For tolerance \(\varepsilon\), assume the aim is to find \(v^{h}\) so that the total error, \(\|e\|=\left\|u^{(h)}-v^{h}\right\| \leq \varepsilon\), where \(u^{(h)}=\left(u\left(x_{i}\right)\right)\).
- Then this objective is assured as follows:
\[
\|e\| \leq\left\|u^{(h)}-u^{h}\right\|+\left\|u^{h}-v^{h}\right\|=\|E\|+\left\|e^{h}\right\| \leq \varepsilon \text {. }
\]

\section*{We can satisfy the convergence objective by imposing two conditions}
1) \(\|E\| \leq \varepsilon / 2\). Achieve this condition by choosing an appropriately small grid spacing \(h\) :
\[
K h^{p}=\varepsilon / 2 .
\]
2) \(\left|\mid e^{h} \| \leq \varepsilon / 2\right.\). Achieve this condition by iterating until \(\left|\mid e^{h} \| \leq \varepsilon / 2=K h^{p}\right.\) on grid \(h\); then we've
converged to the level of discretization error.
\(\longrightarrow\) Once discretization error \& algebraic error are in balance, then it would be better to go to grid h/2 than to iterate more!

\section*{Convergence to the level of discretization error}
- Use an MV scheme with convergence factor \(\gamma<1\) bounded uniformly in \(h\) (fixed \(\alpha_{1} \& \alpha_{2}\) ).
- Assume a d-dimensional problem on an \(n^{d}\) grid with \(h=1 / n\).
- Initial relative error: \(\left\|e^{h}\right\| /\left\|u^{h}\right\|=\left\|u^{h}-0\right\| /\left\|u^{h}\right\|=1\).
- Must reduce this to \(\left\|e^{h}\right\| /\left\|u^{h}\right\|=O\left(h^{p}\right)=O\left(n^{-p}\right)\).
- We can determine the number of V-cycles needed for this if we can bound the convergence factor, \(\gamma\).

\section*{Work to converge to the level of discretization error}
- Using \(\theta\) V-cycles with convergence factor \(\gamma\) gives an overall convergence factor of \(\gamma^{\theta}\).
- We therefore have \(\gamma^{\theta}=O\left(n^{-p}\right)\), or \(\theta=O(\log n)\).
- Since 1 V-cycle costs \(O(1)\) WUs \& 1 WUs is \(O\left(n^{d}\right)\), then converging to the level of discretization error using the MV method cost
\[
O\left(n^{d} \log n\right) .
\]
- Compares to fast direct methods (fast Poisson solvers).

But multigrid can do even better...


\section*{Numerical results norms cycling}
sistrentractrosstgriuthoklts. of
 display, atter each cycle, apostiduarinopmintstotal error norms, \& ratios of these norms to their 1 valuẽs after the previous cycle.
\(\mid r^{n} \eta_{2}^{n}=16,32,64,128\).
\(\left\|\mid r^{h}\right\|_{h}=h\left\|r^{h}\right\|_{2}\)
scaled residual error
\(\|e\|_{h}=h\left\|u^{(h)}-v^{h}\right\|_{2}\)
scaled discrete total error 161 of 396

\section*{Look again at nested iteration}
- Idea: It's cheaper to solve a problem (fewer iterations) if the initial guess is good.
- How to get a good initial guess:
- "Solve" the problem on the coarse grid first
- Interpolate the coarse solution to the fine grid.
- Now, let's use the V-cycle as the solver on each grid level! This defines the Full Multigrid (FMG) cycle.
- Bounds like \(\left\|e_{n+1}\right\| \leq \gamma\left\|e_{n}\right\| \&\left\|u^{(h)}-u^{h}\right\|=O(h)\) are only just that--bounds!
- If you see behavior that suggests that these bounds are sharp (e.g., halving \(h\) halves the discretization error), then great. If you don't see this behavior, don't assume things are wrong.
- Think about this:
\(O\left(h^{2}\right)=O(h)\) but generally \(O(h) \neq O\left(h^{2}\right)!!!\)
(Any process that is \(O\left(h^{2}\right)\) is also \(O(h)\), but the converse isn't necessarily true.)

\section*{A warning about bounds}
\[
\begin{gathered}
\text { Reconsideration } \\
\text { You want to approximate } \mathrm{u}^{h} \text {. } \\
\text { A good iteration is the V-cycle. } \\
\text { What's a good way to start it? } \\
\text { Can you do better than } \mathrm{v}^{h} \leftarrow 0 \text { ? } \\
\rightarrow \text { Start on the coarse grid. } \leftarrow \\
\hline \text { Use nested iteration for the } V \text {-cycle. }
\end{gathered}
\]
(2)

\section*{Full multigrid (FMG)}
\(\underline{v^{h} \leftarrow F M G\left(f^{h}\right)}\)
- Initialize \(f^{h}, f^{2 h}, f^{4 h}, \ldots, f^{H}\)
- Solve on coarsest grid
- Interpolate initial guess
- Perform V-cycle
- Interpolate initial guess \(v^{h} \leftarrow I_{2 h}^{h} v^{2 h}\)
- Perform V-cycle \(\quad v^{h} \leftarrow M V^{h}\left(v^{h}, f^{h}\right)\)

-
\(v^{2 h} \leftarrow I_{4 h}^{2 h} v^{4 h}\)
\(v^{2 h} \leftarrow M V^{2 h}\left(v^{2 h}, f^{2 h}\right)\)

\section*{FMG cycle cost}

One \(V(2,1)\)-cycle is performed per level, at a cost of \(3 /\left(1-2^{-d}\right)\) WUs per grid (where the WU is for the size of the finest grid involved).
The size for the WU for coarse-grid \(j\) is \(2^{-j d}\) times the size for the WU for the fine grid (grid 0 ).
Hence, the cost of the FMG \((2,1)\) cycle in WUs is less than
\[
\left[3 /\left(1-2^{-d}\right)\right]\left(1+2^{-d}+2^{-2 d}+\ldots\right)=3 /\left(1-2^{-d}\right)^{2}
\]
\[
d=1: 12 \text { WUs; } \quad d=2: 16 / 3 \text { WUs; } \quad d=3: 192 / 49 \text { WUs. }
\]

FMG-cycle (recursive form)

\section*{\(v^{h}<-\) FMG( \(f^{h}\) ), \(\eta\)}
1) Initialize \(f^{h}, f^{2 h}, \ldots, f^{H}\).
2) If \(h=H\), then go to 4 (where MV is a direct solve);
else: \(\quad v^{2 h}<-F M G\left(f^{2 h}\right)\).
3) Set initial guess: \(v^{h}<-I_{2 h}^{h} v^{2 h}\). We use \(\eta=1\).
4) Perform \(v^{h}<-M V\left(v^{h}, f^{h}\right) \quad \eta\) times.

\section*{been reached by FMG?}

If discretization error is achieved, then \(\left\|e^{h}\right\|=O\left(h^{2}\right)\) \& the V -cycle approximation converges to the solution of the PDE about as well as the discrete solution does:


We need to be more careful...

\section*{The basic FMG principle}

\(u=\) exact pde solution
\(u^{2 h}, \mathrm{u}^{h}=\) exact \(2 h, h\) solutions
\(v^{2 h}, v^{h}=\) exact \(2 h, h\) approximations

Simpler schematic


\section*{Comparing the right things}
- Problem: We are thinking that \(u^{2 h}\) approximates \(u^{h}\) to order \(O\left(h^{2}\right)\), when all we really know is that \(u^{h}\) approximates \(u^{(h)}\) to order \(O\left(h^{2}\right)\) (any \(h\) ).
- We know that \(u^{(2 h)}\) \& \(u^{(h)}\) are the "same", right? So, if \(u^{2 h}\) approximates \(u^{(2 h)}\) to order \(O\left(4 h^{2}\right)\) \& \(u^{h}\) approximates \(u^{(h)}\) to order \(O\left(h^{2}\right)\), shouldn't \(u^{2 h}\) approximate \(\mathrm{u}^{h}\) to order \(\mathrm{O}\left(4 \mathrm{~h}^{2}\right)\) ? How, exactly?
- When we interpolate \(u^{2 h}\) to grid \(h\), what errors does interpolation introduce?
- Sorting out these comparisons is a bit technical.
- In other words, here comes the algebra...

\section*{Approximation property}
how the discrete solutions approximate each other

\section*{\(\left\|u^{h}-\mathrm{Pu}^{2 h}\right\| \leq \alpha K h^{2}\)}
\[
\begin{array}{r}
\left|\left(u^{(h)}-P u^{(2 h)}\right)_{i}\right|=\left|u\left(x_{i}\right)-\left(u\left(x_{i-1}\right)+u\left(x_{i+1}\right)\right) / 2\right| \leq\left|u^{\prime \prime}\left(\xi_{i}\right)\right| h^{2} / 2 \\
\Rightarrow\left|\left|u^{(h)}-P u^{(2 h)}\right|\right| \leq c K h^{2} \quad\left(| | u^{h}-u^{(h)}| | \approx K h^{2}\right)
\end{array}
\]
(We need \(\left\|u^{\prime \prime}\right\| \ll \infty\), so the norm is scaled by \(h\) here.)
\(\Rightarrow\left\|u^{h}-P u^{2 h}\right\|\)
\(\leq\left\|u^{h}-u^{(h)}\right\|+\left\|u^{(h)}-P u^{(2 h)}\right\|+\left\|P u^{(2 h)}-P u^{2 h}\right\|\)
\(\leq K h^{2}+c K h^{2}+\|P\| \cdot\left\|u^{(2 h)}-u^{2 h}\right\|\)
\(\leq K h^{2}+c K h^{2}+\beta K(2 h)^{2}\)
\(\leq(1+c+4 \beta) K h^{2}\)
In practice, \(\alpha=1+c+4 \beta \approx 5\).
CU -Boulder

\section*{Numerical example}
- Consider again the 2-D model problem (with \(\sigma=0\) ):
\(-u_{x x}-u_{y y}=2\left[\left(1-6 x^{2}\right) y^{2}\left(1-y^{2}\right)+\left(1-6 y^{2}\right) x^{2}\left(1-x^{2}\right)\right]\)
inside the unit square, with \(u=0\) on the boundary.
- We examine the effectiveness of FMG cycling to solve the problem on \((n+1) \times(n+1)\) grids \([(n-1) \times(n-1)\) interior points] for \(n=2,4, \ldots, 2048\).

\section*{FMG accuracy}
\(\left\|e^{h}\right\| \leq K h^{2}\)
Assume:
\[
\begin{array}{ll}
\left\|e^{2 h}\right\| \leq K(2 h)^{2} & \text { induction hypothesis } \\
\left\|u^{h}-P u^{2 h}\right\| \leq \alpha K h^{2} & \text { approximation property }(\alpha \approx 5) \\
\left\|P w^{2 h}\right\| \leq \beta\left\|w^{2 h}\right\| & \text { interpolation stability }(\beta \approx 1)
\end{array}
\]

Triangle inequality:
\[
\left.\begin{array}{rl}
\left\|e^{h}\right\| & =\left\|u^{h}-P v^{2 h}\right\| \\
& \leq\left\|u^{h}-P u^{2 h}\right\|+\left\|P\left(u^{2 h}-v^{2 h}\right)\right\| \\
& \leq \alpha K h^{2} \quad+\quad \beta K(2 h)^{2} \\
& =\quad(\alpha+4 \beta) K h^{2} \\
\Rightarrow \quad & \left\|e^{h}\right\| \leq " 9 " K h^{2}
\end{array}\right\}
\]

FMG cycle results \& comparison with MV cycle costs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(N\)} & \multicolumn{2}{|l|}{FMG(1,0)} & \multicolumn{2}{|l|}{FMG(1,1)} & \multicolumn{2}{|l|}{FMG(2,1)} & FMG(1,1) & \(\mathrm{V}(2,1)\) & \(\mathrm{V}(2,1)\) \\
\hline & \(\|\mathbf{e}\|_{h}\) & ratio & \(\|\mathbf{e}\|_{h}\) & ratio & \(\|\mathrm{e}\|_{h}\) & ratio & WU & cycles & WU \\
\hline 2 & \(5.86 \mathrm{e}-03\) & & \(5.86 \mathrm{e}-03\) & & 5.86e-03 & & & & \\
\hline 4 & \(5.37 \mathrm{e}-03\) & 0.917 & \(2.49 \mathrm{e}-03\) & 0.424 & \(2.03 \mathrm{e}-03\) & 0.347 & 7/2 & 3 & 12 \\
\hline 8 & \(2.78 \mathrm{e}-03\) & 0.518 & 9.12e-04 & 0.367 & 6.68e-04 & 0.328 & 7/2 & 4 & 16 \\
\hline 16 & \(1.19 \mathrm{e}-03\) & 0.427 & \(2.52 \mathrm{e}-04\) & 0.277 & \(1.72 \mathrm{e}-04\) & 0.257 & 1.03e-04 & 4 & 16 \\
\hline 32 & \(4.70 \mathrm{e}-04\) & 0.395 & 6.00e-05 & 0.238 & \(4.00 \mathrm{e}-05\) & 0.233 & 2.58 e-05 & 5 & 20 \\
\hline 64 & 1.77e-04 & 0.377 & \(1.36 \mathrm{e}-05\) & 0.227 & \(9.36 \mathrm{e}-06\) & 0.234 & \(6.44 e-06\) & 5 & 20 \\
\hline 128 & \(6.49 \mathrm{e}-05\) & 0.366 & 3.12e-06 & 0.229 & \(2.26 \mathrm{e}-06\) & 0.241 & \(1.61 e-06\) & 6 & 24 \\
\hline 256 & \(2.33 \mathrm{e}-05\) & 0.359 & \(7.35 \mathrm{e}-07\) & 0.235 & \(5.56 \mathrm{e}-07\) & 0.246 & 7/2 & 7 & 28 \\
\hline 512 & 8.26e-06 & 0.354 & \(1.77 \mathrm{e}-07\) & 0.241 & \(1.38 \mathrm{e}-07\) & 0.248 & 7/2 & 7 & 28 \\
\hline 1024 & \(2.90 \mathrm{e}-06\) & 0.352 & \(4.35 \mathrm{e}-08\) & 0.245 & \(3.44 \mathrm{e}-08\) & 0.249 & 7/2 & 8 & 32 \\
\hline 2048 & \(1.02 \mathrm{e}-06\) & 0.351 & \(1.08 \mathrm{e}-08\) & 0.247 & 8.59e-09 & 0.250 & 7/2 & 9 & 36 \\
\hline
\end{tabular}

\section*{Successful Scientific Inquiry}
- Attitude
- Knowledge is good, but understanding rules!
- Look for the underlying principle!
- You can do it! Be positive.

But is it really right? Be critical
- Control your emotions! Expect ups \& downs.
- Method
- Start simply. Reduce issue to the simplest possible case
- Take tiny steps, but keep the big picture in mind.
- Study concrete examples.
- Look for analogies. Can A be done in any way like how B was done?
- Creativity
- What do you really want? What end are you really aiming for?
- What do you really need? What you're trying may be sufficient to do what you want, but would an easier weak result do instead?
- Intelligence
- It doesn't hurt to try to be "smart" too

\section*{Tool \# 1: Be methodical}
- Modularize your code.
- Test the algebraic solver first.
- Test the discretization next.
- Test the FMG solver last.
- Beware of boundaries, scales, \& concepts.
- Ask whether the problem itself is well posed.

\section*{Tool \# 2: Start simply}
- Start from something that already works if you can.
- Introduce complexities slowly \& methodically, testing
thoroughly along the way.
- Start with a very coarse fine grid (no oxymoron intended).
- Start with two levels if you can, using a direct solver or lots
of cycles on coarse grids if nothing else.
If you find trouble, your first job is to find the simplest case where that trouble is still evident!!!

\section*{Tool \# 3: Expose trouble}

Start simply, but don't let niceties mask trouble:
- Set reaction/Helmholtz terms to zero.
- Take infinite or very big time steps.
- Don't take 1-D too seriously, not even 2-D.

\section*{Tool \# 4: Test fixed point property}

Relaxation shouldn't alter the exact solution of the linear system (up to machine precision).
- Create a right side: \(f^{h}=A^{h} u^{h}\) with \(u^{h}\) given.
- Make sure \(u^{h}\) satisfies the right boundary conditions.
- Test relaxation starting with \(u^{h}\) : Is \(r^{h}=0\), is it zero after relaxation, does \(u^{h}\) change?
- Test coarse-grid correction starting with uh: Is the correction zero?

CU-Boulder

\section*{Tool \# 5: Test on \(\mathrm{Au}^{h}=0\)}
- The exact solution \(\mathrm{u}^{h}=0\) is known!
- Residual norm \|Av\(\|\) \& error norm \|v \(\left\|v^{h}\right\|\) are computable.
- Norms ||Av \({ }^{h}| | \&| | v^{h}| |\) should eventually decrease steadily with a rate that might be predicted by mode analysis.
- Multigrid can converge so fast that early stalling suggests trouble when it's just that all machine-representable numbers in a nonzero \(v^{h}\) have already been computed! Computing \(r^{h}=f^{h}-A v^{h}\) \& updating \(v^{h}\) shouldn't have trouble with machine precision if you have \(\mathrm{u}^{h}=0\) \& thus \(f^{h}=0\).

\section*{Tool \# 6: Zero out residual}
- Using a normal test, try multiplying the residual by 0 before you go to the coarse grid.
- Check to see that the coarse-grid corrections are 0.
- Compare this test with a relaxation-only test--the results should be identical.

