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APPM 6640
Syllabus

• Coursework
– No exams
– Homework exercises & computing assignments (Lab)
– Team project: identify & pursue a target application

• Philosophy (the course is not just about multigrid!!!)
– Guiding rule: understanding trumps knowledge
– Look for fundamentals & basic principles to guide you
– Solutions are often straightforward consequences
– Think about the scientific method in general
– Understand by concrete examples & experience
– Know the whole picture
– Ask questions & interject comments
– Make sure I explain what you need

• Text
– A Multigrid Tutorial, 2nd edition, 2nd printing
– Supplemental material as needed
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Sources

MGNet  Newsletter & software repository
 http://www.mgnet.org

MathSciNet  Many papers electronically available
 http://www.ams.org/mathscinet

Copper Mountain Conference March 17-22, 2013
 http://grandmaster.colorado.edu/~copper

 

Course web site:
http://grandmaster.colorado.edu/appm6640/

These slides are there.
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We plan to support your attendance there.
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Homework exercises

1:    1, 3, 4

2:   1-3, 8, 10, 13, 16

3:   2-6

4:   6, 7, 11

5:   1-3, 12, 13

6:   1, 2, 6

7:   1, 2, 7, 10, 12, 15, 21

8:   2, 6, 8

9:   1, 3

10:  1, 3, 5, 8, 9

Due one week after the relevant chapter is covered in class.
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Computing Assignments
You will learn about this in the lab &/or from the course website.
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Team project
main objective: understand applied math research

• Group into teams of possible common interest.
• Meet in lab as time permits later in the semester.
• Identify an application area of interest.
• Identify a problem in that area & learn about it.
• Learn current methods & their limitations.
• Get experience with these methods on typical cases.
• Try cases where these methods (begin to) fail.
• Brainstorm a better (multilevel?) method.
• Implement & test your idea.
• Inform the rest of the class along the way.
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Basic Concepts: Local vs. Global processing.

Prolog: Multigrid in Action
The following soldier slides were created by

 Irad Yavneh
Department of Computer Science

Technion – Israel Institute of Technology
irad@cs.technion.ac.il

• Imagine a large number of soldiers who need to 
be arranged in a straight line and at equal 
distances from each other. 

• The two soldiers at the ends of the line are 
fixed. Suppose we number the soldiers 0 to N , 
and that the length of the entire line is L.
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Initial Position
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Final Position
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Global processing. Let soldier number j stand 
on the line connecting soldier 0 to soldier N 
at a distance jL/N from soldier number 0.
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This method solves the problem directly, 
but requires substantial sophistication: 
recognition of the extreme soldiers and 
some pretty fancy arithmetic.
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Local processing (iterative method). Suppose that the initial 
position of inner soldier j  is xj. Then if every j moves all at 
once to the point midway between the initial locations of 
neighboring soldiers, j-1 & j+1, we get

xj  ! (xj-1 + xj+1)/2.

(Assume for simplicity that the soldiers have guides to make 
sure they’re evenly spaced, so they only have to get in a 
straight line. Thus, xj is their signed distance from that line.)

• This is an iterative process. 
• Each step brings us closer to the solution (convergence). 
• The arithmetic is trivial.
• The process is local.
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A step in the right direction
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Slow convergence
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Fast convergence
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Slow convergence
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Local solution: damping
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Local solution: damping
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Local solution: damping
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Local solution: damping
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The multiscale idea: Employ the local processing with 
simple arithmetic. But do this on all the different scales.
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Large scale
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Large scale
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Intermediate scale
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Intermediate scale
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Small scale
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How much work do we save?

Jacobi needs about N 2 iterations & N 2xN = N 3 ops to 
improve accuracy by an order of magnitude.

Brandt solves the problem in only about N operations.

Example: for N = 1000, MG needs about

1,000 operations 

instead of about 

1,000,000,000 operations ! ! !
32
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How important is computational efficiency?

Suppose we have 3 different algorithms for a given problem, 
with different computational complexities for input size N :

 Algorithm 1:      106 N ops

 Algorithm 2:   103 N 2 ops

 Algorithm 3:         N 3 ops

Suppose N is such that algorithm 1 requires one second. 

How long do the others require? 
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Computer 
Speed

(ops/sec)
N Algorithm 1 

O(N )
Algorithm 2

O(N 2)
Algorithm 3

O(N 3)

1M (~106)
(1980’s)

1 1 sec 0.001 sec 0.000001 
sec

1G (~109)
(1990’s)

1K 1 sec 1 sec 1 sec

1T (~1012)
(2000’s)

1M 1 sec 17 min 12 days

1P (~1015)
(2010’s)

1G 1 sec 12 days 31,710 years

Stronger computers ⇒ more gain!
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The catch

In less trivial problems, we can’t construct appropriate 
equations on the large scales without first propagating 
information from the small scales. 