\section*{Tool \# 7: Print out residual norms}
dropping superscript \(h\) when it's clear by context
- Use the discrete \(L^{2}\) norm:
\[
\|r\|_{h}=\left(h^{d} \Sigma r_{i}^{2}\right)^{1 / 2}=h^{d / 2}\|r\|_{2} .
\]
- Output \(\|r\|_{h}\) after each pre- \& post-relaxation sweep.
- These norms should decline to zero steadily for each \(h\).
- The norm after post-relaxation should be consistently smaller than after pre-relaxation--by the predictable convergence factor at least.

CU-Boulder

Beware of residuals
\(A e=r\)
\(e_{k}=\sin (k \pi x)\)
example \(h^{-2}(-12-1)\)
- Relative errors: \(\frac{\|e\|_{h}}{\|u\|_{h}}\) vs. \(\frac{\|A e\|_{h}}{\|A u\|_{h}}=\frac{\|r\|_{h}}{\|f\|_{h}}\)
- Absolute range: \(\left\|e_{1}\right\|_{h} \approx 1\) \& \(\left\|A e_{1}\right\|_{h} \approx \pi^{2}\) \(\left\|e_{n}\right\|_{h} \approx 1\) \& \(\left\|A e_{n}\right\|_{h} \approx 4 h^{-2}!!!\)
- Relative errors: consider the case \(u=e_{n}\)
\(\frac{\left\|e_{n}\right\|_{h}}{\|u\|_{h}}=1 \quad \& \quad \frac{\left\|A e_{n}\right\|_{h}}{\|A u\|_{h}}=1\)
\(\left\|e_{1}\right\|_{h}=1 \quad \& \quad\left\|A e_{1}\right\|_{h} \approx\left(\pi^{2} / 4\right) h^{2}!!!\)
Moral: residuals can falsely signal convergence when the error is smooth.

\section*{Tool \# 9: Test two-level cycling}
- Replace the coarse-grid V-cycle recursive call with a direct solver if possible, or iterate many times with some method known to "work" (test \|r\| to be sure it's very small), or use many recursive V-cycle calls.
- This can be used to test performance between two coarser levels, especially if residual norm behavior identifies trouble on a particular level.

\section*{Tool \# 10: Beware of boundaries}
- Boundaries usually require special treatment of the stencils, intergrid transfers, \& sometimes relaxation.
- Special treatment often means special trouble, typically exposed in later cycles as it begins to infect the interior.
- Replace the boundary by periodic or Dirichlet conditions.
- Relax more at the boundary, perhaps using direct solvers.
- Make sure your coarse-grid approximation at the boundary is guided by good discretization at the fine-grid boundary.

\section*{Tool \# 12: Check for compatibility}
a bit ahead of schedule, but...
- Consider the problem
\[
-u^{\prime \prime}=f \text { with } u^{\prime}(0)=u^{\prime}(1)=0 \text {. }
\]
- It's singular: If \(u=1\), then \(-u^{\prime \prime}=0\) \& \(u^{\prime}(0)=u^{\prime}(1)=0\).
- It's is solvable iff \(f \in \operatorname{Range}\left(\partial_{x x}\right)=\eta \perp\left(\partial_{x x}\right)=\{1\} \perp\) or \(f \perp 1\).
- First fix the grid h right side: \(\left.f^{h} \leftarrow f^{h}-\left(\left\langle f^{h}, 1\right\rangle /<1,1\right\rangle\right) 1\).
- Do this on coarse grids too: \(\left.f^{2 h} \leftarrow f^{2 h}-\left(\left\langle f^{2 h}, 1\right\rangle /<1,1\right\rangle\right) 1\).
- Uniqueness is also a worry: \(\left.\mathrm{u}^{h} \leftarrow \mathrm{u}^{h}-\left(\left\langle\mathrm{u}^{h}, 1\right\rangle /<1,1\right\rangle\right) 1\).

\section*{Tool \# 11: Test for symmetry}
- If your problem is symmetric or includes a symmetric case, test for it.
- Check symmetry of the fine-grid \& coarse-grid matrices: are \(a_{i j} \& a_{\mathrm{ji}}\) relatively equal (to machine precision).
- Be especially watchful for asymmetries near boundaries.
- If you're writing a nonlinear FAS code, it should agree with the linear code when you test it on a linear problem. Try it.
- Move gradually to the target nonlinear test problem by putting a parameter in front of the nonlinear term, then running tests as the parameter changes slowly from 0 to 1.

\section*{Tool \# 14: Use a known PDE solution}
- Set up the source term \(\left(f=-u^{\prime \prime}\right.\) in \(\left.\Omega\right)\) \& data \((g=u\) on \(\Gamma)\).
- Do multigrid results compare qualitatively with sampled u?
- Monitor \(\left\|u-u^{h}\right\|_{h}\).
- Test a case with no discretization error \(\left(u=a x^{2}+b x+c\right)\). The algebraic error should tend steadily to 0.
- Test discretization error ( \(u^{i v} \neq 0\) ). The algebraic error should decrease rapidly at first, then stall at discretization error level. Check error behavior as you decrease h. Does it behave like \(O\left(h^{2}\right)(h \rightarrow h / 2 \Rightarrow e \rightarrow e / 2)\) or however it should?

\section*{Computing assignments}
- Document:
norms/weights, \(\mathrm{V}\left(v_{1}, v_{2}\right)\), errors, labels (table, graph)
- Use various scenarios:
\(A x=0, A x=f\), varying \(n \& v_{i} \& \omega\), Jacobi/Gauss-Seidel
- Thoroughly test:
don't stop until you get what you expect. compare with known solution, text, others. study discretization \& algebraic errors. report on "asymptotic" factors.
- Be kind to the reader:
by hand ok
code \(=\) zzz... tables \(=+\quad\) tables \(\&\) graphs \(=++\)
tables \& graphs \& discussion (clear, concise) = +++
- Discuss, discuss, discuss: what do you see \& think? what did you learn?

\section*{Tool \# 15: Test FMG accuracy}
- Make sure first that the algebraic solver converges as predicted, with uniformly bounded convergence factors.
- Test the discretization using Tool \# 14.
- Compare FMG total error to discretization error for various \(h\). You might need to tune the FMG process here (play with the number of cycles \& relaxation sweeps).

CU-Boulder
194 of 396

\section*{Outline}

\section*{Chapters 1-5:}
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
\(\sqrt{ }\) Elements of Multiluilomework Anisotropic problem
- Relaxation
- Coarsening
- \(\sqrt{ }\) Implementation
- Complexity
- Diagnostics

Some Theory
- Spectral vs. algebraic

Chapters 6-10:
- Nonlinear Problems
- Full approximation scheme

Selected Applications
- Neumann boundaries

Anisot popic problems
- Variable coefficients

Algebraic Multigrid (AMG)
- Matrix coarsening

Multilevel Adaptive Methods

\section*{- FAC}

Finite Elements
- Variational methodology

\section*{5. Some theory}

What is \(A^{2 h}\) ?
- Recall the 2-grid coarse-grid correction scheme:
- 1) Relax on \(A^{h} u^{h}=f^{h}\) on \(\Omega^{h}\) to get \(v^{h}\).
- 2) Compute \(f^{2 h}=I_{h}^{2 h}\left(f^{h}-A^{h} v^{h}\right)\).
- 4) Solve \(A^{2 h} u^{2 h}=f^{2 h}\) on \(\Omega^{2 h}\).
- 5) Correct fine-grid solution \(v^{h} \leftarrow v^{h}+I_{2 h}^{h} u^{2 h}\).
- Assume that \(e^{h} \in \operatorname{Range}\left(I_{2 h}^{h}\right)\), i. e., \(e^{h}=I_{2 h}^{h} u^{2 h}\) for some \(u^{2 h} \in \Omega^{2 h}\). Then the residual equation can be written
\[
A^{h} e^{h}=A^{h} I_{2 h}^{h} U^{2 h}=r^{h} .
\]

This characterizes \(u^{2 h}\), but with too many equations.
- How does \(A^{h}\) act on \(I_{2 h}^{h}\) ?

\section*{How does \(A^{h}\) act on Range \(\left(I_{2 h}^{h}\right)\) ?}


Thus, the odd rows of \(A^{h} I_{2 h}^{h}\) are zero (1-D only) \& \(r_{2 i+1}=0\). So we keep the even rows of \(A^{h} I_{2 h}^{h}\) for the residual equations on \(\Omega^{2 h}\). We do this by applying restriction, either injection or full weighting: \(I_{h}^{2 h} A^{h} I_{2 h}^{h} u^{2 h}=I_{h}^{2 h} r^{h}\).
We use full weighting from now on unless otherwise stated. CU-Boulder

\section*{Building \(A^{2 h}\) : The Galerkin condition}
- The residual equation on the coarse grid is
\[
I_{h}^{2 h} A^{h} I_{2 h}^{h} u^{2 h}=I_{h}^{2 h} r^{h}
\]
- We thus identify the coarse-grid operator as
\[
A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h} \quad A^{2 h}=\operatorname{RA} h P
\]
- RAP is symmetric:

If \(P^{\top}=\alpha R\) (so that \(R^{\top}=(1 / \alpha) P\) ), then
\((R A P)^{\top}=P^{\top} A^{\top} R^{\top}=\alpha(1 / \alpha) R A P=R A P\).
- RAP is positive definite: \(\quad P\) full rank \(\Rightarrow P x \neq 0\).
\[
\text { If } x \neq 0 \text {, then }\langle R A P x, x\rangle=(1 / \alpha)\langle A P x, P x \gg 0 \text { ! }
\]

\section*{Computing the \(i^{\text {th }}\) row of \(\mathrm{A}^{\text {2h }}\)}
\begin{tabular}{cc} 
Compute \(A^{2 h} \hat{e}_{i}^{2 h}\), where \(\hat{e}_{i}^{2 h}=(0,0, \ldots, 0,1,0, \ldots, 0)^{T}\) \\
0 & 1
\end{tabular}

\section*{The \(i^{\text {th }}\) row of \(A^{2 h}\) looks a lot like the \(i^{\text {th }}\) row of \(A^{h}\) !}
- The \(\mathrm{i}^{\text {th }}\) row of \(\mathrm{A}^{2 h}\) is \(\frac{1}{(2 h)^{2}}\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]\),
which is the \(\Omega^{2 h}\) version of \(A^{h}\).
- Note that IF relaxation on \(\Omega^{h}\) leaves only error in the range of interpolation, then solving
\[
A^{2 h} u^{2 h}=f^{2 h}
\]
determines the error exactly!
- This is generally not feasible, but this logic motivates wanting \(e^{h} \in \operatorname{Range}\left(I_{2 h}^{h}\right)\) \& it leads to a very plausible representation for \(A^{2 h}\).

\section*{Variational properties of coarsening}

The definition for \(A^{2 h}\) that resulted from the foregoing line of reasoning is useful for both theoretical \& practical reasons. Together with the commonly used relationship between restriction \& prolongation, we have the variational properties:
\[
\begin{aligned}
& A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h} \\
& I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T}
\end{aligned}
\]

CU-Boulder

Galerkin Condition
\(c \in \mathfrak{\Re}\)

\section*{Properties of restriction}
in a little more detail..
- Full Weighting: \(I_{h}^{2 h}: \Omega^{h} \Longrightarrow \Omega^{2 h}\) or \(I_{h}^{2 h}: \mathfrak{R}^{n-1} \longrightarrow \Re^{n / 2-1}\)
- \(n=8\) :
\[
I_{h}^{2 h}=\frac{1}{4}\left[\begin{array}{lllllll}
1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & \\
& & & & 1 & 2 & 1
\end{array}\right]_{3 \times 7}
\]
- \(I_{h}^{2 h}\) has rank \(\frac{n}{2}-1\) \& null space \(\eta\left(I_{h}^{2 h}\right)\) with \(\operatorname{dim} \frac{n}{2}\).

\section*{Spectral properties of restriction}
- How does \(I_{h}^{2 h}\) act on the eigenvectors of \(A^{h}\) ?
- Consider \(w_{k, j}^{h}=\sin \left(\frac{j k \pi}{n}\right), 1 \leq k \leq n-1,0 \leq j \leq n-1\).
- A little algebra \& trigonometry shows that

CU-Boulder

\[
\begin{aligned}
& \left(I_{h}^{2 h} w\right. \\
& \text { /2-1. } \\
& (1)
\end{aligned}
\]


\section*{Spectral properties (cont'd)}
- i.e., \(I_{h}^{2 h}\left[k^{\text {th }}\right.\) mode on \(\left.\Omega^{h}\right]=c_{k}\left[k^{\text {th }}\right.\) mode on \(\left.\Omega^{2 h}\right]\)


CU-Boulder

\section*{Spectral properties (cont'd)}
- Let \(k^{\prime}=n-k\) for \(1 \leq k \leq n / 2-1\), so that \(n / 2+1 \leq k^{\prime} \leq n-1\).
- A little algebra \& trigonometry shows that
\[
\begin{aligned}
&\left(I_{h}^{2 h} w_{k^{\prime}}^{h}\right)_{j}=-\sin ^{2}\left(\frac{k \pi}{2 n}\right) w_{k, j}^{2 h} \\
& \equiv-s_{k} w_{k, j}^{2 h} \\
& \underbrace{}_{S_{1}=O\left(h^{2}\right) \ldots S_{n / \widetilde{2}-1} 1=O(1)}
\end{aligned}
\]

\section*{Spectral properties (cont'd)}
i.e., \(I_{h}^{2 h}\left[(n-k)^{\text {th }}\right.\) mode on \(\left.\Omega^{h}\right]=-s_{k}\left[k^{\text {th }}\right.\) mode on \(\left.\Omega^{2 h}\right]\)


\section*{Spectral properties (cont'd)}
- Summarizing:
\[
\begin{aligned}
& I_{h}^{2 h} w_{k}^{h}=c_{k} w_{k}^{2 h} \\
& I_{h}^{2 h} w_{k^{\prime}}^{h}=-s_{k} w_{k}^{2 h} \\
& I_{h}^{2 h} w_{n / 2}^{h}=0
\end{aligned} \underbrace{}_{S_{1}=O\left(h^{2}\right) \ldots s_{n / 2-1} \approx O(1)} \begin{aligned}
& 1 \leq k \leq \frac{n}{2}-1 \\
& k^{\prime}=n-k
\end{aligned}
\]
- Complementary modes:
\[
\begin{aligned}
& W_{k}=\operatorname{span}\left\{w_{k}^{h}, w_{k^{\prime}}^{h}\right\} \\
& I_{h}^{2 h} W_{k} \Longrightarrow\left\{w_{k}^{2 h}\right\}^{\infty}
\end{aligned}
\]

\section*{Properties of interpolation}
- Interpolation: \(I_{2 h}^{h}: \Omega^{2 h} \Longrightarrow \Omega^{h}\) or
\[
I_{2 h}^{h}: \mathfrak{R}^{n / 2-1} \Longrightarrow \mathfrak{R}^{n-1}
\]
- \(n=8: \quad I_{2 h}^{h}=\frac{1}{2}\left[\begin{array}{lll}1 & & \\ 2 & & \\ 1 & 1 & \\ & 2 & \\ & 1 & 1 \\ & & 2 \\ & & 1\end{array}\right]\)
\(I_{2 h}^{h}\) has full rank \& null space \(\{0\}\).

\section*{Null space of restriction}
- Observe that \(\eta\left(I_{h}^{2 h}\right)=\operatorname{span}\left(A^{h} \hat{e}_{i}^{h}\right)\), where \(i\) is odd \& \(\hat{e}_{i}^{h}\) is the \(i^{\text {th }}\) unit vector.
- Let \(\eta_{i}=A^{h} \hat{e}_{i}{ }^{h}\).

- While the \(\eta_{i}\) looks oscillatory, it generally contains all Fourier modes of \(A^{h}\) :
\[
\eta_{i}=\sum_{k=1}^{N} a_{k} w_{k} \quad a_{k} \neq 0
\]
- All the Fourier modes of \(A^{h}\) are needed to represent the null space of restriction!