Skill in developing efficient multigrid is needed for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale variables. 

3. Choosing inter-scale transfer operators.  

4. Constructing coarse-scale approximations to fine scales.
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What about two dimensions?

•

•

••

• •

•

••
• •

• •
••

• •

• •
•• •

•• •

Put points midway between horizontal (or vertical) neighbors. 
This is just imposing xi = (xi-1 + xi+1)/2 on each row j or

2xi - xi-1 - xi+1 = 0.

-1 ← 2 → -1

The hitch is that this is not a common physical problem. 
More common is to ask that some physical quantity at each 

point be an average of its FOUR neighbors (Poisson).

-1
↑

-1 ← 4 → -1
↓
-1
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•

•

••

• •

•

••
• •

• •
••

• •

•

-1
↑

-1 ←  4  → -1

↓
-1

-1
↑

? ← 2+? → ?
↓
-1

Poisson
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Poisson: minimal surface
given boundary values, minimize surface area

38
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Physical principle

discrete view
boundary
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height h

1/4 1/4
1/4

1/4

Local relationship

hi j = (hi + 1 j + hi - 1 j + hi j + 1  + hi j - 1)/4 
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1/4 1/4

1/4

1/4
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We can’t expect to be exact
because we have to guess!

?
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Even if you know which points to use,
you have to guess which weights!
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How do you know if this is right?
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A Multigrid Tutorial
2nd Edition, 2nd Printing

By
William L. Briggs

CU-Denver

Van Emden Henson
LLNL

Steve McCormick
CU-Boulder
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Outline
by chapter

1.  Model Problems
2.  Basic Iterative Methods

Convergence tests
Analysis

3.  Elements of Multigrid
Relaxation
Coarsening

4.  Implementation
Complexity
Diagnostics

5.  Some Theory
Spectral vs. algebraic

6.  Nonlinear Problems
Full approximation scheme

7.  Selected Applications
Neumann boundaries
Anisotropic problems
Variable meshes
Variable coefficients 

8.  Algebraic Multigrid (AMG)
Matrix coarsening

9.  Multilevel Adaptive Methods
FAC

10. Finite Elements
Variational methodology
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Suggested reading
CHECK THE MG LIBRARY & MGNET REPOSITORY

• A. Brandt, “Multi-level Adaptive Solutions to Boundary Value Problems,” 
Math Comp., 31, 1977, pp 333-390.

• A. Brandt,  “Multigrid techniques: 1984 guide with applications to 
computational fluid dynamics,” GMD, 1984.

• W. Hackbusch & U. Trottenberg, “Multigrid Methods”, Springer-Verlag, 
1982.

• S. McCormick, ed., “Multigrid Methods,” SIAM Frontiers in Applied 
Math. III, 1987.

• U. Trottenberg, C. Oosterlee, & A. Schüller, “Multigrid,” Academic 
Press, 2000.

• P. Wesseling, “An Introduction to Multigrid Methods,” Wylie, 1992.
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Multilevel methods have been 
developed for...

• PDEs, CFD, porous media, elasticity, electromagnetics.
• Purely algebraic problems, with no physical grid; for example, 

network & geodetic survey problems.
• Image reconstruction & tomography.
• Optimization (e.g., the traveling salesman & long 

transportation problems).
• Statistical mechanics, Ising spin models.
• Quantum chromodynamics.
• Quadrature & generalized FFTs.
• Integral equations.
•   
•  
•  
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Everyone uses multilevel methods
• Multigrid, multilevel, multiscale, multiphysics, …
 Use local “governing rules” at the finest resolution 

to resolve details of the state of the system, but 
use coarser resolution to resolve larger scales. 
Continual feedback is essential because improving 
one scale impacts other scales.

• Common uses
 Sight, art, team sports, politics, society, thinking, 

scientific research,  …
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1. Model problems
• 1-D boundary value problem:

• Grid:

• Let vi ≈ u(xi) & fi ≈ f(xi) for i = 0,1,…,n .