\section*{Spectral properties of interpolation}
- How does \(I_{2 h}^{h}\) act on the eigenvectors of \(A^{2 h}\) ?
- Consider \(\left(w_{k}^{2 h}\right)_{j}=\sin \left(\frac{j k \pi}{n / 2}\right), 1 \leq k \leq n / 2-1,0 \leq j \leq n / 2\).
- A bit of work shows that the modes of \(A^{2 h}\) are NOT "preserved" by \(I_{2 h}^{h}\), but that the space \(W_{k}\) is "preserved":
\[
\begin{aligned}
I_{2 h}^{h} w_{k}^{2 h} & =\cos ^{2}\left(\frac{k \pi}{2 n}\right) w_{k}^{h}-\sin ^{2}\left(\frac{k \pi}{2 n}\right) w_{k^{\prime}}^{h} \\
& =c_{k} w_{k}^{h}-s_{k} w_{k^{\prime}}^{h}
\end{aligned}
\]

\section*{Spectral properties of interpolation}
\[
I_{2 h}^{h} w_{k}^{2 h}=c_{k} w_{k}^{h}-s_{k} w_{k^{\prime}}^{h}
\]
- Interpolation of smooth \(\Omega^{2 h}\) modes excites oscillatory modes on \(\Omega^{h}\).
- Note that if \(k \ll \frac{n}{2}\), then
\[
\begin{aligned}
& \quad I_{2 h}^{h} w_{k}^{2 h}=\left(1-O\left(\frac{k^{2}}{(n-1)^{2}}\right)\right) w_{k}^{h}+O\left(\frac{k^{2}}{(n-1)^{2}}\right) w_{k^{\prime}}^{h} \\
& \quad \approx w_{k}^{h} \\
& I_{2 h}^{h} \text { is } 2^{\text {nd }} \text {-order interpolation. }
\end{aligned}
\]
relax only before correction
1) Relax once on \(\Omega^{h}: \quad v^{h} \leftarrow R_{\omega} v^{h}+B \underbrace{L^{h}}_{\substack{\text { error propagation matrix } \\ \text { not restriction! }}} \begin{aligned} & \text { 2) Compute \& restrict residual: }\end{aligned} f^{2 h} \leftarrow I_{h}^{2^{h}\left(f^{h}-A^{h} v^{h}\right) .}\)
3) Solve residual equation: \(v^{2 h}=\left(A^{2 h}\right)^{-1} f^{2 h}\).
4) Correct fine-grid solution: \(\quad v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}\)

The entire process appears as
\(v^{h} \leftarrow R_{\omega} v^{h}+B f^{h}+I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h}\left(f^{h}-A^{h}\left(R_{\omega} v^{h}+B f^{h}\right)\right)\)
The exact solution satisfies
\[
u^{h}=R_{\omega} u^{h}+B f^{h}+I_{2 h}^{h}\left(A^{2 h}\right)-1 I_{h}^{2 h}\left(f^{h}-A^{h}\left(R_{\omega} u^{h}+B \underset{215 \text { of } 396}{f^{h}}\right)\right)
\]

\section*{Use all the facts to analyze the coarse-grid correction scheme}
-

\section*{Range of interpolation}
- The range of \(I_{2 h}^{h}\) is the span of the columns of \(I_{2 h}^{h}\).
- Let \(\xi_{i}\) be the \(i^{\text {th }}\) column of \(I_{2 h}^{h}\)

\[
\xi_{i}^{h}=\sum_{k=1}^{n-1} b_{k} w_{k}^{h}, \quad b_{k} \neq 0
\]
- All the Fourier modes of \(A^{h}\) are needed to represent Range( \(I_{2 h}^{h}\) ).

\section*{CG error propagation}
- Subtracting the previous two expressions, we get
\[
\begin{aligned}
& e^{h} \leftarrow\left[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h} A^{h}\right] R_{\omega} e^{h} \\
& e^{h} \leftarrow C G e^{h}
\end{aligned}
\]
- How does CG act on the modes of \(A^{h}\) ? Assume \(e^{h}\) consists of the modes \(w_{k}^{h} \& w_{k^{\prime}}^{h}\) for \(1 \leq k \leq \frac{n}{2}-1\) \& \(k^{\prime}=n-k\).
- We know how \(R_{\omega}^{\alpha}, A^{h}, I_{h}^{2 h},\left(A^{2 h}\right)^{-1}, I_{2 h}^{h}\) act on \(w_{k}^{h} \& w_{k^{\prime}}^{h}\).

\section*{CG error propagation}

For now, assume no relaxation. Then
\[
W_{k}=\operatorname{span}\left\{w_{k}^{h}, w_{k^{\prime}}^{h_{1}}\right\}
\]
is invariant under CG:
\[
\begin{aligned}
& C G w_{k}^{h}=s_{k} w_{k}^{h}+s_{k} w_{k^{\prime}}^{h} \\
& C G w_{k^{\prime}}^{h}=c_{k} w_{k}^{h}+c_{k} w_{k^{\prime}}^{h}
\end{aligned}
\]
where
\[
\begin{gathered}
s_{k}=\sin ^{2}\left(\frac{k \pi}{2 n}\right) \quad c_{k}=\cos ^{2}\left(\frac{k \pi}{2 n}\right) \\
s_{1}=O\left(h^{2}\right) \ldots s_{\mathrm{n} / 2-1} \approx O(1) \quad c_{\mathrm{k}}=O(1)
\end{gathered}
\]

\section*{CG with relaxation}

Next, include one relaxation sweep. Note that error propagator \(R_{\omega}\) preserves the modes of \(A^{h}\)
(although this is often unnecessary). Let \(\lambda_{k}\) denote the eigenvalue of \(R_{\omega}\) associated with \(w_{k}\).

For \(k \leq n / 2-1\) :
\[
\begin{aligned}
& w_{k} \rightarrow \lambda_{k} S_{k} w_{k}+\lambda_{k} S_{k} w_{k^{\prime}} \quad \text { small! } \\
& w_{k^{\prime}} \rightarrow \lambda_{k^{\prime}} c_{k} w_{k}+\lambda_{k^{\prime}} c_{k} w_{k^{\prime}} \text { small! } \\
& s_{k}=\sin ^{2}\left(\frac{k \pi}{2 n}\right) \quad c_{k}=\cos ^{2}\left(\frac{k \pi}{2 n}\right)
\end{aligned}
\]

\section*{Recall the variational properties}

All the analysis that follows assumes that the variational properties hold:
\(A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h}\)
\(I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T}\)

Galerkin Condition
\(c \in \mathfrak{\Re}\)

Algebraic interpretation of CG

Fundamental Theorem of Linear Algebra \(N(B)=R\left(B^{\top}\right)^{\perp}\)
- \(x \in N(B)\) any \(y \in R\left(B^{\top}\right)\) some \(z\)
\[
\begin{aligned}
\Rightarrow\langle x, y\rangle & =\left\langle x, B^{\top} z\right\rangle=\langle B x, z\rangle=0 \\
& \Rightarrow x \in R\left(B^{\top}\right)^{\perp} \\
\Rightarrow & N(B) \subset R\left(B^{\top}\right)^{\perp}
\end{aligned}
\]
- \(x \varepsilon R\left(B^{\top}\right) \perp \quad\) any \(z \quad z=B x\) \(\Rightarrow 0=\left\langle x, B^{\top} z\right\rangle=\langle B x, z\rangle=\langle B x, B x\rangle\).
\[
\Rightarrow x \varepsilon N(B)
\]
\[
\Rightarrow N(B) \supset R\left(B^{\top}\right) \perp .
\]
consider the subspaces that make up \(\Omega^{h} \& \Omega^{2 h}\)
From now on, 'R( )' means Range \& 'N( )' Null Space.
Because the Fundamental Theorem of Linear Algebra shows that
or
\[
N\left(I_{h}^{2 h}\right)=R\left(\left(I_{h}^{2 h}\right)^{T}\right)^{\perp}
\]
\[
N\left(I_{h}^{2 h}\right)=R\left(I_{2 h}^{h}\right)^{\perp}
\]
\(I_{2 h}^{h}\) transfers errors?
Does \(I_{h}^{2 h} \operatorname{tr}^{2}\) hasfer errors?


\section*{"Energy" inner product \& norm}
- Inner product symmetry:
\[
\langle A x, y\rangle=\langle x, A y\rangle=\langle A y, x\rangle
\]
- Inner product linearity:
\[
\langle A(a x+b y), z\rangle=\langle a A x+b A y, z\rangle=a\langle A x, z\rangle+b\langle A y, z\rangle
\]
- Inner product positive definiteness:
\[
\langle A x, x\rangle \geq 0 \quad \& \quad\langle A x, x\rangle=0 \Rightarrow x=0
\]
- Norm:
\[
\langle A x, x\rangle \text { is an inner product } \Rightarrow\langle A x, x\rangle^{1 / 2} \text { is a norm. }
\]

\section*{Subspace decomposition of \(\Omega^{h}\)}
- If \(u^{h} \in N\left(I_{h}^{2 h} A^{h}\right)\), then, for any \(u^{2 h}\), we have
\[
0=\left\langle I_{h}^{2 h} A^{h} u^{h}, u^{2 h}\right\rangle=\left\langle A^{h} u^{h}, I_{2 h}^{h} u^{2 h}\right\rangle,
\]
so
\[
R\left(I_{2 h}^{h}\right) \perp_{A^{h}} N\left(I_{h}^{2 h} A^{h}\right),
\]
where \(x \perp_{A^{h}} y\) means \(\left\langle A^{h} x, y\right\rangle=0\). inner energy
- Moreover, any \(e^{h}\) can be written as \(e^{h}=s^{h}+t^{h}\), where \(s^{h} \in R\left(I_{2 h}^{h}\right) \& t^{h} \in N\left(I_{h}^{2 h} A^{h}\right)\).
- Hence, we get the "energy-orthogonal" decomposition


\section*{Characteristics of the subspaces}
- Since \(s^{h}=I_{2 h}^{h} q^{2 h}\) for some \(q^{2 h} \in \Omega^{2 h}\), we associate \(s^{h}\) with the smooth components of \(e^{h}\). But, \(s^{h}\) generally has all Fourier modes in it. Recall the basis vectors for \(I_{2 h}^{h}\) :

- Similarly, we associate \(t^{h}\) with oscillatory components of \(e^{h}\), although \(t^{h}\) generally has all Fourier modes in it as well. Recall that \(N\left(I_{h}^{2 h}\right)\) is spanned by \(\eta_{i}=A^{h} \widehat{e}_{i}\), so \(N\left(I_{h}^{2 h} A^{h}\right)\) is spanned by the unit vectors \(\tilde{e}_{i}^{h}=(0,0, \ldots, 0,1,0, \ldots, 0)^{T}\) for odd i , which "look" oscillatory.


CU-Boulder

\section*{Algebraic analysis CG}
- Recall that (without relaxation)
\[
C G=I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h} A^{h} .
\]
- First note that if \(s^{h} \in R\left(I_{2 h}^{h}\right)\), then \(C G s^{h}=0\).

This follows since \(s^{h}=I_{2 h}^{h} q^{2 h}\) for some \(q^{2 h} \in \Omega^{2 h}\)
\& therefore
\[
C G s^{h}=[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} \underbrace{\left.I_{h}^{2 h} A^{h}\right] I_{2 h}^{h}}_{A^{2 h} \text { by Galerkin property }} q^{2 h}=0
\]
- It follows that \(N(C G)=R\left(I_{2 h}^{h}\right)\), that is, the null space of CG is the range of interpolation.

What does this imply?

\section*{More algebraic analysis of CG}
- Next, note that if \(t^{h} \in N\left(I_{h}^{2 h} A^{h}\right)\), then
\[
\begin{gathered}
C G t^{h}=[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} \underbrace{\left.I_{h}^{2 h} A^{h}\right] t^{h}}_{0} \\
\Rightarrow C G t^{h}=t^{h}
\end{gathered}
\]

Thus, CG is the identity on \(N\left(I_{h}^{2 h} A^{h}\right)\).
What does this imply?
Together: \(\quad C G\left(s^{h}+t^{h}\right)=t^{h}\)

How does the algebraic picture fit with the spectral view?
We may view \(\Omega^{h}\) in two ways:
\[
\Omega^{h}=\left\{\begin{array}{c}
\text { Low frequency modes } \\
1 \leq k \leq n / 2
\end{array}\right\} \oplus \quad\left\{\begin{array}{c}
\text { High frequency modes } \\
n / 2<k<n
\end{array}\right\}
\]
that is,
\[
\Omega^{h}=L \oplus H
\]
or
\[
\Omega^{h}=R\left(I_{2 h}^{h}\right) \oplus N\left(I_{h}^{2 h} A^{h}\right) . \quad \begin{gathered}
\text { CG } \\
\text { (exact) }
\end{gathered}
\]

How it actually works (cartoon)


Actually, each view is just part of the picture
- The operations we've examined work on different spaces!
- While \(N\left(I_{h}^{2 h} A^{h}\right)\) is mostly oscillatory, it isn't \(H\),
\& while \(R\left(I_{2 h}^{h}\right)\) is mostly smooth, it isn't \(L\).
- Relaxation "eliminates" error from \(H\).
- Coarse-grid correction eliminates error from \(R\left(I_{2 h}^{h}\right)\).

Why is this working well?

\section*{What if \(L\) points away from \(R\left(I_{2 h}^{h}\right)\) ?}


CU-Boulder

\section*{Chapters 1-5:}
- \(\sqrt{ }\) Model Problems
\(-\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
\(\cdot \sqrt{ }\) Elements of Multinkomework Dunisot Mopic problems
- Relaxation
- Coarsening
\(-\sqrt{ }\) Implementation
- Complexity
- Diagnostics
\(\cdot \sqrt{ }\) Some Theory
- Spectral vs. algebraic

CU-Boulder

\section*{Outline}

Chapters 6-10:
- Nonlinear Problems
- Full approximation scheme

Selected Applications
- Neumann boundaries
- Variable coefficients
- Algebraic Multigrid (AMG)
- Matrix coarsening
- Multilevel Adaptive Methods
- FAC

Finite Elements
- Variational methodology

\section*{6. Nonlinear problems}

HANG ON!!!
- How should we approach the nonlinear system
\[
A(u)=f
\]
\& can we use MG to solve it?
- A fundamental relation we've relied on is the linear residual equation:
\[
A u-A v=f-A v \Rightarrow A e=r
\]
- We can't rely on this now since a nonlinear \(A(u)\) generally means
\[
A(u)-A(v) \neq A(e)
\]

\section*{Newton's method for scalar \(F: \Re \rightarrow \Re\)}

Best known \& most important nonlinear solver!
- We wish to solve \(F(x)=0\).

Ex:

- Expand \(F\) in a Taylor series about \(x\) :
\[
F(x+s)=F(x)+s F^{\prime}(x)+s^{2} F^{\prime \prime}(\xi)
\]

Ex: \(\quad(x+s) e^{(x+s)}-1=x e^{x}-1+s(1+x) e^{x}+\) h.o.t.
- Dropping higher-order terms (h.o.t.), if \(x+s\) is a solution,
\[
0=F(x)+s F^{\prime}(x) \Rightarrow s=-F(x) / F^{\prime}(x)
\]
- We thus arrive at Newton's method:
\[
x \leftarrow x-F(x) / F^{\prime}(x)
\]

CU -Boulder

\section*{Newton for systems}
- The system \(A(u)=f\) in vector form is
\[
\left(\begin{array}{c}
a_{1}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right) \\
a_{2}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right) \\
\vdots \\
a_{N}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n-1}
\end{array}\right)
\]
- Expanding \(A(v+e)\) in a Taylor series about \(v\) :
\[
\begin{aligned}
A(v+e) & =A(v)+J(v) e+\text { h.o.t. } \\
J(v) & =\left(\frac{\partial a_{i}}{\partial u_{j}}(v)\right)
\end{aligned}
\]

\section*{Newton's method for systems}
- Ex: \(-u^{\prime \prime}(x)+u(x) e^{u(x)}=f\) may be discretized as

- Taylor series about \(v: A(v+e)=A(v)+J(v) e+\) h.o.t.
\(J(v) \equiv\left(\frac{\partial a_{i}(u)}{\partial u_{j}}\right)_{u=v}=\left(\begin{array}{cccc}\frac{2}{h^{2}}+\left(1+v_{1}\right) e^{v_{1}} & \frac{-1}{h^{2}} & \text { error, not exponent } \\ & \ddots & \\ & \frac{-1}{h^{2}} & \frac{2}{h^{2}}+\left(1+v_{i}\right) e^{v_{i}} & \frac{-1}{h^{2}} \\ & & \ddots & \\ & & \frac{-1}{h^{2}} & \frac{2}{h^{2}}+\left(1+v_{n-1}\right) e^{v_{n-1}}\end{array}\right)\).
CU-Boulder

\section*{Newton for systems (cont'd)}
- \(J(v)\) is the Jacobian
\[
J(v)=\left(\begin{array}{cccc}
\frac{\partial a_{1}}{\partial u_{1}} & \frac{\partial a_{1}}{\partial u_{2}} & \cdots & \frac{\partial a_{1}}{\partial u_{n-1}} \\
\frac{\partial a_{2}}{\partial u_{1}} & \frac{\partial a_{2}}{\partial u_{2}} & \cdots & \frac{\partial a_{2}}{\partial u_{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial a_{n-1}}{\partial u_{1}} & \frac{\partial a_{n-1}}{\partial u_{2}} & \cdots & \frac{\partial a_{n-1}}{\partial u_{n-1}}
\end{array}\right)_{u=v}
\]
- If \(u=v+e\) is a solution, \(f=A(v)+J(v) e+\) h.o.t., so \(e \approx[J(v)]^{-1}(f-A(v))\).
- This leads to the iteration
\[
v \leftarrow v+[J(v)]^{-1}(f-A(v))
\]

\section*{Newton's via the residual equation}
- The nonlinear residual equation is
\[
A(v+e)-A(v)=r
\]
- Expanding \(A(v+e)\) in a two-term Taylor series about \(v\) \& ignoring h.o.t.:
\[
A(v)+J(v) \hat{e}-A(v)=r \quad \hat{e} \approx e
\]
or
\[
J(v) \hat{e}=r .
\]
- Newton's method is thus:
\[
v \leftarrow v+[J(v)]^{-1} r, \quad r=f-A(v)
\]

\section*{How does multigrid fit in?}
- One obvious method is to use multigrid to solve \(J(v) \hat{e}=r\) at each iteration step. This method is called Newton-MG \& can be very effective.
- However, we might want to use multigrid ideas to treat the nonlinearity directly.
- To do that, we need to specialize multigrid components (relaxation \& coarsening) for the nonlinear case.

\section*{How is nonlinear Gauss-Seidel done?}
- Each \((A(v))_{i}=f_{i}\) is a nonlinear scalar equation for \(v_{i}\). We can use the scalar Newton's method to solve!
- Example: \(-u^{\prime \prime}(x)+u(x) e^{u(x)}=f\) may be discretized so that \((A(v))_{i}=f_{i}\) is given by
\[
\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}+v_{i} e^{v_{i}}=f_{i} \quad 1 \leq i \leq n-1
\]
- Newton iteration for \(v_{i}\) is given by
\[
v_{i} \leftarrow v_{i}-\frac{\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}+v_{i} e^{v_{i}}-f_{i}}{\frac{2}{h^{2}}+\left(1+v_{i}\right) e^{v_{i}}}
\]

\section*{How do we coarsen for nonlinear multigrid?}
- Recall the nonlinear residual equation
\[
A(v+e)-A(v)=r .
\]
- In multigrid, we obtain an approximate solution \(v^{h}\) on the fine grid, then solve the residual equation on the coarse grid.


We should have a routine for that.

\section*{We've obtained a coarse-grid} equation of the form \(A^{2 h}\left(u^{2 h}\right)=f^{2 h}\)
- Consider the coarse-grid equation:

coarse-grid unknown

> all quantities are known
- We solve \(A^{2 h}\left(u^{2 h}\right)=f^{2 h}\) for \(u^{2 h}=I_{h}^{2 h} v^{h}+e^{2 h}\) \&
obtain
\[
e^{2 h}=u^{2 h}-I_{h}^{2 h} v^{h}
\]
- We then apply the correction:
\[
v^{h} \leftarrow v^{h}+I_{2 h}^{h} e^{2 h}
\]

\section*{A few observations about FAS}
\(A^{2 h}\left(I_{h}^{2 h} v^{h}+e^{2 h}\right)=A^{2 h}\left(I_{h}^{2 h} v^{h}\right)+I_{h}^{2 h}\left(f^{h}-A^{h}\left(v^{h}\right)\right)\)
- If A is a linear operator, then FAS reduces directly to the linear two-grid correction scheme:
\(A^{2 h}\left(I^{h}+e^{2 h}\right)=A^{2 h}\left(I^{2 h}\right)+I_{h}^{2 h}\left(f^{h}-A^{h}\left(v^{h}\right)\right)\)
- An exact solution to the fine-grid problem is a fixed point of the FAS iteration:


\section*{Still more observations about FAS}
- A true multilevel FAS process is recursive, using FAS to solve the nonlinear \(\Omega^{2 h}\) problem using \(\Omega^{4 h}\).
- Hence, FAS is generally employed in a V- or W-
cycling scheme.

A few more observations about FAS
\(A^{2 h}\left(I_{h}^{2 h} v^{h}+e^{2 h}\right)\)

- The FAS coarse-grid equation can be written as
\[
A^{2 h}\left(u^{2 h}\right)=f^{2 h}+\tau_{h}^{2 h}
\]
where \(\tau_{h}^{2 h}=A^{2 h}\left(I_{h}^{2 h} v^{h}\right)-I_{h}^{2 h} A^{2 h}\left(v^{h}\right)\) is the so-called tau correction term \& \(f^{2 h}\) is the original \(2 h\) source term, provided you choose it that way: \(f^{2 h}=I_{h}^{2 h} f^{h}\).
- In general, since \(\tau_{h}^{2 h} \neq 0\), the solution \(u^{2 h}\) to the FAS coarse-grid equation is not the same as the solution to the original coarse-grid problem
\[
A^{2 h}\left(u^{2 h}\right)=f^{2 h} .
\]
- The tau correction is as a way to alter the coarsegrid equation to enhance its approximation properties.
CU-Boulder

\section*{Even more observations about FAS}
- For linear problems, we use FMG to obtain a good initial guess on the fine grid. Convergence of nonlinear iterations depends critically on having a good initial guess.
- When FMG is used for nonlinear problems, the interpolant \(I_{2 h}^{h} u^{2 h}\) is generally accurate enough to be in the basin of attraction of the fine-grid solver.
- Thus, whether FAS, Newton, or Newton-multigrid is used on each level, one FMG cycle should provide a solution accurate to the level of discretization, unless the nonlinearity is extremely strong.

\section*{Intergrid transfers for FAS}
- Generally speaking, the standard operators (linear interpolation, full weighting) work effectively in FAS schemes.
- For strongly nonlinear problems or for the coarsegrid approximation that is to become a fine-grid initial guess, higher-order interpolation (e.g., cubic interpolation) may be beneficial.

\section*{Example: Newton-MG vs. FAS}
- PDE (er, ODE):
\[
-u^{\prime \prime}(x)+u(x) e^{u(x)}=f(x)
\]
- Discretization:
\[
\frac{-v_{j-1}+2 v_{j}-v_{j+1}}{h^{2}}+v_{j} e^{v_{j}}=f_{j} .
\]

\section*{What is \(A^{2 h}\left(u^{2 h}\right)\) in FAS?}

As in the linear case, there are two basic possibilities:
1. \(A^{2 h}\left(u^{2 h}\right)\) is determined by discretizing the nonlinear operator, \(A(\mathrm{u})\), in the same fashion as was employed to obtain \(A^{h}\left(u^{h}\right)\), except that the coarser mesh spacing is used.
2. \(A^{2 h}\left(u^{2 h}\right)\) is determined from the Galerkin condition
\[
A^{2 h}\left(u^{2 h}\right)=I_{h}^{2 h} A^{2 h}\left(I_{2 h}^{h} u^{2 h}\right)
\]
where the action of the Galerkin product can be captured in an implementable formula.

The first method is usually easier \& more common.

\section*{One Newton-MG step}
- Step 0. Given v, form the grid \(h\) linear correction equation:

\(+\left(1+v_{j}\right) e\)
 \(=r_{j} \equiv f_{j}-\left(\frac{-v_{j-1}+2 v_{j}-v_{j+1}}{h^{2}}+v_{j} e^{\nu_{j}}\right)\)
Initialize the Newton correction approximation: \(e=0\).
- Step 1: Relax on the grid \(h\) linear equation.
- Step 2: Solve the grid \(2 h\) error correction equation:

(2h) \(+\left(1+v_{2 j}\right) e^{e^{2} 2}=r_{2 j}-\left(\frac{-e_{2 j-1}+2 e_{2 j}-e_{2 j+1}}{h^{2}}+\left(1+v_{2 j}\right) e^{v_{2 j}} e_{2 j}\right)\)
- Step 3: Correct the grid h Newton correction:
\[
e \leftarrow e+I_{2 h}^{h} e^{2 h}
\]
- Step 4: Stop if you've "solved" the linear equation well enough for Newton correction e \& set \(v \leftarrow v+e\). Else, leave \(v\) alone \& return to Step 1.

\section*{One FAS step}
- Step 0. Given v, form the grid \(h\) nonlinear equation:

- Step 1: Relax on the grid \(h\) nonlinear equation to improve \(v\).

- Step 2: Solve the grid 2 h FAS correction equation:

- Step 3: Correct the grid \(h\) approximation v:
\[
v \leftarrow v+I_{2 h}^{h} e^{2 h}
\]

CU-Boulder

\section*{Discretization of the nonlinear example}
- The operator can be written (sloppily) as

- Relaxation (nonlinear Gauss-Seidel) is given by
\[
v_{i, j}^{h} \leftarrow v_{i, j}^{h}-\frac{\left(A^{h}\left(v^{h}\right)\right)_{i, j-} f_{i, j}}{\frac{4}{h^{2}}+\gamma\left(1+v_{i, j}^{h}\right) e^{v_{i, j}^{h}}}
\]

\section*{Nonlinear problems: 2d example}
- Consider
\[
-\Delta u(x, y)+\gamma u(x, y) e^{u(x, y)}=f(x, y)
\]
on the unit square, \([0,1] \times[0,1]\), with homogeneous Dirichlet boundary conditions \& a regular \(h=1 / 128\) Cartesian grid.
- Suppose the exact solution is
\[
u(x, y)=\left(x^{2}-x^{3}\right) \sin (3 \pi y)
\]
\[
\begin{gathered}
-\Delta u(x, y)+\gamma u(x, y) e^{u(x, y)}=f(x, y) \\
n=128
\end{gathered}
\]
convergence factor is for the last cycle
- FAS V(2,1)-cycles until \(\|r\|<10^{-10}\).
\begin{tabular}{|r|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\(\gamma\)} \\
\cline { 2 - 5 } & 1 & 10 & 100 & 1000 \\
\hline convergence factor & 0.135 & 0.124 & 0.098 & 0.072 \\
\hline number of FAS cycles & 12 & 11 & 11 & 10 \\
\hline
\end{tabular}
- Newton's Method with exact inner solves until \(\|r\|<10^{-10}\).
\begin{tabular}{|r|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\(\gamma\)} \\
\hline & 1 & 10 & 100 & 1000 \\
\hline convergence factor & \(4.00 \mathrm{E}-05\) & \(7.00 \mathrm{E}-05\) & \(3.00 \mathrm{E}-04\) & \(2.00 \mathrm{E}-04\) \\
\hline number of Newton iterations & 3 & 3 & 3 & 4 \\
\hline
\end{tabular}

\section*{Newton, Newton-MG, \& FAS on}
\[
\begin{gathered}
-\Delta u(x, y)+\gamma u(x, y) e^{u(x, y)}=f(x, y) \\
n=128, \gamma=10
\end{gathered}
\]
- Newton uses exact solves, Newton-MG is with a fixed number of inner \(V(2,1)\)-cycles for the Jacobian problem, overall stopping criterion \(\|r\|<10^{-10}\).
\begin{tabular}{|r|c|c|c|}
\hline Method & Outer & Inner & Megaflops \\
\hline iterations & iterations & Newton & 3 \\
& 1660.6 \\
\hline Newton-MG & 3 & 20 & 56.4 \\
Newton-MG & 4 & 10 & 38.5 \\
Newton-MG & 5 & 5 & 25.1 \\
Newton-MG & 10 & 2 & 22.3 \\
Newton-MG & 19 & 1 & 24.6 \\
FAS & 11 & & 27.1 \\
\hline
\end{tabular}

\section*{Compare FMG-FAS \& FMG-Newton-MG}

\author{
\(-\Delta u(x, y)+\gamma u(x, y) e^{u(x, y)}=f(x, y)\)
}
- We do one FMG cycle using one FAS V(2,1) -cycle as the "solver" at each new level. We then follow that with as many FAS \(V(2,1)\)-cycles as is needed to obtain \(\|r\|<10^{-10}\).
- Next, we do one FMG cycle using a Newton-MG step at each new level (with one linear \(V(2,1)\)-cycle as the Jacobian "solver.") We then follow that with as many Newton-multigrid steps as is needed to obtain \(\|r\|<10^{-10}\).

Don't try this at home !!!

Compare FMG-FAS \& FMG-Newton-MG
\(-\Delta u(x, y)+\gamma u(x, y) e^{u(x, y)}=f(x, y)\)
\[
n=128, \gamma=10
\]

Done !!!
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cycle & \(\left\|r^{n}\right\|_{\text {d }}\) & \(\left\|u^{(k)}-v^{t}\right\|_{n}\) & Mflops & \(\left\|r^{4}\right\|_{\text {, }}\) & \(\left\|u^{(k)}-v^{t}\right\|_{k}\) & Mflops & Cycle \\
\hline FMG-FAS & 1.10E-02 & 2.00E-05 & 3.1 & \(1.06 \mathrm{E}-02\) & 2.50E-05 & 2.4 & FMG-Newton \\
\hline FAS V & 6.80E-04 & \(2.40 \mathrm{E}-05\) & 5.4 & \(6.70 \mathrm{E}-04\) & \(2.49 \mathrm{E}-05\) & 4.1 & Newton-MG \\
\hline FAS V & 5.00E-05 & 2.49E-05 & 7.6 & 5.10E-05 & \(2.49 \mathrm{E}-05\) & 5.8 & Newton-MG \\
\hline FAS V & 3.90E-06 & 2.49E-05 & 9.9 & 6.30E-06 & \(2.49 \mathrm{E}-05\) & 7.5 & Newton-MG \\
\hline FAS V & \(3.20 \mathrm{E}-07\) & 2.49E-05 & 12.2 & 1.70E-06 & \(2.49 \mathrm{E}-05\) & 9.2 & Newton-MG \\
\hline FAS V & 3.00E-08 & 2.49E-05 & 14.4 & 5.30E-07 & \(2.49 \mathrm{E}-05\) & 10.9 & Newton-MG \\
\hline FAS V & 2.90E-09 & 2.49E-05 & 16.7 & \(1.70 \mathrm{E}-07\) & \(2.49 \mathrm{E}-05\) & 12.6 & Newton-MG \\
\hline FAS V & 3.00E-10 & 2.49E-05 & 18.9 & 5.40E-08 & 2.49E-05 & 14.3 & Newton-MG \\
\hline FAS V & \(3.20 \mathrm{E}-11\) & 2.49E-05 & 21.2 & \(1.70 \mathrm{E}-08\) & \(2.49 \mathrm{E}-05\) & 16.0 & Newton-MG \\
\hline & & & & 5.50E-09 & 2.49E-05 & 17.7 & Newton-MG \\
\hline & & & & 1.80E-09 & \(2.49 \mathrm{E}-05\) & 19.4 & Newton-MG \\
\hline & & & & 5.60E-10 & \(2.49 \mathrm{E}-05\) & 21.1 & Newton-MG \\
\hline & & & & 1.80E-10 & 2.49E-05 & 22.8 & Newton-MG \\
\hline & & & & 5.70E-11 & \(2.49 \mathrm{E}-05\) & 24.5 & Newton-MG \\
\hline
\end{tabular}
- Use transpose \(I_{h}^{2 h}=\left(I_{2 h}^{h}\right)^{\top}\) to reduce equations:


\section*{Motivating FAS for nonlinear A}
\[
A(v+e)=f \rightarrow A^{2 h}\left(v^{2 h}+e^{2 h}\right)=" f^{2 h "}
\]
\(A^{2 h}\left(I_{h}^{2 h} v^{h}+e^{2 h}\right)=A^{2 h}\left(I_{h}^{2 h} v^{h}\right)+I_{h}^{2 h}\left(f^{h}-A^{h}\left(v^{h}\right)\right)\)
- What overriding principle can we find to get from \(h\) to \(2 h\) ?
- With known \(v\), how do we discretize a PDE of the form
\[
A(v+e)=f ?
\]
- Example:
\[
\gamma u u^{\prime}-u^{\prime \prime}=f \rightarrow \gamma(v+e)(v+e)^{\prime}-(v+e)^{\prime \prime}=f .
\]
- Expand to get an equation in e of form \(g+a e+b e^{\prime}+\ldots\) :

\section*{Differential residual equation}
\[
\gamma\left(v^{\prime} e+v e^{\prime}+e e^{\prime}\right)-e^{\prime \prime}=f-A(v) \equiv r(v)
\]
- Right side (analogous to injection):
\[
r(v) \rightarrow r_{j}^{h}=r\left(x_{j}\right) .
\]
- Coefficients:
\[
v \rightarrow v_{j}^{h}=v\left(x_{j}\right), \quad v^{\prime} \rightarrow\left(v^{\prime}\right)_{j}^{h}=\left(v\left(x_{j+1}\right)-v\left(x_{j-1}\right)\right) /(2 h) .
\]
- Unknowns:
\[
\begin{gathered}
e \rightarrow e_{j}^{h}, \quad e^{\prime} \rightarrow\left(e^{\prime}\right)_{j}^{h}=\left(e_{j+1}^{h}-e_{j-1}^{h}\right) /(2 h), \\
e^{\prime \prime} \rightarrow\left(e^{\prime \prime}\right)_{j}^{h}=\left(e_{j+1}^{h}-2 e_{j}^{h}+e_{j-1}^{h}\right) / h^{2} .
\end{gathered}
\]

\section*{Leading to FAS...}
\(\gamma u u^{\prime}-u^{\prime \prime}=f \rightarrow A(v+e)=f \rightarrow \gamma\left(v^{\prime} e+v e^{\prime}+e e^{\prime}\right)-e^{\prime \prime}=f-A(v)\)
- Fine-grid residual equation (at \(h\) point 2 j ):
\(\gamma \frac{v_{2 j+1}^{h}-v_{2 j-1}^{h}}{2 h} e_{2 j}^{h}+\gamma v_{2 j}^{h} e_{2 j+1}^{h}-e_{2 j-1}^{h}+\gamma e_{2 j}^{h} \frac{e_{2 j+1}^{h}-e_{2 j-1}^{h}}{2 h}+\frac{-e_{2 j+1}^{h}+2 e_{e j}^{h}-e_{2 j-1}^{h}}{h^{2}}=r_{2 j}^{h}\)
- Coarse-grid residual equation (at 2 h point j ):
\(\gamma \frac{\nu_{2 j+2}^{h}-v_{2 j-2}^{h}}{4 h} e_{j}^{2 h}+\gamma \nu_{2 j}^{h} \frac{e_{j+1}^{2 h}-e_{j-1}^{2 h}}{4 h}+\gamma e_{j}^{2 h} \frac{e_{j+1}^{2 h}-e_{j-1}^{2 h}}{4 h}+\frac{-e_{j+1}^{2 h}+2 e_{j}^{2 h}-e_{j-1}^{2 h}}{(2 h)^{2}}=\left(I_{h}^{2 h} r^{h}\right)_{j}\)
- FAS
\[
A^{2 h}\left(I_{h}^{2 h} v^{h}+e^{2 h}\right)-A^{2 h}\left(I_{h}^{2 h} v^{h}\right)=I_{h}^{2 h}\left(f^{h}-A^{h}\left(v^{h}\right)\right)
\]

\section*{Outline}

\section*{Chapters 1-5:}
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
- \(V\) Elements of Multihillomework Dưe
- Relaxation
- Coarsening
- \(\sqrt{ }\) Implementation
- Complexity
- Diagnostics
\(\cdot \sqrt{ }\) Some Theory
- Spectral vs. algebraic

\section*{Chapters 6-10:}
- \(\sqrt{ }\) Nonlinear Problems
- Full approximation scheme

Selected Applications
- Neumann boundaries

\section*{7. Selected applications}

7a. Neumann boundary conditions
- Consider the 1-D problem
\[
\begin{aligned}
& -u^{\prime \prime}(x)=f(x), \quad 0<x<1, \\
& u^{\prime}(0)=u^{\prime}(1)=0 . \longleftarrow ? ? ?
\end{aligned}
\]
- We discretize on the interval \([0,1]\) with \(h=1 / n\) grid spacing \& nodes \(x_{j}=j h, j=0,1,2, \ldots, n\).
- We extend the interval with two ghost points:


CU-Boulder

\section*{Central differences at boundary}
- We use differences as before, but now also for the derivative in the Neumann condition:

- This yields the system
\[
\begin{aligned}
& \frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f_{j} \quad 0 \leq j \leq n \\
& \frac{u_{1}-u_{-1}}{2 h}=\frac{u_{n+1}-u_{n-1}}{2 h}=0
\end{aligned}
\]

\section*{Eliminating the ghost points}
- Use the boundary conditions to eliminate \(u_{-1} \& u_{n+1}\) :
\[
\frac{u_{1}-u_{-1}}{2 h}=0 \quad \square u_{-1}=u_{1} \quad \frac{u_{n+1}-u_{n-1}}{2 h}=0 \quad \square \quad u_{n+1}=u_{n-1}
\]
- Eliminating the ghost points in the \(j=0\) \& \(j=n\) equations gives the \((n+1) \times(n+1)\) system of equations:
\[
\begin{array}{ll}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f_{j} & 1 \leq j \leq n-1 \\
\frac{2 u_{0}-2 u_{1}}{h^{2}}=f_{0} & \frac{-2 u_{n-1}+2 u_{n}}{h^{2}}=f_{n}
\end{array}
\]

\section*{Write the system in matrix form}
- We can write \(A^{h} u^{h}=f^{h}\), where
\[
A^{h}=\frac{1}{h^{2}}\left(\begin{array}{cccccc}
2 & -2 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -2 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -2 & 2
\end{array}\right)
\]
- Note that \(A^{h}\) is \((n+1) x(n+1)\) \& nonsymmetric, \& the system involves unknowns \(u_{0}^{h} \& u_{n}^{h}\) at the boundaries.