≥σ,<<)(=)(σ+)($− xxfxuxu 010
uu =)(=)( 010

This discretizes the variables, but what about the equations?

h = 1
n
,

� 

xi = ih,  i = 0,1,…,n

xn
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Approximate u ’’(x) via Taylor series

• Approximate 2nd derivative using Taylor series:
0 0

• Summing & solving:

+

O(h2) means a quantity bounded in norm by Ch2 for some constant C. 
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Approximate equation via 
finite differences

Approximate the BVP

    by a finite difference scheme:

vv0 == n 0

=σ+
−+−

fv
h

vvv
ii

iii +−

2
11 2

i = 1,  2,…, n-1

56

≥σ,<<)(=)(σ+)($− xxfxuxu 010
uu =)(=)( 010

 = −

vi+1 − vi
h

− vi − vi−1
h

h
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Discrete model problem

 Letting  v = (v1, v2, … , vn-1)T  &  f = (f1, f2, … , fn-1)T, 

    we obtain the matrix equation  

Av = f,  

where A is (n-1)x(n-1), symmetric, positive definite, 
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Stencil notation

A = [-1 2 -1]
dropping h-2 & σ for convenience

    

 

2

-1-1
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Basic solution methods
• Direct

– Gaussian elimination
– Factorization
– Fast Poisson solvers (FFT-based, reduction-based, …)

• Iterative
– Richardson, Jacobi, Gauss-Seidel, … 
– Steepest Descent, Conjugate Gradients, …
– Incomplete Factorization, ...

• Notes: 
– This simple 1-D problem can be solved efficiently in many ways. 

Pretend it can’t & that it’s very hard, because it shares many 
characteristics with some very hard problems. If we keep things 
as simple as possible by studying this model, we’ve got a chance 
to really understand what’s going on. 

– But, to keep our feet on the ground, let’s go to 2-D anyway…
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2-D model problem 

• Consider the problem 

• Consider the grid

0 ≤≤ li
0 ≤≤ mj

<<,<<,),(=σ+−− yxyxfuuu yyxx 1010

hx =
1
l
, hy =

1
m
,

u = 0 when x = 0, x = 1, y = 0, or y = 1              σ ≥ 0   
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Discretizing the 2-D problem
• Let vij ≈ u(xi, yj) & fij ≈ f(xi, yj) . Again, using 2nd- order 

finite differences to approximate uxx & uyy, we arrive 

at the approximate equation for the unknown u(xi, yj), 

for i =1,2,…,l-1 & j =1,2, …,m-1 :

• Order the unknowns (& also the vector f )  
lexicographically by y-lines:

=σ+
−+−

+
−+−

fv
h

vvv

h

vvv
jiji

y

jijiji

x

jijiji +,−,,+,−

2
11

2
11 22

vi, j = 0 : i = 0, i = l, j = 0,   or  j = m

 v = (v1,1,v1,2 ,…,v1,m−1,v2,1,v2,2 ,…,v2,m−1,…,vl−1,1,vl−1,2 ,…,vl−1,m−1)
T
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Resulting linear system
We obtain a block-tridiagonal system Av = f :

    where Ix  is the hx times the identity matrix &
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Stencils
preferred for grid issues

Stencils are much better for showing the grid picture:

• • •
• • •
• • •

Stencils show local relationships--grid point interactions.

-1

-1

-1-1 4
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dropping the mesh sizes & σ
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Inhomogeneous boundary conditions
superposition

• Consider a boundary-value problem on domain Ω with nonzero data, g, 
on the boundary, ∂Ω :

• Find a suitable w satisfying the boundary condition:

• Now just find z to correct w so that w + z = u, that is, z = u - w:

• Message: Don’t look for u. Instead, look for w so that Mw = g on ∂Ω & 
then look for z = u - w such that Lz = f-Lw on Ω  & Mz = 0 on ∂Ω.

• In the discrete Dirichlet case, set w 
h to g 

h on ∂Ω and 0 inside Ω. 

• So we consider only the homogeneous case from now on.

Lu = f    on Ω,     Mu = g   on ∂Ω.

Mw = g   on ∂Ω.

 Lz = f − Lw ≡ f    on Ω,     Mz = g −Mw = 0   on ∂Ω.

Dirichlet: M = I
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Outline

• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

Chapters 1-5:                                Chapters 6-10:

Homework Due !
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• Consider the matrix equation Au = f        
  & let v be an approximation to u.

• Two important measures:

      The Error:   e = u - v with norms  

         ||e||∞ = max |ei|  &   ||e||2 = (Σ ei
2)1/2.

      The Residual:  r = f - Av with 

            ||r||∞    &     ||r||2.

What does
||r|| measure???
Why have both

r & e ???

2. Basic iterative methods
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Residual correction
• Note:   e = u - v ⇒ Ae = A(u - v) = f - Av = r.

• Residual Equation:  
      Ae = r.

 What does this do for us?

• Residual Correction:
  u = v + e.

67

Solve Au = f with guess v 
or Ae = r with guess 0. 
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Relaxation

• Consider the 1-D model problem

==≤=−+− uun-1ifhuuu niiii +− 0
2

11 012 ≤

n-1ifhvvv i
dlo

i
dlo

i
wen

i
)(

+
)(

−
)( )++(= 12

1 2
11 ≤≤

68

• Jacobi (simultaneous displacement):  Solve the i 
th 

       equation for vi holding all other variables fixed:
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Jacobi in matrix form
• Let   A = D - L - U,  where D is diagonal &  -L & -U
    are the strictly lower & upper triangular parts of A.
• Then Au = f  becomes

• Let                            . 
         “Error propagation or iteration matrix”.

• Then the iteration is

RJ = D-1(D-A) = I-D-1A 
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Error propagation matrix & the error
From the derivation,

the iteration is

subtracting, 

or 

hence,
Error propagation! RJ = I-D-1A 

70

e(new) = RJe
(old )
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A picture
1D Poisson

RJ = D-1 (L + U) = [     0     ]

so Jacobi is an error averaging process:     
    

ei
(new)  ←  (ei-1

(old) + ei+1
(old))/2

1
2

1
2
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But…
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Another matrix look at Jacobi
   v (new) ← D-1 (L + U) v (old) + D-1 f     (L + U = D-A)
    = (I - D-1A) v (old) + D-1 f
    v (new) = v (old) - D-1 (Av (old) - f) = v (old) + D-1 r 

• Exact:    u     = u       - D-1 (Au      - f) 
• Subtracting:   e (new) = e (old)

 - D-1 Ae (old)

• Exact:    u = u  - A-1 (Au - f) = A-1f
• General form:   u = u  -  B   (Au - f)  with B ~ A-1

• Damped Jacobi:   u = u  - ωD-1 (Au - f)  with 0 < ω <2/ρ(D-1A)

• Gauss-Seidel:   u = u  - (D - L)-1 (Au - f)

Note that Rω = I - ωD-1A is a polynomial in A when D = I. 
We exploit this simplicity (symmetry, etc.) in what follows.

!!!This special property doesn’t usually hold in practice!!!
73

= (I-D-1A)e (old) 
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Weighted Jacobi
safer changes: 0 < ω <2/ρ(D-1A)≈1

• Consider the iteration

• Letting A = D-L-U,  the matrix form is

                                                             
• Note that

• It is easy to see that if e(approx) = u - v(approx), then

74
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Gauss-Seidel (1-D)
• Solve equation i for ui & update immediately.
• Equivalently: set each component of r to zero in turn.
• Component form: for i = 1, 2, …, n-1, set

• Matrix form:

• Let 
• Then iterate:

• Error propagation:

RG = (D-L)-1(D-L-A) = I- (D-L)-1A

75
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Red-black Gauss-Seidel
• Update the EVEN points:

• Update the ODD points:

• 2-D:

xnx0

76
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Test?

Au = f
Need to know how we’re doing!!!

• What f ?

• What v ?

Au = 0

v = rand
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Numerical experiments
• Solve                ,
• Use Fourier modes as initial iterates, with n = 64:

 component    mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1
-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

vk = sin(kπxi),    xi =i/n,    1≤i≤n-1,    1≤k≤n-1
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Convergence factors differ for 
different error components

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error,  ||e||∞ , in weighted (ω = 2/3) Jacobi on Au = 0
using initial guesses v1, v3, & v6 & n = 64:

79# iterations
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0 10 20 30 40 50 60 70 80 90 1000
0.1
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0.8
0.9
1

Stalling convergence
relaxation shoots itself in the foot

• Weighted (ω = 2/3) Jacobi on 1-D problem & n = 64. 
• Initial guess:

• Error,  ||e||∞, plotted against iteration number:
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Analysis of stationary linear iteration
• The iteration is                        v (new) = Rv (old) + g. 
• Exact solution doesn’t change:       u = Ru       + g.
• Subtracting:                             e (new) = Re (old).

• Let e (0) be the initial error & e (i) be the error 
after the i th iteration. After n iterations, we have     

e (m) = Re(m-1) = R2e(m-2) = ... = Rme(0). 

   We can deal with 24, but                ???

� 

a b c
d e f
g h i

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

4

� 

a b c
d e f
g h i

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

4

What if          e = 24 e ??? 
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• The real number λ is an eigenvalue of matrix B & w ≠0 is 
its associated eigenvector if Bw = λw. 

• The eigenvalues & eigenvectors are characteristics of a 
given matrix.

• Eigenvectors are linearly independent, & if there is a 
complete set of N distinct eigenvectors for an NxN 
matrix, then they form a basis: for any v, there exist 
unique scalars vk such that

• Propagation: Why is an
eigenvector
useful???

Bold for vectors
here temporarily

 ↓

Review of eigenvectors & eigenvalues

82

v = Σ vkwk.
k=1

N

Bm v = Σ λm vkwk.
k=1

N
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“Fundamental Theorem of Iteration”
R is convergent (Rm → 0 as m → ∞)  iff
    ρ(R) = max |λ| < 1.

Thus, v(m) = Rm v(0) → 0 for any initial vector v(0) 
iff  ρ(R) < 1.