\section*{We must consider compatibility}
- The problem \(-u^{\prime \prime}(x)=f(x)\), for \(0<x<1\), with \(u^{\prime}(0)=u^{\prime}(1)=0\), is not well-posed!
- If \(u(x)\) is a solution, then so is \(u(x)+\) constant.
- We cannot be certain a solution exists. If one does, it must satisfy
\[
\begin{aligned}
-\int_{0}^{1} u^{\prime \prime}(x) d x= & \int_{0}^{1} f(x) d x \quad \square-\left[u^{\prime}(1)-u^{\prime}(0)\right]=\int_{0}^{1} f(x) d x \\
& \square 0=\int_{0}^{1} f(x) d x
\end{aligned}
\]
- This integral compatibility condition is necessary! If \(f(x)\) doesn't satisfy it, there is no solution!

\section*{The discrete problem is not well posed}
- Since all row sums of \(A^{h}\) are zero, then \(1^{h} \in N\left(A^{h}\right)\).
- It's easy to see that \(\operatorname{dim}\left(N\left(A^{h}\right)\right)=1\), so \(N\left(A^{h}\right)=\operatorname{span}\left\{1^{h}\right\}\).
- By the Fundamental Theorem of Linear Algebra, \(A^{h} u^{h}=f^{h}\) has a solution if \& only if \(f^{h} \in N\left(\left(A^{h}\right)^{\top}\right)^{-}\)???
- For our simple case: \(N\left(\left(A^{h}\right)^{\top}\right)=c(1 / 2,1,1, \ldots, 1,1 / 2)^{\top}\).
- Thus, \(A^{h} u^{h}=f^{h}\) has a solution if \& only if
\[
f^{h} \perp c(1 / 2,1,1, \ldots, 1,1 / 2)^{\top}
\]
- So, the discrete compatibility condition is
\[
\frac{1}{2} f_{0}^{h}+\sum_{j=1}^{n-1} f_{j}^{h}+\frac{1}{2} f_{n}^{h}=0
\]

\section*{The well-posed system}
- The compatibility condition is necessary for a solution to exist. In general, it is also sufficient:
\(-\partial^{2} / \partial x^{2}\) is a well-behaved operator on
the space of functions \(u(x)\) with zero mean.
- Thus, we may conclude that if \(f(x)\) satisfies the compatibility condition, then the problem is well-posed:
\[
\begin{gathered}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1 \\
u^{\prime}(0)=u^{\prime}(1)=0 \\
\int_{0}^{1} u(x) d x=0
\end{gathered}
\]
- The last says: of all possible solutions \(u(x)+\) constant, we choose the one with zero mean.
CU-Boulder

\section*{We have two issues to consider}
- Solvability: A solution exists iff \(f^{h} \in R(A)=N\left(\left(A^{h}\right)^{\top}\right)^{\perp}\).
- Uniqueness: If \(u^{h}\) is a sotur??? en so is \(u^{h}+v^{h}\) for any \(\mathrm{v}^{h} \in \mathrm{~N}\left(\mathrm{~A}^{h}\right)\)
- Note that if \(A^{h}=\left(A^{h}\right)^{\top}\), then \(N\left(\left(A^{h}\right)^{\top}\right)=N\left(A^{h}\right)\) \& solvability \& uniqueness can be handled together.
- This is easily done. Multiply the first \& last equations by \(1 / 2\), giving
\[
A^{h}=\frac{1}{h^{2}}\left(\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -2 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 1
\end{array}\right)
\]

\section*{The new system is symmetric}
- We have the symmetric system \(\hat{A}^{h} u^{h}=\hat{f}^{h}\) :


- Solvability is guaranteed by ensuring that \(\hat{f}^{h}\) is orthogonal to the constant vector \(1^{\mathrm{h}}\) :
\[
\left\langle\hat{f}^{h}, 1^{h}\right\rangle=\sum_{j=0}^{n} \hat{f}_{j}^{h}=0
\]

\section*{One-sided differences at boundary}
a similar result
- No ghost points:

- This yields the system
\[
\begin{array}{cl}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f_{j} & 1 \leq j \leq n \\
\frac{u_{1}-u_{0}}{h^{2}}=0 & \frac{u_{n}-u_{n-1}}{h^{2}}=0
\end{array}
\]

278 of 396

\section*{The well-posed discrete system}
back to central differences @ boundary
- The \((n+2) \times(n+1)\) system is:

or, more simply
\[
\begin{gathered}
\hat{A}^{h} u^{h}=\hat{f}^{h} \\
\left\langle u^{h}, 1^{h}\right\rangle=0
\end{gathered}
\]

\section*{Multigrid for the Neumann problem}
- We must have the interval endpoints on all grids

- Relaxation is performed at all points, including endpoints:
\[
v_{0}^{h} \leftarrow v_{1}^{h}+h^{2} \hat{f}_{0}^{h} \quad v_{j}^{h} \leftarrow \frac{v_{j-1}^{h}+v_{j+1}^{h}+h^{2} \hat{f}_{j}^{h}}{2} \quad v_{n}^{h} \leftarrow v_{n-1}^{h}+h^{2} \hat{f}_{n}^{h}
\]
- We add a global Gram-Schmidt single step after relaxation on each level to enforce the zero-mean condition:
\[
v^{h} \leftarrow v^{h}-\frac{\left\langle v^{h}, 1^{h}\right\rangle}{\left\langle 1^{h}, 1^{h}\right\rangle} 1^{h}
\]

Interpolation must include the endpoints

We use linear interpolation:


\section*{Restriction also treats the endpoints}

For restriction, we use \(I_{h}^{2 h}=\frac{1}{2}\left(I_{2 h}^{h}\right)^{T}\), yielding the values
\[
\begin{aligned}
\hat{f}_{0}^{2 h} & =\frac{1}{2} \hat{f}_{0}^{h}+\frac{1}{4} \hat{f}_{1}^{h} \\
\hat{f}_{j}^{2 h} & =\frac{1}{4} \hat{f}_{2 j-1}^{h}+\frac{1}{2} \hat{f}_{2 j}^{h}+\frac{1}{4} \widehat{f}_{2 j+1}^{h} \\
\hat{f}_{n}^{2 h} & =\frac{1}{4} \hat{f}_{n-1}^{h}+\frac{1}{2} \hat{f}_{n}^{h}
\end{aligned}
\]

The coarse-grid operator
- We compute the coarse-grid operator using the Galerkin condition
\[
\widehat{A}^{2 h}=I_{h}^{2 h} \hat{A}^{h} I_{2 h}^{h}
\]

\section*{Coarse-grid solvability}
- Assuming \(\hat{f}^{h}\) satisfies \(\left\langle\hat{f}^{h}, 1^{h}\right\rangle=0\), the solvability condition, we can show that theoretically the coarsegrid problem \(\widehat{A}^{2 h} u^{2 h}=I_{h}^{2 h}\left(\hat{f}^{h}-\widehat{A}^{h} v^{h}\right)\) is also solvable.
- To be certain numerical round-off does not perturb solvability, we incorporate a Gram-Schmidt-like step each time a new right-hand side \(\hat{f}^{2 h}\) is generated for the coarse grid:
\[
\begin{aligned}
& \text { grid: } \\
& \hat{f}^{2 h} \leftarrow \hat{f}^{2 h}-\frac{\left\langle\hat{f}^{2 h}, 1^{2 h}\right\rangle}{\left\langle 1^{2 h}, 1^{2 h}\right\rangle} 1^{2 h} .
\end{aligned}
\]

\section*{Neumann problem: An example}

Consider the problem
\(-u^{\prime \prime}(x)=2 x-1, \quad 0<x<1, u^{\prime}(0)=u^{\prime}(1)=0\),
which has \(u(x)=\frac{x^{2}}{2}-\frac{x^{3}}{3}+c\) as a solution for any \(c\) ( \(c=-1 / 12\) gives the zero mean solution).
\begin{tabular}{cccccc}
\cline { 2 - 5 } \begin{tabular}{c} 
grid size \\
\(n\)
\end{tabular} & \(\left\|r^{h}\right\|_{h}\) & \begin{tabular}{c} 
average \\
conv. factor
\end{tabular} & \(\left\|u^{(h)}-v^{h}\right\|_{h}\) & \begin{tabular}{c} 
number \\
of cycles
\end{tabular} & \\
\hline 32 & \(6.30 \mathrm{E}-11\) & 0.079 & \(9.70 \mathrm{E}-05\) & 9 & \\
64 & \(1.90 \mathrm{E}-11\) & 0.089 & \(2.40 \mathrm{E}-05\) & 10 & \(\mathrm{~V}(2,1)\) \\
128 & \(2.60 \mathrm{E}-11\) & 0.093 & \(5.90 \mathrm{E}-06\) & 10 & \\
256 & \(3.70 \mathrm{E}-11\) & 0.096 & \(1.50 \mathrm{E}-06\) & 10 & cycles \\
512 & \(5.70 \mathrm{E}-11\) & 0.100 & \(3.70 \mathrm{E}-07\) & 10 & \\
1024 & \(8.60 \mathrm{E}-11\) & 0.104 & \(9.20 \mathrm{E}-08\) & 10 & \\
2048 & \(2.10 \mathrm{E}-11\) & 0.112 & \(2.30 \mathrm{E}-08\) & 10 & \\
4096 & \(5.20 \mathrm{E}-11\) & 0.122 & \(5.70 \mathrm{E}-09\) & 10 &
\end{tabular}

CU-Boulder
285 of 396
CU-Boulder

\section*{7. Selected applications}

7b. Anisotropic problems
- All problems considered thus far have had \(-h^{-2}\) as the off-diagonal entries.
- We consider two situations when the matrix has two different constants on the off-diagonals. These situations arise when
- the (2-d) differential equation has constant but different coefficients for the derivatives in the coordinate directions
, the discretization has constant but different mesh spacing in the different coordinate directions

\section*{We consider two types of anisotropy}
- Different coefficients on the derivatives
\[
-u_{x x}-\varepsilon u_{y y}=f
\]
discretized on a uniform grid with spacing \(h\).
- Different mesh spacings:

\[
\begin{aligned}
& h_{x}=h=\frac{1}{n} \\
& h_{y}=\frac{h_{x}}{\sqrt{\varepsilon}}
\end{aligned}
\]

\section*{Both problems lead to the same stencil}

\[
A^{h}=\frac{1}{h^{2}}\left(\begin{array}{ccc} 
& -\varepsilon & \\
-1 & 2+2 \varepsilon & -1 \\
& -\varepsilon &
\end{array}\right)
\]


\section*{Why standard multigrid can fail}
\[
A^{h}=\frac{1}{h^{2}}\left(\begin{array}{ccc} 
& -\varepsilon & \\
-1 & 2+2 \varepsilon & -1 \\
& -\varepsilon &
\end{array}\right)
\]
- Note that \(A^{h}\) has weak connections in the y-direction. MG convergence factors degrade as \(\varepsilon\) gets small, with poor performance already at \(\varepsilon=0.1\).
- Consider the limiting case \(\varepsilon \Rightarrow 0\) : \(A^{h}=\frac{1}{h^{2}}\left(\begin{array}{lll} & 0 & \\ -1 & 2 & -1 \\ & 0 & \end{array}\right)\)
- Collection of disconnected 1-D problems!
- Point relaxation smoothes oscillatory errors in the \(x\)-direction (strong connections), but with no connections in the \(y\)-direction, the errors in that direction will generally be random; point relaxation provides no smoothing in the \(y\)-direction.

\section*{We analyze weighted Jacobi}

The eigenvalues of the weighted Jacobi iteration matrix for this problem are
\[
\begin{aligned}
& \lambda_{i, j}= 1-\frac{2 \omega}{1+\varepsilon}\left(\sin ^{2}\left(\frac{i \pi}{2 n}\right)+\varepsilon\left(\sin ^{2}\left(\frac{j \pi}{2 n}\right)\right)\right) . \\
& \text {, } \text {, } \\
& \text {, }
\end{aligned}
\]

\section*{Two strategies for anisotropy}
- Semicoarsening: The equations are weakly coupled in the y-direction, so we can't expect the error after point relaxation to have any connection to the errors above or below it. We therefore can \& should coarsen only in the \(x\)-direction.
- Line relaxation: The equations are strongly coupled in the \(x\)-direction, so we could solve simultaneously for all the unknowns along lines of constant \(y\). This should expose whatever weak smoothness there might be in the \(x\)-direction, which should allow standard coarsening.

\section*{Semicoarsening with point relaxation}
- Point relaxation on \(A^{h}=\frac{1}{h^{2}}\left(\begin{array}{cc}-1 & \begin{array}{c}-\varepsilon \\ -2+2 \varepsilon \\ -\varepsilon\end{array}\end{array}\right.\) - \(\left.\begin{array}{l}\text { (1) }\end{array}\right)\) smoothes in the \(x\)-direction. Coarsen by removing every other \(y\)-line.

- We do not coarsen along the remaining y-lines.
- Semicoarsening is not as "fast" as full coarsening. The number of points on \(\Omega^{2 h}\) is about half the number of points on \(\Omega^{2 h}\), instead of the usual one-fourth.

\section*{Interpolation with semicoarsening}
- We interpolate in the 1-D way along each line of constant \(y\).
- The formulas for interpolating the correction from the coarse to the fine grid for the 2D model problem are
\[
\begin{aligned}
v_{2 j, k}^{h} & =v_{2 j, k}^{h}+v_{j, k}^{2 h} \\
v_{2 j+1, k}^{h} & =v_{2 j+1, k}^{h}+\frac{v_{j, k}^{2 h}+v_{j+1, k}^{2 h}}{2}
\end{aligned}
\]

Line relaxation
\[
-v_{i-1, j}+(2+2 \varepsilon) v_{i, j}-v_{i+1, j}=h^{2} f_{i, j}+v_{i, j+1}+v_{i, j-1}
\]
- Nice 1D system, analogous to the discretization of
\[
-u^{\prime \prime}+\alpha u=g, \quad \alpha=2 \varepsilon h^{-2}>0!
\]
- One sweep of line relaxation consists of solving a tridiagonal system for each constant y. Total cost is an optimal \(O\left(n^{2}\right)\).
- Each solve can be done by Gaussian elimination since the system is tridiagonal, or a 1D multigrid solver (useful for generalization to higher dimensions).
- The individual lines can be solved simultaneously in a Jacobi way or sequentially in a Gauss-Seidel way.

\section*{Line relaxation with full coarsening}
\[
A^{n}=\frac{1}{h^{2}}\left(\begin{array}{cc}
-\varepsilon \\
-1 & \left.\begin{array}{c}
2+2 \varepsilon \\
-\varepsilon \\
-\varepsilon
\end{array}\right)
\end{array}\right)
\]
- The other approach to this problem is to do the usual full coarsening, but to relax entire \(x\)-lines (constant \(y\) ) of variables simultaneously.
- Consider an \(x\)-line equation specified by a fixed j :

\(\longrightarrow-v_{i-1, j}+(2+2 \varepsilon) v_{i, j}-v_{i+1, j}=h^{2} f_{i, j}+v_{i, j+1}+v_{i, j-1}\)
CU-Boulder

\section*{Why line relaxation works}

Eigenvalues of the weighted block Jacobi iteration matrix:
\[
\lambda_{i, j}=1-\frac{2 \omega}{2 \sin ^{2}\left(\frac{i \pi}{2 n}\right)+\varepsilon}\left(\sin ^{2}\left(\frac{i \pi}{2 n}\right)+\varepsilon\left(\sin ^{2}\left(\frac{j \pi}{2 n}\right)\right)\right) .
\]




\section*{Semicoarsening \& line relaxation}
- We might not know the direction of weak coupling or it might vary over the domain.
- Suppose we want a method that can handle either
- We could use semicoarsening in the \(x\)-direction to handle \(A_{1}^{h}\) \& line relaxation in the \(y\)-direction to take care of \(A_{2}^{h}\).