ρ(R)<1 assures convergence of R iteration.
ρ(R) is the spectral convergence factor.

But ρ doesn’t tell you much by itself--it’s
generally valid only asymptotically. It’s useful 
for the symmetric case in particular because
it’s equal to || R ||2, so we’ll use it here.

83 CU-Boulder of 396

Rayleigh quotient vs. spectral radius 
 assume A is symmetric (wk orthonormal ) & nonnegative definite (λ ≥ 0)

• RQ(v) ≤ ρ(A):  v = Σvkwk

 RQ(v)

• supv ≠ 0 RQ(v) = ρ(A):

RQ(wN ) = < AwN ,wN >
< wN ,wN >

= <λN wN ,wN >
<wN , wN >

= λN = ρ(A)

=
<Av,v>
<v,v> =

< AΣvk wk ,Σvk wk >
< Σ vk wk ,Σ vk wk >

= <Σλkvk wk ,Σvk wk >
<Σvk wk ,Σvk wk >

= Σλk vk
2

Σvk
2

≤ λN = ρ(A)≥ λ1

84



CU-Boulder of 396

Euclidean norm vs. spectral radius 
use RQ

• ||R||2  = ρ1/2(RTR):

||R||2
2 = supe≠0 ||Re||2

2
 /||e||2

2

   = supe≠0 <Re,Re >/<e,e>
   = supe≠0 <RTRe,e >/<e,e> = ρ(RTR)
     note:    ||Re||2 ≤ ||R||2·||e||2

• ||A||2  = ρ1/2(A2) = ρ(A) for symmetric A!!!
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ρ(R)  vs. ||R||2

ρ(R) = sup |λ(R)|.

Norm independent.

Asymptotic:
    ρ(R) < 1 << ||R||2 
     means that it will  
    converge someday.

||R||2=supe≠0 ||Re||2 /||e||2

= ρ1/2(RTR).
     
Depends on ||· ||2.

||e(m+1)||2  ≤ ||R||2 ||e(m)||2:         
worst case!  Probably 
pessimistic initially, but 
sharp sooner or later.

ρ(R) = inf ||R||
over all norms.

ρ(R) = ||R||2
for symmetric R.

86

Definition?

Norm?

Error bound?
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Example: R =       , K >> 0 large

ρ(R) = 0 but ||R||2 = ρ1/2(RTR) = ρ1/2         = K !

Thus, 1 iteration with e(0) shows dramatic L2 divergence!
But R2 = 0, so e(2) = Re(1) = R2e(0) = 0!

Thus, 2 iterations with e(0) show complete convergence!
On one hand, this is special (λ=0, large K, 2x2), so this
 behavior would be more subtle & persistent in general.

On the other, this behavior would vanish for symmetric R.
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Convergence factor & rate
• How many iterations are enough to guarantee reduction of 
  the initial error by 10-d ?

• So, including the asymptotic estimate, we have

• Convergence factor = ||R|| or ρ(R) error reduction/iterate. 

• Convergence rate = -log10(||R||) or -log10(ρ(R)) digits/iterate.

e(m )

e(0)
≤ Rm ≤ R m ~ 10−d.

m ~ d
− log10 R

 or d
− log10 ρ(R)

.

88
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Convergence analysis: Weighted Jacobi

For our 1-D model, the eigenvectors of weighted 
Jacobi Rω & the eigenvectors of A are the same! Why???

1-D

λ(Rω ) = 1−
ω
2
λ(A)

Special!!!

Remember that A is without h2 here! 89

R� = I � �

2

�

������

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2

�

������
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Eigenpairs of (scaled) A 
The eigenvectors of A are (discrete) Fourier modes! 

[-1 2 -1]
    λn-1 ≅ 4

        λ1 ≅ π2h2
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n = 64

k = 1 k = 3

k = 8 k = 16 k = 32
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�k(A) = 4sin2

�
k⇥

2n

�
, wk,i = sin

�
ik⇥

n

�
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Eigenvectors of Rω = eigenvectors of A

• Expand the initial error in terms of the eigenvectors:

• The kth error mode is reduced by λk (Rω) each iteration.

e(0) = ckwk
k=1

n

∑
• After m iterations:

Rme(0) = ckλk
mwk

k=1

n

∑
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�k(R�) = 1� 2⇤sin2

�
k⇥

2n

�

drop bold 
for vectors←
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Relaxation suppresses eigenmodes unevenly

Look carefully at                               .

Note that if  0 < ω  ≤ 1, 
then                      for
      .
For 0 < ω  ≤ 1,

 k = 1,2,…,n −1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
k axis

λ
axis

n

n
2
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�h

2
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-1
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1

0
k axis

λ
axis

n

n
2

Low frequencies are “undamped”
 Notice that no value of ω will efficiently damp out 

long waves or low frequencies. 

What value of ω gives 
the best damping of 
short waves or high 
frequencies n/2 ≤ k ≤ n-1? 

For 2D: ω ≈
4
5

⇒ω ≈
2
3

λN /2 (Rω ) = −λN (Rω )
Choose ω such that                
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Smoothing factor

• The smoothing factor is the largest magnitude of 
the iteration matrix eigenvalues corresponding to 
the oscillatory Fourier modes:

     smoothing factor = max |λk(R)|    for n/2 ≤ k ≤ n-1.

• Why only the upper spectrum?

• For Rω with ω = 2/3, the smoothing factor is 1/3:

        |λn/2|=|λn-1|=1/3  &  |λk|<1/3  for n/2 < k < n-1. 

• But  |λk| ≈ 1 - ωk2π2h2  for long waves (k << n/2).   

“MG” spectral radius?
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Convergence of Jacobi on Au = 0

• Jacobi on Au = 0 with n = 64.  Number of iterations 
needed to reduce initial error ||e||∞ by 0.01.

• Initial guess :

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Wavenumber, k Wavenumber, k

Unweighted Jacobi Weighted Jacobi
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Weighted Jacobi = smoother (error)
• Initial error:

• Error after 35 iteration sweeps:

Many relaxation schemes 
are smoothers: 

oscillatory error modes 
are quickly eliminated, but 

smooth modes are    
slowly damped.
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Similar analysis for other smoothers
• Gauss-Seidel relaxation applied to the 3-point 

difference matrix A (1-D model problem):
RG = (D - L)-1 U.

• A little algebra & trigonometry shows that                                    

What’s wk look like for large k ?
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sin(3π xi )

λ3 sin(3πxi )
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Gauss-Seidel eigenvectors

These are VERY different from Jacobi’s eigenvectors.
It’s not clear how smoothness depends on k.

You cannot expect G-S to quickly reduce Fourier modes.
You can only hope that G-S produces smooth results!

98
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Gauss-Seidel convergence

 Eigenvectors of RG are not the same as those of A!!!  
Gauss-Seidel mixes the modes of A.  

0 10 20 30 40 50 60
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50
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70
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90

100
Gauss-Seidel on Au = 0, with   
n = 64.  Number of iterations 
needed to reduce initial error 
||e||∞ by 0.01.

Initial guess (modes of A):

Wavenumber, k

So G-S does reduce oscillatory Fourier modes.
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√
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Homework Due !

Chapters 1-5:                                Chapters 6-10:
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• Many relaxation schemes have the smoothing 
property:  oscillatory error modes are quickly 
eliminated, while smooth modes are often very 
slow to disappear.

• We’ll turn this adversity around:  the idea is to 
use coarse grids to take advantage of smoothing. 

3. Elements of multigrid

How?

1st observation toward multigrid

xn /2

xn
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Reason #1 for coarse grids:  
Nested iteration

• Coarse grids can be used to compute an improved 
initial guess for the fine-grid relaxation.  This is 
advantageous because:

– Relaxation on the coarse-grid is much cheaper: half as 
many points in 1-D, one-fourth in 2-D, one-eighth in 3-D,…

– Relaxation on the coarse grid has a marginally faster 
convergence factor (|λ1(R)| ≈ 1 - ωπ2h2 ):

                           
1 - O(4h2)    instead of   1 - O(h2) .

122
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Idea!  Nested iteration

• Relax on Au = f on Ω4h to obtain initial guess v2h.
• Relax on Au = f on Ω2h to obtain initial guess vh.
• Relax on Au = f on Ωh to obtain … final solution???

•
••

•  What if the error still has large smooth components
   when we get to the fine grid Ωh ?

•  What is A2hu2h = f2h?
Analogous to Ahuh = fh for now.

•  How do we migrate between grids?
Hang on…

Hang on…
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Reason #2 for coarse grids:
• A smooth function:

 can be represented by linear 
interpolation from a coarser grid:

On the coarse grid, 
smooth error appears to
be relatively higher in 

frequency: in this example,
it’s the 4-mode out of

a possible 15 on the fine
grid, ~1/4 the way up the
spectrum. On the coarse 
grid, it’s the 4-mode out
of a possible 7, ~1/2 the

way up the spectrum.

Relaxation on 2h is
cheaper & faster 

on this mode!!!
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For k < n/2, the k 
th mode is 

preserved on the coarse grid.