\section*{An anisotropic example}
- Consider \(-u_{x x}-\varepsilon u_{y y}=f\) with \(u=0\) on the boundaries of the unit square, \& stencil given by
\[
A^{h}=\frac{1}{h^{2}}\left(\begin{array}{ccc} 
& -\varepsilon & \\
-1 & 2+2 \varepsilon & -1 \\
& -\varepsilon &
\end{array}\right) .
\]
- Suppose that \(f(x, y)=2\left(y-y^{2}\right)+2 \varepsilon\left(x-x^{2}\right)\) so that the exact solution is \(u(x, y)=\left(y-y^{2}\right)\left(x-x^{2}\right)\).
- Note: If \(\varepsilon\) is small, then the \(x\)-direction dominates, while if \(\varepsilon\) is large, then the \(y\)-direction dominates.

Semicoarsening \& line relaxation

- The original grid.

CU-Boulder
- Original grid viewed as a stack of "pencils." Line relaxation is used to solve problem along each "pencil".


Coarsening is done by deleting every other pencil.

\section*{What is smooth error?}
- Consider \(\varepsilon=0.001\) \& suppose point Gauss-Seidel is applied to a random initial guess. The error after 50 sweeps appears as:


CU-Boulder

\section*{We experiment with 3 methods}
- Standard V(2,1)-cycling, with point Gauss-Seidel relaxation, full coarsening, \& linear interpolation.
- Semicoarsening in the x-direction. Coarse \& fine grids have the same number of points in the \(y\) direction. 1-D full weighting \& linear interpolation are used in the x-direction, with no \(y\)-coupling in the intergrid transfers.
- Semicoarsening in the \(x\)-direction combined with line relaxation in the \(y\)-direction. 1-D full weighting \& interpolation.

\section*{How do the 3 methods work for various values of \(\varepsilon\) ?}
\[
n=16
\]

Asymptotic convergence factors of \(\mathrm{V}(2,1)\)-cycles:


\section*{With semicoarsening, the operator must change}
- To account for unequal mesh spacing, the residual \& relaxation operators must use a modified stencil:
\[
A=\left(\begin{array}{c}
-\frac{\varepsilon}{h_{y}^{2}} \\
-\frac{1}{h_{x}^{2}} \quad\left(\frac{2}{h_{x}^{2}}+\frac{2 \varepsilon}{h_{y}^{2}}\right) \quad-\frac{1}{h_{x}^{2}} \\
-\frac{\varepsilon}{h_{y}^{2}}
\end{array}\right)
\]
- Note that, as grids become coarser, \(h_{x}\) grows while \(h_{y}\) remains constant.

\section*{A semicoarsening subtlety}
- Suppose \(\varepsilon\) is small, so that semicoarsening in \(x\) is used. As we progress to coarser grids, \(h_{x}^{-2}\) gets small but \(h_{y}{ }^{-2}\) remains constant.
- If, on some coarse grid, \(h_{x}^{-2}\) becomes comparable to \(\varepsilon h_{y}{ }^{-2}\), then the problem effectively becomes recoupled in the y-direction. Continued semicoarsening can produce artificial anisotropy, strong in the \(y\)-direction.
- When this occurs, it is best to stop semicoarsening \& use full coarsening on any further coarse grids.

\section*{7. Selected applications}

7c. Variable meshes
- Non-uniform grids are commonly used for domain or data irregularities or emerging solution features.
- Consider how we might approach the 1-D problem
\[
\begin{gathered}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1, \\
u(0)=u(1)=0
\end{gathered}
\]
posed on the following nonuniform grid:


Building second divided differences


\section*{Modify interpolation for variable \(h\)}
- We choose every other fine-grid point as a coarse-

- In \(\left[x_{0}^{h}, x_{2}^{h}\right]\), linear means
\[
v(x)=v_{0}^{2 h}+\left(v_{1}^{2 h}-v_{0}^{2 h}\right)\left(x-x_{0}^{h}\right) /\left(x_{2}^{h}-x_{0}^{h}\right) .
\]
- Plug in \(x=x_{1}^{h}\) : writing \(v^{h}=I_{2 h}^{h} v^{h}\) yields
\[
v_{2 j}^{h}=v_{j}^{2 h}, \quad v_{2 j+1}^{h}=\frac{h_{2 j+3 / 2} v_{j}^{2 h}+h_{2 j+1 / 2} v_{j+1}^{2 h}}{h_{2 j+1 / 2}+h_{2 j+3 / 2}}, \quad 1 \leq j \leq n / 2-1
\]

We use the variational properties to derive restriction \& \(A^{2 h}\)
\[
A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h} \quad I_{h}^{2 h}=\frac{1}{2}\left(I_{2 h}^{h}\right)^{T}
\]
- This produces a stencil on \(\Omega^{2 h}\) that is similar, but not identical, to the fine-grid stencil. If the resulting system is scaled by \(\left(h_{j-1 / 2}+h_{j+1 / 2}\right)\), then the Galerkin product is the same as the fine-grid stencil.
- For 2-D problems, this approach can be generalized readily to tensor-product grids. However, for general irregular grids, AMG is a better choice.

\section*{7. Selected applications}

7d. Variable coefficients
- A common difficulty is variable coefficients,
\[
\begin{aligned}
& \text { exemplified in 1-D by } \\
& \qquad \begin{array}{c}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad 0<x<1, \\
u(0)=u(1)=0,
\end{array}
\end{aligned}
\]
where \(a(x)\) is a positive function on \([0,1]\).
- We seek to develop a conservative, or self-adjoint, method for discretizing this problem.
- Assume we have available to us the values of \(a(x)\) \(\left(a_{j+1 / 2} \equiv a\left(x_{j+1 / 2}\right)\right)\) at midpoints of the uniform grid

CU-Boulder


To evaluate \(\left.\left(a u^{\prime}\right)\right|_{x_{j+1 / 2}}\), we must sample \(a(x)\) at the point \(x_{j+1 / 2}\) \& use second-order differences:
\[
\left.\left.\left(a u^{\prime}\right)\right|_{x_{j+1 / 2}} \approx a_{j+1 / 2} \frac{u_{j+1}-u_{j}}{h} \quad\left(a u^{\prime}\right)\right|_{x_{j-1 / 2}} \approx a_{j-1 / 2} \frac{u_{j}-u_{j-1}}{h}
\]
where
\[
a_{j+1 / 2} \equiv a\left(x_{j+1 / 2}\right)
\]


\section*{Discretize using central differences}

We can use second-order differences to approximate the derivatives. To use a grid spacing of \(h\), we evaluate \(a(x) u^{\prime}(x)\) at points midway between the gridpoints:
\[
\left.\left(a(x) u^{\prime}(x)\right)^{\prime}\right|_{x_{i}}=\frac{\left.\left(a u^{\prime}\right)\right|_{j_{j+1 / 2}}-\left(a u^{\prime}\right) x_{j-1 / 2}}{h}+O\left(h^{2}\right)
\]


CU-Boulder

\section*{Discretize using central differences \\ (cont'd)}

\section*{Coarsening the variable coefficient problem}
- A reasonable approach is to use a standard multigrid algorithm with linear interpolation, full weighting, \& the stencil
\[
A^{2 h}=\frac{1}{(2 h)^{2}}\left[\begin{array}{lll}
-a_{j-\frac{1}{2}}^{2 h} & a_{j-\frac{1}{2}}^{2 h}+a_{j+\frac{1}{2}}^{2 h} & -a_{j+\frac{1}{2}}^{2 h}
\end{array}\right]
\]
where
\[
a_{j+1 / 2}^{2 h}=\frac{a_{2 j+1 / 2}^{h}+a_{2 j+3 / 2}^{h}}{2} .
\]


The same stencil is obtained by the Galerkin relation.

Variable mesh vs. variable coefficients
after scaling by \(\eta_{j}=\left(h_{j-1 / 2}+h_{j+1 / 2}\right) / 2\) \& \(h\)
- Variable mesh
\[
-\frac{1}{h_{j-\frac{1}{2}}} u_{j-1}^{h}+\left(\frac{1}{h_{j-\frac{1}{2}}}+\frac{1}{h_{j+\frac{1}{2}}}\right) u_{j}^{h}-\frac{1}{h_{j+\frac{1}{2}}} u_{j+1}^{h}=\eta_{j} f_{j}^{h}
\]
- Variable coefficients
\[
\frac{1}{h}\left(-a_{j-\frac{1}{2}} u_{j-1}+\left(a_{j-\frac{1}{2}}+a_{j+\frac{1}{2}}\right) u_{j}-a_{j+\frac{1}{2}} u_{j+1}\right)=h f_{j}
\]
- Correspondence
\[
\frac{1}{h_{j-1 / 2}} \Leftrightarrow \frac{a_{j-1 / 2}}{h} \quad \frac{1}{h_{j+1 / 2}} \Leftrightarrow \frac{a_{j+1 / 2}}{h}
\]

\section*{A variable coefficient example}
- We use \(V(2,1)\) cycle, full weighting, linear interpolation.
- We use \(a(x)=1+\rho \sin (k \pi x) \& a(x)=1+\rho \operatorname{rand}(x)\).
\[
n=1024
\]


\section*{Standard multigrid degrades if} \(a(x)\) is highly variable

MG for variable coefficients is equivalent to MG (with simple averaging) for Poisson's equation on a variable mesh.


But simple averaging won't accurately represent smooth components if \(x_{2 j+1}^{h}\) is close to \(x_{2 j}^{h}\) but far from \(x_{2 j+2}^{h}\).


\section*{Pretend variability comes from mesh}
\(A^{h}=\left[\begin{array}{cccc}a_{j-\frac{1}{2}} & a_{j-\frac{1}{2}} & a_{j+\frac{1}{2}} & a_{j+\frac{1}{2}} \\ h & -\frac{1}{h}\end{array}\right]=\left[\begin{array}{lll}-\frac{1}{h_{j-\frac{1}{2}}} & \frac{1}{h_{j-\frac{1}{2}}}+\frac{1}{h_{j+\frac{1}{2}}} & -\frac{1}{h_{j+\frac{1}{2}}}\end{array}\right]\)
- We can solve for the mesh sizes: \(h_{j-\frac{1}{2}}=\frac{h}{a_{j-\frac{1}{2}}}, \quad h_{j+\frac{1}{2}}=\frac{h}{a_{j+\frac{1}{2}}}\).
- So linear interpolation yields
\[
v_{2 j+1}^{h}=\frac{h_{2 j+3 / 2} v_{j}^{2 h}+h_{2 j+1 / 2} v_{j+1}^{2 h}}{h_{2 j+1 / 2}+h_{2 j+3 / 2}}=\frac{a_{2 j+1 / 2} v_{j}^{2 h}+a_{2 j+3 / 2} v_{j+1}^{2 h}}{a_{2 j+1 / 2}+a_{2 j+3 / 2}} .
\]
or, assuming that we've already interpolated to \(C\)-points \(2 j\) \& \(2 i+2\), it can be rewritten as
- We just used operator interpolation!
- Works for any stencil: \(\left[\begin{array}{ccc}-\alpha & \alpha+\beta & -\beta\end{array}\right]\).

\section*{Outline}

Chapters 1-5:
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
- Relaxation
- Coarsening
- \(\sqrt{ }\) Implementation
- Complexity
- Diagnostics
\(\cdot \sqrt{ }\) Some Theory
- Spectral vs. algebraic

CU-Boulder

Chapters 6-10:
- \(\sqrt{ }\) Nonlinear Problems
- Full approximation scheme
- \(\sqrt{ }\) Selected Applications
- Neumann boundaries

Anisotropic problems
- Variable coefficients
- Algebraic Multigrid (AMG)
- Matrix coarsening
- Multilevel Adaptive Methods
- FAC
- Finite Elements
- Variational methodology

\section*{Operator interpolation}
- Assume that the error is known on the coarse grid:


So we can assume that \(e\) is known on the fine grid at F-points \(i \pm 1\).
We then just need to relate \(e_{i}\) to \(e_{i \pm 1}\).

- Assume smooth error with the ansatz that \(r=0\).
- Applying this at point \(i\) : \(-\alpha \boldsymbol{e}_{i-1}+(\alpha+\beta) e_{i}-\beta \boldsymbol{e}_{i+1}=0\).
- Solving for i :
\[
e_{i}=\frac{\alpha}{\alpha+\beta} e_{i-1}+\frac{\beta}{\alpha+\beta} e_{i+1}
\]
- Accidental: F-points connect only to C-points. What do we do

\section*{8. Algebraic multigrid (AMG)}
- Automatically determines coarsening.
- AMG has two distinct phases:
-setup phase: define MG components.
-solution phase: perform MG cycles.
- AMG differs from geometric MG:
-fix relaxation: point Gauss-Seidel.
-choose coarsening: "grids" \& prolongation, P.
- AMG principles:
-algebraically smooth errors have small residuals: \(A e \approx 0\).
-"strong" connections mean good neighbors: good C-points.
- smooth error is locally almost constant: \(e \approx c\) for this \(A\).
-prolongation must match "smooth" error: \(e \in\) range \((P)\).
-variational conditions apply: given \(P\), set \(R=P^{\top} \& A_{c}=R A P\)
- only real task is to compute C \& P: write \(e_{F}\) in terms of \(e_{C}\).

Why AMG?


325 of 396

Graph Laplacian


326 of 396

\section*{AMG has two phases}
- Setup Phase
- Select coarse "grids," \(\Omega^{m+1}, m=1,2, \ldots\)
- Define interpolation, \(I_{m+1}^{m}, m=1,2, \ldots\)
- Define restriction \& coarse-grid operators,
\[
I_{m}^{m+1}=\left(I_{m+1}^{m}\right)^{T}, \quad A^{m+1}=I_{m}^{m+1} A^{m} I_{m+1}^{m} .
\]
- Solve Phase

Standard MG processes: V-cycle, W-cycle, FMG, FAS, ...
- All AMG processes parallelize well, although coarse-grid selection must be done with care.

\section*{AMG uses strong connection to determine MG components}
- Smoothing assumption:
\[
r \approx 0 \text { or }\langle A e, e\rangle \approx 0
\]
- We say that \(i\) is strongly connected to \(j\) if
\[
-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}, \quad 0<\theta \leq 1
\]
- Zero-row-sum "M-matrices" actually satisfy
\[
<A e, e>\approx \sum_{i \neq j}^{\sum} \frac{a_{i j}}{2}\left(e_{i}-e_{j}\right)^{2} \approx 0
\]
- So smooth error is morefor less constant along strong connections

We really mean matrices that have stencils like we've seen.

\section*{Some useful set definitions}
- The set of strong connections of a variable \(u_{i}\) that is, the variables upon whose values the value of \(u_{i}\) depends, is defined as
\[
S_{i}=\left\{j:-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}\right\} .
\]
- The set of points strongly connected to variable \(\mathrm{u}_{\mathrm{i}}\) is denoted \(S_{i}^{T}=\left\{j: i \in S_{j}\right\}\).
- The set of coarse-grid variables is denoted \(C\).
- The set of fine-grid variables is denoted F.
- The set of interpolatory coarse-grid variables used to interpolate the value of the fine-grid variable \(u_{i}\) is denoted \(C_{i}\).

Selecting the coarse-grid points
choose \(C\)-point to allow most F-points ("value")

\section*{Sample grids for the Laplacian}

5-pt FD, 9-pt FE (quads), \& 9-pt FE (stretched quads)


C-point selected
(point with largest "value")
Neighbors of \(C\)-point become F-points
Next C-point selected (after updating "values") F-points selected, etc.


5-pt FD


CU-Boulder

9-pt FE
(stretched quads)

\[
\left(\begin{array}{ccc}
-1 & -4 & -1 \\
2 & 8 & 2 \\
-1 & -4 & -1
\end{array}\right)
\]

\(\left(\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1\end{array}\right)\)
9-pt FE (quads)

Prolongation is based on smooth error strong connections (from M-matrices)


Smooth error is given by:
\[
r_{i}=a_{i i} e_{i}+\sum_{j \in C \cup F} a_{i j} e_{j} \approx 0 .
\]
\begin{tabular}{rl} 
& Prolongation : \\
\((P e)_{i}=\) & \(\begin{cases}e_{i}, & i \in C \\
\sum_{k \in C} w_{i k} e_{k}, & i \in F .\end{cases}\)
\end{tabular}

Actually, we want to allow for the possibility that we don't interpolate from all of \(C\)...