What happens 
to the modes

k > n/2? 
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Also, note that

on the coarse grid.
k = 4 mode, n = 12 grid

k = 4 mode, n = 6 grid

wh
k,2i = sin

�
2ik�

n

�
= sin

�
ik�

n/2

�
= w2h

k,i

How many grid h modes
could possibly exist on grid 2h?
How do Fourier modes on grid h

relate to those on grid 2h?
Do they preserve their shape

when you sample at grid 2h points?
We need to relate grids h & 2h. Let’s see 

how their Fourier modes relate...
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For k > n/2,  wk
h is disguised on 

the coarse grid: aliasing!!!
For k > n/2, the kth mode on  

the fine grid is aliased & 
appears as the (n - k)th mode 
on the coarse grid: 
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k = 9 mode, n = 12 grid

k = 3 mode, n = 6 grid
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1-D interpolation (prolongation)
• Values at points on the coarse grid map unchanged 

to the fine grid.
• Values at fine-grid points NOT on the coarse grid 

are the averages of their coarse-grid neighbors.
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Now let’s relate grid 2h to grid h.More precisely, let’s relate 
grid 2h functions to grid h functions...

We will often identify Ω2h with a subset of Ωh.
CU-Boulder of 396

1-D interpolation (prolongation)
to migrate from coarse to fine grids

• Mapping from the coarse grid to the fine grid:

    
• Let     ,        be defined on      ,       .  Then

where

for                  .

0 ≤ i ≤ n
2

for   (including boundaries),

0 ≤ i ≤ n
2
−1

128

  (Ωh = ℜn-1)
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1-D prolongation operator P

• P =       is a linear operator:   ℜn/2-1 ℜn-1.

• n = 8: 

•        has full rank, so η(P ) = {0} .

When is       v2h = 0? 

rank = max # linearly 
independent cols or rows

129

�

���������

1
2
1
1
2

1
2
1
1
2

1
2
1
1
2

�

���������

7x3

�

�
v2h
1

v2h
2

v2h
3

�

�

3x1

=

�

���������

vh
1

vh
2

vh
3

vh
4

vh
5

vh
6

vh
7

�

���������

7x1

●   o   x   o   x   o   x   o   ●

●   o   x   o   x   o   x   o   ●

CU-Boulder of 396

“Scatter” stencil for P

] 1/2     1     1/2 [

o      x      o      x      o      x      o1/2   1   1/2
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How well could v2h approximate u?

• Imagine that a coarse-grid approximation v2h has 
been found.  How well could it approximate the 
exact solution u ?  

• If u is smooth, a coarse-grid interpolant v2h might 
do very well.

CU-Boulder of 396132

How well could v2h approximate u?

• Imagine that a coarse-grid approximation v2h has 
been found.  How well could it approximate the 
exact solution u ?  

• If u is oscillatory, a coarse-grid interpolant v2h 
cannot work well.
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Where do we stand?

smooth 
components

oscillatory 
components

relaxation

nested
iteration
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The Key Step to Multigrid
• If what we want to compute is smooth, a 

coarse-grid interpolant could do very well.
• If what we want to compute is oscillatory, a 

coarse-grid interpolant cannot do very well.
• What if u is not smooth? Can we make it so?
• Can we make something smooth?

• Can we smooth e? Can we get e & use it to get u ? 
Ae = r  &  u ← v + e ! 

• Just because the coarse grid can approximate e well 
doesn’t mean we know how to do it! But we will soon!

• So, use nested iteration on the residual equation 
to approximate the error after smoothing!!!

→error←
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2nd observation toward multigrid
• The residual equation:  Let v be an approximation to 

the solution of Au = f, where the residual r = f -Av.  
Then the error e = u - v satisfies Ae = r.

• After relaxing on Au = f on the fine grid, e will be 
smooth, so the coarse grid can approximate e well. 
This will be cheaper & e should be more oscillatory 
there, so relaxation will be more effective.

• Therefore, we go to a coarse grid & relax on the 
residual equation Ae = r.

e = 0 !What’s a good initial guess on grid 2h?

How do we get to grid 2h? Stay tuned…
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Idea!  Coarse-grid correction
2-grid

• Relax on Au = f  on Ωh to get an approximation vh.

• Compute r = f - Avh.

• Transfer Ae = r to Ω2h somehow & relax on it to obtain 

an approximation to the error, e2h.

• Correct the approximation vh ← vh + I2h e2h. 

This is the essence of multigrid.

  We need a way to transfer Ae = r to Ω2h. 

h
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• Assume we’ve relaxed so much that e is smooth.
• Ansatz:    e = Pv2h     for some coarse-grid v2h.
• How do we characterize e so we can hope to compute it? 

Ae = r       ⇒     A  P  v2h = r
                                  7x7  7x3  3x1    =  7x1

• Too many equations now & too few unknowns!
• How about just eliminating every other equation?
• How about multiplying both sides by some 3x7 matrix?