Prolongation is based on smooth error, strong connections (from M-matrices)

\(C_{i}=\) strongly connected C-pts.
\(D_{i}\{\) Strongly connected F-pts.
Smooth error at i means that


Now we just substitute to get interpolation weights! CU-Boulder

\section*{Interpolation weights--the algebra}
\[
\begin{gathered}
a_{i i} e_{i}=-\sum_{k \in C_{i}} a_{i k} e_{k}-\sum_{j \in D_{i}} a_{i j} e_{j} \\
+ \\
e_{j}=\frac{\sum_{k \in C_{i}} a_{j k} e_{k}}{\sum_{k \in C_{i}} a_{j k}}=\sum_{k \in C_{i}} \frac{a_{j k}}{\sum_{l \in C_{i}} a_{j l}} e_{k} \\
\Downarrow \\
w_{i k}=-\frac{1}{a_{i i}}\left(a_{i k}+\sum_{j \in D_{i}} a_{i j} \frac{a_{j k}}{\sum_{l \in C_{i}} a_{j l}}\right)
\end{gathered}
\]

\section*{Real setting}

Suppose F-points are usually connected to other F-points.
How do we eliminate these F-F connections?
- F-point
- \(=\) C-point


\section*{Example of AMG compution of \(P\)}
- F Foint
- \(=C\) point


341 of 396

\section*{AMG performance:} Sometimes a success story
- AMG performs extremely well on the model problem (Poisson's equation, regular grid): optimal convergence factors (e.g., 0.14) \& scalability w.r.t. problem size.
- AMG appears to be both scalable \& efficient on diffusion problems on unstructured grids (e.g., 0.1-0.3).
- AMG handles anisotropic diffusion on structured \& unstructured grids relatively well (e.g., 0.35).

\section*{AMG setup costs}
- Many geometric MG methods need to compute prolongation \& coarse-grid operators.
- The only additional expense in the AMG setup phase is the coarse-grid selection algorithm.
- So AMG's setup phase is usually only \(10-25 \%\) more expensive than in geometric MG.
- But AMG is more robust in terms of geometric difficulties.

CU-Boulder
342 of 396

\section*{How does it perform (vol I)?}
regular grids, plain, old, vanilla problems, unit square, \(n=64\), Dirichlet boundaries


\section*{How does it perform (vol II)?}
structured meshes, rectangular domains
5-point Laplacian on regular rectangular grids
Convergence factor ( \(y\)-axis) plotted against number of nodes ( \(x\)-axis)


CU-Boulder
500000
1000000

\section*{How does it perform (vol IV)?}
\(-\nabla \cdot(d(x, y) \nabla u)=0\) on structured, unstructured grids


Problems used: "a" means parameter \(c=10\), " \(b\) " means \(c=1,000\)


\section*{How does it perform (vol III)?}
unstructured meshes, rectangular domains
Laplacian on random unstructured grids (regular triangulations, \(15-20 \%\) nodes randomly collapsed into neighboring nodes)
Convergence factor ( \(y\)-axis) plotted against number of nodes ( \(x\)-axis)


CU-Boulder

How does it perform (vol V)?
Laplacian operator, unstructured grids


\section*{AMG for systems}
- How can we do AMG on systems?
\[
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{u}{v}=\binom{f}{g}
\]
- Naïve approach: "Block" AMG (block Gauss-Seidel, using scalar AMG to "solve" at each cycle)
\[
\begin{aligned}
& u \leftarrow\left(A_{11}\right)^{-1}\left(f-A_{12} v\right) \\
& v \leftarrow\left(A_{22}\right)^{-1}\left(g-A_{21} u\right)
\end{aligned}
\]

Great Idea! Except that it often doesn't work!
Block AMG doesn't account for strong inter-variable coupling.

\section*{Adaptive AMG (aAMG)}
to broaden applicability
adaptive interpolation
based on discovering the sense of smoothness
adaptive \(C\)-point choice
auto-determination of good coarse points

\section*{AMG for systems: A solution}
- To solve the system problem, allow interaction between the unknowns at all levels:
\[
A^{k}=\left(\begin{array}{cc}
A_{11}^{k} & A_{12}^{k} \\
A_{21}^{k} & A_{22}^{k}
\end{array}\right) \quad \& \quad I_{k+1}^{k}=\left(\begin{array}{cc}
\left(I_{k+1}^{k}\right)_{u} & 0 \\
0 & \left(I_{k+1}^{k}\right)_{v}
\end{array}\right)
\]
- This is called the "unknown-based" approach.
- 2-D biharmonic \((-\Delta)^{2} u=f\), Dirichlet \& Neumann boundaries, unit square, uniform quadrilateral mesh:
\begin{tabular}{|c|c|c|c|c|}
\hline Mesh spacing & 0.125 & 0.0625 & 0.03135 & 0.015625 \\
\hline Convergence factor & 0.22 & 0.35 & 0.42 & 0.44 \\
\hline
\end{tabular}

Standard AMG collapses stencils by assuming smooth error is locally constant (Poisson "sense of smoothness"):
\[
a_{i i} e_{i}=-\sum_{k \in C_{i}} a_{i k} e_{k}-\sum_{j \in D_{i}} a_{i j} e_{j}=\frac{\sum_{k \in C_{i}} a_{j k} e_{k}}{\sum_{k \in C_{i}} a_{j k}}
\]

Strong C F \& Weak C

\section*{Isn't standard interpolation OK?}
- Suppose someone tried to make A "nice" for relaxation by scaling the diagonal so it's the identity:
\[
\underline{A} \leftarrow D^{-1 / 2} A D^{-1 / 2}, \quad D=\operatorname{diag}\left(a_{i f}\right) .
\]
- Relaxation still gives small residuals:
\[
\underline{A} \underline{e} \approx 0
\]
- But
\[
\underline{A} \underline{e}=\left(D^{-1 / 2} A D^{-1 / 2}\right) \underline{e} \approx 0 \Rightarrow A\left(D^{-1 / 2} \underline{e}\right) \approx 0 \Rightarrow \underline{e} \approx D^{1 / 2} c .
\]
- So "smooth" here means \(\underline{e}_{\mathrm{i}} \approx c \sqrt{a_{\mathrm{ii}}}\). This could vary a lot!

How can we discover what smooth vectors actually look like?
cu-Boulder
353 of 396

\section*{Discovering smoothness}

\section*{Relax on \(A x=0!!!\)}
- What if we found a smooth error \(x\) that's far from \(c\) ?
- If, say, \(x_{j}=1.4 x_{k}\) for \(j \in D_{i}\) \& all \(k \in C_{i}\), then we could se \(\dagger\)
\[
e_{j} \rightarrow\left(\sum_{k \in C_{i}} a_{j k} 1.4 e_{k}\right) /\left(\sum_{k \in C_{i}} a_{j k}\right) .
\]
- If \(x_{j} / x_{k}\) varies with \(k\), then it's just a bit more complicated.

Cu -Boulder
354 of 396

\section*{Compatible relaxation (CR)}
- To ensure that \(C\) is a really good set of coarse grid points, we want \(A_{f f}\) to be well conditioned. Thus, we can assess whether we have good \(C\)-points by "CR":
relax on \(A_{f f} x_{f}=0\).
- Fast \(C R\) means that \(F\) depends on \(C\) in the sense that smooth error \(\left(r_{f}=0\right)\) is quickly recovered from \(C\).
- Fast CR also has the benefit that the F-point residuals can be made really small after F-point relaxation.
- We can also show that fast CR means that a \(P\) exists that gives good MG convergence: \(-A_{f f}^{-1} A_{f c}\).
- This P isn't local; hopefully, \(C R\) can give us a good local P. Problem: If \(A_{f f}\) isn't well conditioned, what then??? CU-Boulder

\section*{Outline}

\section*{Chapters 1-5:}
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis
\(\cdot \sqrt{ }\) Elements of Mu
- Relaxation
- Coarsening
- \(\sqrt{ }\) Implementation
- Complexity
- Diagnostics
- \(\sqrt{ }\) Some Theory
- Spectral vs. algebraic

CU-Boulder

Model 1-D problem
\[
\begin{gathered}
-u^{\prime \prime}(x)=f(x), 0<x<1 \\
u(0)=u(1)=0
\end{gathered}
\]
\[
\Omega^{h} \quad x_{0}^{h} x_{1}^{h} x_{2}^{h} x_{3}^{h} x_{4}^{h} x_{5}^{h} x_{6}^{h} x_{7}^{h} x_{8}^{h}
\]
\(h^{-2}\left(-u_{i-1}^{h}+2 u_{i}^{h}-u_{i-1}^{h}\right)=f_{i}^{h}\),
\(1 \leq i \leq 7\)
\(u_{0}^{h}=u_{8}^{h}=0\),

Chapters 6-10:
- \(\sqrt{ }\) Nonlinear Problems
- Full approximation scheme
- \(\sqrt{ }\) Selected Applications
- Neumann boundaries

Variable coefficients
- \(\sqrt{ }\) Algebraic Multigrid (AMG)
- Matrix coarsening
- Multilevel Adaptive Methods
- FAC
- Finite Elements
- Variational methodology
\[
h=\frac{1}{8}
\]

\section*{9. Multilevel adaptive methods}
fast adaptive composite grid method (FAC)


Local enhancement to resolve special regions of activity or interest.
CU-Boulder

\section*{Local refinement}
suppose \(f(x)\) has a spike at \(x=3 / 4\)
but is smooth elsewhere


\section*{Strategy}
- Recognize that there's little value of having the fine grid in the smooth region, \([0,1 / 2]\).
- Start with uniform grid \& standard MG, then:
- first eliminate relaxation in [0, 1/2].
- then eliminate intergrid transfers \& residual calculations.
- Then interpret this process via the composite grid (= \(2 h\)-points in \([0,1 / 2]+h\)-points in [1/2, 1]).
- We'll try absurdly hard to eliminate work @ \(x=1 / 2\), but we have in mind multi-dimensions \& smaller patches.

\section*{Eliminate relaxation}
so \(r^{h}\) changes only on \(2 h\) \(v^{h}\) changes only here
\begin{tabular}{llll} 
notation & \(\Omega^{h}\) & \(x_{0}^{h} x_{1}^{h} x_{2}^{h} x_{3}^{\prime h}\) & \(x_{4}^{h} x_{5}^{h} x_{6}^{h} x_{7}^{h} x_{8}^{h}\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Once \& forall: \\
\(v^{h}=\left(v_{i}^{h}\right)\)
\end{tabular}\(\quad \Omega^{2 h} x_{0}^{2 h} \quad x_{1}^{2 h} x_{2}^{2 h} x_{3}^{2 h} x_{4}^{2 h} \quad\)\begin{tabular}{l} 
it changes only
\end{tabular}
- Initialize \(v^{h}=0 \& f_{1}^{2 h} \leftarrow\left(f_{1}^{h}+2 f_{2}^{h}+f_{3}^{h}\right) / 4\). \(\hookleftarrow\) on \(2 h\).
- Relax on \(v^{h}\) on the local fine grid \(\left(x_{5}{ }^{h}, x_{6}{ }^{h}, x_{7}{ }^{h}\right)\).
- Compute \(r^{h}=f^{h}-A^{h} v^{h}\left(@ x_{3}{ }^{h}-x_{7}{ }^{h}\right)\) \& transfer to \(2 h\) : \(f_{2}{ }^{2 h} \leftarrow\left(r_{3}{ }^{h}+2 r_{4}{ }^{h}+r_{5}{ }^{h}\right) / 4 \& f_{3}{ }^{2 h} \leftarrow\left(r_{5}{ }^{h}+2 r_{6}{ }^{h}+r_{7}{ }^{h}\right) / 4\).
- Compute an approximation, \(v^{2 h}\), to the solution of the \(2 h\) residual equation, \(A^{2 h} u^{2 h}=f^{2 h}\).
- Update the residual at \(x_{1}^{2 h}\) for later cycles:
\[
f_{1}^{2 h} \leftarrow f_{1}^{2 h}-\left(-v_{0}^{2 h}+2 v_{1}^{2 h}-v_{2}^{2 h}\right) /(2 h)^{2}
\]
- Correct: \(v^{h}<v^{h}+I_{2 h}^{h} v^{2 h}\).
\[
\text { Why save } v^{h} \text { outside of local region? }
\]
cycle

\section*{Local-Relaxation/Global-Correction MG}
\(\rightarrow \rightarrow\) WARNING: You won't get zero residuals on all of grid \(h . \longleftarrow \leftarrow\)
Remember that the concept is right here, but we need to make it efficient--without changing the results!!!

Relax only in the local region.
Nounosicterct theiauthel coglabse griidsas usuak: \(=1 / 2\) becomes a boundary point.


We start by using local relaxation \& eliminating unnecessary residual transfers.
To save all of the work of computing \& transferring residuals \& corrections in regions where they don't change,
we need some messy ALGEBRA!
CU-Boulder
Trust me on the more messy stuff

\section*{Eliminate more}

- Initialize \(v^{h}=0, w_{1}{ }^{2 h}=0, \& f_{1}{ }^{2 h} \leftarrow\left(f_{1}{ }^{h}+2 f_{2}{ }^{h}+f_{3}{ }^{h}\right) / 4\).
- Relax on \(v^{h}\) on the local fine grid \(\left(x_{5}{ }^{h}, x_{6}{ }^{h}, x_{7}{ }^{h}\right)\).
- Compute \(r^{h}=f^{h}-A^{h} v^{h}\left(@ x_{2}{ }^{h}-x_{7}^{h}\right)\) \& transfer to \(2 h\) : \(f_{2}{ }^{2 h} \leftarrow\left(r_{3}{ }^{h}+2 r_{4}{ }^{h}+r_{5}{ }^{h}\right) / 4 \& f_{3}{ }^{2 h} \leftarrow\left(r_{5}{ }^{h}+2 r_{6}{ }^{h}+r_{7}{ }^{h}\right) / 4\).
- Compute an approximation, \(v^{2 h}\), to the solution of the \(2 h\) residual equation, \(A^{2 h} u^{2 h}=f^{2 h}\).
- Update the residual at \(x_{1}^{2 h}\) for later cycles:
\[
f_{1}^{2 h} \leftarrow f_{1}^{2 h}-\left(-v_{0}^{2 h}+2 v_{1}^{2 h}-v_{2}^{2 h}\right) /(2 h)^{2} .
\]
- Accumulate the \(2 h\) approximation: \(w_{1}{ }^{2 h} \leftarrow w_{1}^{2 h}+v_{1}^{2 h}\).
- Correct: \(v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}\left(@ x_{3}{ }^{h}-x_{7}{ }^{h}\right)\).

CU-Boulder
cycle
364 of 396

\section*{Eliminate the rest}
\(\Omega^{h} x_{0}^{h} x_{1}^{h} x_{2}^{h} x_{3}^{h} x_{4}^{h} x_{5}^{h} x_{6}^{h} x_{7}^{h} x_{8}^{h} \quad r_{3}^{h}\) doesn't change on \(h\). \(\Omega^{2 h} x_{0}^{2 h} x_{1}^{2 h} \quad x_{2}^{2 h} \quad x_{3}^{2 h} \quad x_{4}^{2 h} \quad\) Compute change in \(r_{3}^{h}\) on \(2 h\).
\[
\begin{aligned}
& \text { 2h residual @ } x_{2}^{2 h}=g_{2}^{2 h}-\left(-w_{1}^{2 h}+2 v_{4}{ }^{2 h}-v_{6}^{h}\right) /(2 h)^{2}, \\
& \text { where } g_{2}^{2 h}=\left(f_{3}^{h}+2 f_{4}^{h}+f_{5}^{h}\right) / 4 \text {. (Messy algebra! }
\end{aligned}
\]
- Initialize \(v^{h}=0, w_{1}^{2 h}=0, \& f_{1}^{2 h} \leftarrow\left(f_{1}^{h}+2 f_{2}{ }^{h}+f_{3}^{h}\right) / 4\)
- Relax on \(v^{h}\) on the local fine grid \(\left(x_{5}{ }^{h}, x_{6}{ }^{h}, x_{7}{ }^{h}\right)\).
- Compute the right sides for \(2 h\) :
\[
\begin{aligned}
& f_{2}^{2 h} \leftarrow g_{2}^{2 h}-\left(-w_{1}^{2 h}+2 v_{4}^{h}-v_{6}{ }^{2}\right) /(2 h)^{2} \quad \& \\
& f_{3}^{2 h} \leftarrow\left(r_{5}^{h}+2 r_{6}{ }^{h}+r_{7}^{h}\right) / 4 .
\end{aligned}
\]
- Compute an approximation, \(v^{2 h}\), to the solution of the \(2 h\) residual equation, \(A^{2 h} u^{2 h}=f^{2 h}\)
- Update the residual at \(x_{1}^{2 h}\) for later cycles:
\(f_{1}^{2 h} \leftarrow f_{1}^{2 h}-\left(-v_{0}^{2 h}+2 v_{1}^{2 h}-v_{2}^{2 h}\right) /(2 h)^{2}\).
- Accumulate the \(2 h\) approximation: \(w_{1}^{2 h} \leftarrow w_{1}^{2 h}+v_{1}^{2 h}\).
- Cu-Borifer \({ }^{\text {Clt: }} v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}\left(@ x_{4}{ }^{h}-x_{7}{ }^{h}\right)\)
cycle
365 of 396

Finite Element Local Refinement continuous piecewise linear: 1 at node \(i=5,6,7\) only, 0 @ all other nodes.


\section*{Abstract FE relaxation \& 2 h correction}

- Minimize \(F\left(u^{h}-s \varepsilon_{(i)}^{h}\right)\) over s for \(i=5,6,7\) in turn.

- Minimize \(F\left(u^{h}+u^{2 h}\right)\) over \(u^{2 h}\) in \(H^{2 h}\).

CU -Boulder
369 of 396
- Adaptivity
- Error estimates
- Norms (proper scaling)
- Multiple dimensions
- Slave points \(\diamond\)
- More complicated stencils
- Data structures
- Parallel algorithms (AFAC)
- Time-space

\section*{Issues}
- lime-space


\section*{Outline}
\begin{tabular}{|c|c|}
\hline Chapters 1-5: & Chapters 6-10: \\
\hline - \(\sqrt{ }\) Model Problems & - \(\sqrt{ }\) Nonlinear Problems \\
\hline - \(\sqrt{ }\) Basic Iterative Methods & - Full approximation schem \\
\hline - Convergence tests & - \(\sqrt{ }\) Selected Applications \\
\hline - Analysis & - Neumann boundaries \\
\hline \begin{tabular}{l}
- \(\sqrt{ }\) Elements of MultihiliOM \\
- Relaxation
\end{tabular} & k Dúe \({ }^{\text {Anisotopic problems }}\) Ue \({ }^{\text {ppic probe }}\) \\
\hline - Coarsening & \begin{tabular}{l}
- Variable coefficients \\
- \(\sqrt{ }\) Algebraic Multigrid (AMG)
\end{tabular} \\
\hline - \(\sqrt{ }\) Implementation & - Matrix coarsening \\
\hline - Complexity & \(\cdot \sqrt{ }\) Multilevel Adaptive Methods \\
\hline - Diagnostics & - FAC \\
\hline - \(\sqrt{ }\) Some Theory & Finite Elements \\
\hline - Spectral vs. algebraic & - Variational methodology \\
\hline
\end{tabular}

\section*{10. Finite elements}

FE, a variational discretization methodology


FD: differences at nodes \& truncation error.
FE: weak form on discrete functions \& approximation property.
Other methods: finite volume, collocation, spectral,
CU -Boulder

\section*{Localize}

\(\rightarrow \rightarrow\) SECOND KEY POINT \(\leftarrow \leftarrow\)
FE functions are localized to ensure a sparse matrix.

\section*{Weak form!}
\[
\begin{aligned}
& -u^{\prime \prime}=f \quad u=\text { trial function } \\
& \Rightarrow-u^{\prime \prime} v=f v \quad \forall v \quad v=\text { test function } \\
& \Rightarrow \int\left(-u^{\prime \prime}\right) v d x=\int f v d x \\
& \Rightarrow \int u^{\prime} v^{\prime} d x-\left.u^{\prime} v\right|_{0} ^{1}=\int f v d x, \forall, \quad \text { How is this weak } 2 \text { ways. } \\
& \Rightarrow \int u^{\prime} v^{\prime} d x=\int \text { fuctx } \forall v \ni v(0)=v(1)=0 \\
& \Rightarrow \begin{array}{c}
\left(u^{\prime}, v^{\prime}\right)=(f, v) \\
\downarrow \uparrow \vee \downarrow \text { How would we discretize this? }
\end{array} \\
& \begin{array}{cl}
\text { Why we } & ? \text { Need basis for space of admissible } u^{h} \& v . \\
\text { have } & \Rightarrow \text { can actually be reversed to }
\end{array} \\
& \text { have } \quad \Rightarrow \text { can actually be reversed to } \\
& \Leftarrow \text { if } u \text { is smooth enough. } \\
& \text { CU-Boulder } \\
& \text { So the weak \& strong forms are "equivalent". }
\end{aligned}
\]

\section*{Representation}
a basis of "hat" functions
\[
\varepsilon_{(i)}^{h} \text { is }
\]
continuous piecewise linear

\& 0 at all nodes except node i where it's 1.

Any continuous piecewise linear function can be represented by
\[
\begin{aligned}
& u^{h}=\sum_{i} u_{i}^{h} \varepsilon_{(i)}^{h} . \\
& \text { L } \\
& \text { Now we're back to } \\
& \text { using node values. }
\end{aligned}
\]

\section*{Weak form \& Galerkin discretization}


So the unknown is \(u^{h}=\left(u_{j}^{h}\right)\),
the matrix is \& the right side is
\[
A^{h}=\left(a_{i j}^{h}\right)=\left(\left(\varepsilon_{(i)}^{h}, \varepsilon_{(j)}^{h} \prime\right)\right), f^{h}=\left(f_{i}^{h}\right)=\left(\left(f, \varepsilon_{(i)}^{h}\right)\right) \text {. }
\]

\section*{2D FE constructs}
hat
function
- Assume that \(\Omega\) is the unit square.
- Consider an \(n \times n\) grid of square "cells".
- Continuous piecewise bilinear elements: \(H^{h} \subset H_{0}{ }^{1}(\Omega)\).
- Each \(u^{h}\) in \(H^{h}\) is determined by its node values. This is how we'll represent them!
- Within each square:
\[
u^{h}=a x y+b x+c y+d
\]

( \(u^{h}\) is linear in each coordinate direction).
- If \(u^{h}\) on one side of an element matches \(u^{h}\) on the other at the nodes, then we want to know that it matches on the common edge so that \(u^{h}\) is continuous: we want to know that specifying a piecewise bilinear function at the nodes gives us continuity.

\footnotetext{
CU-Boulder
Why do we care???
}

380 of 396

\section*{Continuity}


\section*{Weak form}
- The Gauss Divergence Theorem \& homogeneous boundary conditions yield
\[
(L u, v)=\left(-u_{x x}-u_{y y}, v\right)=(-\nabla \cdot \nabla u, v)=(\nabla u, \nabla v) .
\]
- Note:
\[
(\nabla u, \nabla v)=\int_{\Omega}\left(u_{x} v_{x}+u_{y} v_{y}\right) d \Omega
\]
\[
\nabla u=\binom{u_{x}}{u_{y}}
\]
- So the problem becomes
\[
\left(\nabla u^{h}, \nabla v^{h}\right)=\left(f, v^{h}\right) \quad \forall v^{h} \varepsilon H^{h}
\]
or
\[
\int_{\Omega}\left(u_{x}^{h} v_{x}^{h}+u_{y}^{h} v_{y}^{h}\right) d \Omega=\int_{\Omega} f v^{h} d \Omega \quad \forall v^{h} \varepsilon H^{h} .
\]

\section*{The matrix equation}
\[
A^{h} u^{h}=f^{h}
\]
where
\[
u^{h}=\left(u_{i j}^{h}\right) \quad \& \quad f^{h}=\left(h^{2} f\left(x_{k \mid}\right)\right)
\]
\& the matrix is given by the stencil
\[
A_{i j}^{h}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right) . \quad \text { stiffness matrix }
\]

\section*{Some matrix properties}
\[
A_{i j}^{h}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right)
\]
- Symmetric! \(i j\) "reaches" to \(i \pm 1 j \pm 1\) as \(i \pm 1 j \pm 1\) to \(i j\).
- Singular? \(A^{h} 1=0\) ?! Depends on boundaries!

Dirichlet west boundary:
- Positive definite!
\[
A_{i j}^{h}=A_{3 j}^{n}\left(\frac{1}{\overline{1}_{n}}\left(\begin{array}{cc}
-1 & -1 \\
\frac{3}{-} \\
8 & -1 \\
-1 & -1
\end{array}\right) .\right.
\]

Diagonally dominant (strictly so @ boundaries).
But now we need to understand the PDE better, starting with choosing our universe of functions..

\section*{A word about Sobolev spaces}
- We're mucking about with forms like \(\int_{\Omega}\left(u_{x} v_{x}+u_{y} v_{y}\right) d \Omega\), so we need to know that derivatives of functions in our universe can be multiplied together \& integrated. It's enough to have \(\int_{\Omega}\left(u_{x}{ }^{2}+u_{y}{ }^{2}\right) d \Omega<\infty\), so our universe is \(H_{0}{ }^{1}(\Omega)=\left\{u: u, u_{x}, u_{y} \varepsilon L^{2}(\Omega),\left.u\right|_{\partial \Omega}=0\right\}\), where \(L^{2}(\Omega)=\left\{u: \int_{\Omega} u^{2} d \Omega<\infty\right\}\).
- We want what we compute to get close to what we want, so we're concerned about convergence in our universe: we need to know that limits of things that satisfy \(\int_{\Omega}\left(u_{x}{ }^{2}+u_{y}{ }^{2}\right) d \Omega<\infty\) also satisfy it, that is, stay in our universe (completeness). Even if you start with nice continuous differential functions, you are led to some strange ones in your space.
- Think of \(L^{2}(\Omega)=\left\{u: \int_{\Omega} u^{2} d \Omega<\infty\right\}\). If \(u=0\) except at finitely many points (say, \(u(i / n, j / n)=1\) for \(i, j=1,2, \ldots, n\) ), then \(\int_{\Omega} u^{2} d \Omega=0\), so \(u=" 0\) " ! This is true for any finite \(n\), so it's true for a countable infinity of nonzeros!

CU-Boulder


This is what "0" looks like!
\((\nabla u, \nabla v)=(f, v)\)
FE twin towers weak form

\section*{VS.}

Possible because. \(L\) is self-adjoint.
\[
L u \equiv-u_{x x}-u_{y y}=f \quad \text { in } \Omega
\]
\[
\mathrm{u}=0 \quad \text { on } \partial \Omega
\]
-Sobolev spaces:
\(L^{2}(\Omega)=\left\{u: \int_{\Omega} u^{2} d \Omega<\infty\right\}\)
\(H_{0}{ }^{1}(\Omega)=\left\{u: u, u_{x}, u_{y} \varepsilon L^{2}(\Omega),\left.u\right|_{\partial \Omega}=0\right\}\)
\((u, v)=\int_{\Omega} u v d \Omega\)
- \(L\) is self-adjoint positive definite (more later):
\("(L u, v) "=(\nabla u, \nabla v)=\int_{\Omega}\left(u_{x} v_{x}+u_{y} v_{y}\right) d \Omega="(L v, u)^{\prime \prime}\)
" \((L u, u)^{\prime \prime}>0\) if \(u \neq 0: \int_{\Omega}\left(u_{x}^{2}+u_{y}^{2}\right) d \Omega \Rightarrow u=c\), but \(\left.u\right|_{\partial \Omega}=0\).

> We use "(Lu, u)" for simplicity,
but we really mean ( \(\nabla \mathrm{u}, \nabla \mathrm{v}\) ).
CU-Boulder
\((\nabla u, \nabla u) / 2-(f, u)\) functional

Duality: Solving Lu \(=f\) is equivalent to minimizing the weak functional \(F(u)="(L u, u) " / 2-(f, u)\) \(=(\nabla u, \nabla u) / 2-(f, u)\)
- Short story:
\(1^{\text {st }}\) derivative test \(\dagger\)
\[
\nabla F(u)=L u-f=0
\]
\(2^{\text {nd }}\) derivative test \(F^{\prime \prime}(u)=L>0\)
This is formal: Lu is not defined on all of \(\mathrm{H}_{0}{ }^{1}(\Omega)\).

\section*{Long story...}
dropping " " from (L., ) for simplicity
- Using symmetry \& linearity of \(L\) \& bilinearity of the inner product:
\[
\begin{aligned}
F(u+v)= & (L(u+v), u+v) / 2-(f, u+v) \\
= & (L u, u) / 2+(L u, v)+(L v, v) / 2 \\
& -(f, u)-(f, v) \\
= & F(u)+[(L u, v)-(f, v)]+(L v, v) / 2 .
\end{aligned}
\]
- Suppose u minimizes \(F\) but \([(L u, v)-(f, v)]<0\) for some v. (Just flip the sign of \(v\) for the case \([(L u, v)-(f, v)]>0\).) Now replace \(v\) by \(\varepsilon v\) : \(F(u+\varepsilon v)=F(u)+\varepsilon[\{[(L u, v)-(f, v)]+\varepsilon(L v, v) / 2\}]\).
- Small enough \(\varepsilon>0\) means \([(L u, v)-(f, v)]+\varepsilon(L v, v) / 2<0\), which leads us to conclude that \(F(u+\varepsilon v)<F(u)\), a contradiction.
- This contradiction shows that \((L u, v)-(f, v)\) must be 0 for all \(v\). Since this argument can easily be reversed, we thus conclude that
\[
F(u+v) \geq F(u) \quad \forall v \varepsilon H_{0}^{1}(\Omega) \Leftrightarrow(L u, v)=(f, v) \quad \forall v \varepsilon H_{0}^{1}(\Omega) .
\]

\section*{Minimizing F via Rayleigh-Ritz}
\(F(u)=(L u, u) / 2-(f, u)\)
- Discretize by minimizing
\(F\left(u^{h}\right)=\left(L u^{h}, u^{h}\right) / 2-\left(f, u^{h}\right)\) over \(u^{h} \varepsilon H^{h}\).
- Same as Galerkin that solves
\[
\left(L u^{h}, v^{h}\right)=\left(f, v^{h}\right)
\]
- Basis: \(\varepsilon_{(i \mathrm{j})}^{h}\) is the element of \(H^{h}\) that equals 1 @ node ij \& 0 elsewhere.
- Expansion: \(u^{h}(x, y)=\Sigma_{i j} j_{i j}^{h} \varepsilon_{(i j)}^{h}(x, y)\).
- Old problem: What is \(L u^{h} \equiv-u_{x x}^{h}-u_{y y}^{h}\) ???
\[
\left(L u^{h}, v^{h}\right)=\left(\nabla u^{h}, \nabla v^{h}\right)
\]

CU-Boulder

\section*{Abstract FE coarsening}
again with focus on functions
- Coarsening involves a "global" change: \(u^{h} \leftarrow u^{h}+w^{2 h}\) for some coarse-grid function \(w^{2 h}\).

But how do we pick \(w^{2 h}\) ???
- Use FE principle of minimizing \(F\left(u^{h}+w^{2 h}\right)\) over \(w^{2 h}\) :
\[
\begin{aligned}
F\left(u^{h}+w^{2 h}\right) & =\left(L\left(u^{h}+w^{2 h}\right), u^{h}+w^{2 h}\right) / 2-\left(f, u^{h}+w^{2 h}\right) \\
& =F\left(u^{h}\right)+\left(L u^{h}-f, w^{2 h}\right)+\left(L w^{2 h}, w^{2 h}\right) / 2 .
\end{aligned}
\]
- Let \(w^{2 h}\) be the root of the gradient of this quadratic functional w.r.t. \(w^{2 h}\). This is tricky because you need to write the gradient as a function in the subspace \(H^{2 h}\). We go instead from abstract functions to nodal vectors...

\section*{Concrete FE coarsening: \(I_{2 h}^{h}\)}
now with focus on nodal vectors
- Adding nodal representations of \(v^{h} \& v^{2 h}\) :
\[
\begin{array}{rlr}
v^{2 h}(x, y) & =\Sigma_{i j} v^{2 h}{ }_{i j} \varepsilon^{2 h}(x, y) & \text { (sum over } 2 h \text { indices } \\
\leftrightarrow & \\
& =\Sigma_{i j} v_{i j}^{h} \varepsilon^{h}{ }_{(i j)}(x, y) \text { even } h \text { indices) }
\end{array}
\]
- We should be able to do this because \(v^{2 h} \varepsilon H^{2 h} \subset H^{h}\).
- Cell "2i+,2j+":


Bilinear interpolation!

\section*{Concrete FE coarsening (cont'd)}
\(A^{h} u^{h}=f^{h}\)
\(A_{i j}^{h}=\frac{1}{3}\left(\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1\end{array}\right)\)
- Solving this matrix equation is equivalent to minimizing
\(F^{h}\left(v^{h}\right) \equiv\left(A^{h} v^{h}, v^{h}\right) / 2-\left(f^{h}, v^{h}\right)\) (parens here mean Euclidean norm) over \(v^{h} \varepsilon H^{h}\). So how do we now correct \(v^{h}\) ???
- We minimize \(F^{h}\left(v^{h}+I_{2 h}^{h} v^{2 h}\right)\) over \(v^{2 h} \varepsilon H^{2 h}\) :
\[
\begin{aligned}
& F^{h}\left(v^{h}+I_{2 h}^{h} v^{2 h}\right) \\
&=\left(A^{h}\left(v^{h}+I_{2 h}^{h} v^{2 h}\right), v^{h}+I_{2 h}^{h} v^{2 h}\right) / 2-\left(f^{h}, v^{h}+I_{2 h}^{h} v^{2 h}\right) \\
& \text { variational conditions } \\
& f^{2 h}=I_{2 h}^{h^{\top}}\left(f^{h}-A^{h} v^{h}\right) \\
&=F^{h}\left(v^{h}\right)+\underbrace{3}_{A^{2 h}=I_{2 h}^{h^{\top}} A^{h} I_{2 h}^{h}}\left(A^{2 h} v^{2 h}, v^{2 h}\right) / 2-\left(f^{2 h}, v^{2 h}\right) .
\end{aligned}
\]

\section*{Outline}

\section*{Chapters 1-5:}
- \(\sqrt{ }\) Model Problems
- \(\sqrt{ }\) Basic Iterative Methods
- Convergence tests
- Analysis


- \(\sqrt{ }\) Implementation
- Complexity
- Diagnostics
\(\checkmark \sqrt{ }\) Some Theory
- Spectral vs. algebraic

CU-Boulder

Chapters 6-10:
- \(\sqrt{ }\) Nonlinear Problems
- Full approximation scheme
- \(\sqrt{ }\) Selected Applications
- Neumann boundaries problems
- Matrix coarsening
- \(\sqrt{ }\) Multilevel Adaptive Methods
- FAC
- \(\sqrt{ }\) Finite Elements
- Variational methodology

\section*{Multigrid rules!}

We conclude with a few observations:
- We have barely scratched the surface of the myriad ways that multigrid has been, \& can be, employed.
- With diligence \& care, multigrid can be made to handle many types of complications in a robust, efficient manner.
- Further extensions to multigrid methodology are being sought by many people working on many different problems.

\section*{Multigrid/multilevel/multiscale an important methodology}
- Multigrid has proved successful on a wide variety of problems, especially elliptic PDEs, but has also found application in parabolic \& hyperbolic PDEs, integral equations, evolution problems, geodesic problems,
- It can be optimal, often O(\# points).
- It can be robust in a practical sense.
- It is of great interest because it is one of the very few scalable algorithms, \& it can be parallelized readily \& efficiently!
- But multigrid can also be a real pain!!!```