PT

      PT  A   P   v2h  = P Tr
      3x7  7x7 7x3  3x1      =   3x1

)) A2h

3x3

A way to coarsen Ae = r
Galerkin
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P when grids
understood,

  else Ih .2h

We might write
R instead of

PT or maybe I2h.h
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• Mapping from the fine grid to the coarse grid:

    
• Let vh, v2h be defined on     ,      .  Then

    where v2h = vh .

1-D restriction by injection

138

R = I
h
2h :Ωh →Ω2h .

Rv h = I
h
2hv h =v 2h,

2ii

R is not PT here!!!
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1-D restriction by full weighting

• Let vh, v2h be defined on      ,       .  Then

    where
                      

139

Rv h = I
h
2hv h =v 2h,

v
i
2h = 1

4
(v

2i−1
h +2v

2i
h +v

2i+1
h ).

R is cPT here!!!
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1-D restriction (full-weighting)
• R =       is a linear operator:  ℜn-1       ℜn/2-1.

Don’t confuse R here with error propagator notation.

• n = 8: 

                                                          

                                                                              .

•         has rank        because dim(Range(R))          .      

Look at the columns of R associated with grid 2h.

n
2
−1 =

n
2
−1

�

�
1
4

1
2

1
4
1
4

1
2

1
4
1
4

1
2

1
4

�

�

3x7

�

���������

vh
1

vh
2

vh
3

vh
4

vh
5

vh
6

vh
7

�

���������

7x1

=

�

�
v2h
1

v2h
2

v2h
3

�

�

3x1
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Prolongation & restriction are 
often nicely related

• For the 1-D examples, linear interpolation & full 
weighting are

• So they’re related by the variational condition
                      
                                                       ,    c in ℜ.
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Ih
2h =

1
2

�

���������

1
2
1 1

2
1 1

2
1

�

���������

, I2h
h =

1
4

�

�
1 2 1

1 2 1
1 2 1

�

�

P = cRT
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2-D prolongation 

We denote the operator by 
using a “scatter” stencil  ]  [.  
Centered over a C-point    , it 
shows what fraction of the 
C-point’s value contributes 
to a neighboring F-point     .

142
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“Gather” interpolation stencil

1/2       1/2

1/4       1/4

1/4       1/4

[1/2       1/2]

1/4       1/4

1/4       1/4

Centered over a fine-grid point    .
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2-D restriction (full weighting) 

We denote the operator by 
using a “gather” stencil [  ].  

Centered over a C-point     , it 
shows what fraction of the 

value of the neighboring       
F-point     contributes to the 

value at the C-point.
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Now we put all these ideas together

• Nested Iteration (Relaxation on Coarse Grids)
– effective on smooth solution (components).

• Relaxation on Fine Grid
– effective on oscillatory error (components).

• Residual Equation on Fine Grid
– characterizes the error.
– enables nested iteration for smooth error (components)!!!

• Prolongation (variables) & Restriction (equations)
– provides pathways between coarse & fine grids.
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2-grid coarse-grid correction

1) Relax α1 times on Ahvh = fh on Ωh with arbitrary 

initial guess vh.  If h = hcoarsest , then go to 6.

2) Compute rh = fh - Ahvh. 
3) Compute r2h = Ih

  rh.

4) “Solve” A2he2h = r2h on Ω2h.     
5) Correct fine-grid solution vh ← vh + I2he2h.

6) Relax α2 times on Ahvh = fh on Ωh.

h

What does e2h  represent here? 

A2h = Ih  Ah I2h = RAP
(Galerkin)

or direct discretization

2h h

146

2h

fvGCv hhh ),(←
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2-grid coarse-grid correction

Relax on fvA h hh =
vAfr   h  h h h −=Compute

Restrict

Solve

Correct

eIê hh
h

h = 2
2

êvv hhh +←
Relax on fvA h hh =

147

Interpolate
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How do we “solve” 
 A2he2h = r2h? 

fvGv hhh ),(←
α1

fvGv 222 hhh ),(← α1

0v 44 hh ←

fvGv 888 hhh ),(← α1

vAfIf 22 hhhh
h

h
)−(←

vAfIf 2224
2

4 hhhh
h

h ←

vAfIf 4448
4

8 hhhh
h

h

)

−(←

fA HH)( −1vH

� 

vh ← Gα2 (vh, f h )

� 

v 2h ← Gα2 (v 2h, f 2h )

v4h ←Gα2 (v4h , f 4h )

v8h ←Gα2 (v8h , f 8h )

0v 22h ← h

fvGv 444 hhh ),(←
α1

0v 88 hh ← ,
v8h ← v8h + I16h

8h v16h

v4h ← v4h + I8h
4hv8h

v2h ← v2h + I4h
2hv4h

vh ← vh + I2h
h v2h

=

H/2 vAfIf )−(←H H/2 H/2 H/2H

( −

)

Recursion !

Need to reuse notation!
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V-cycle (recursive form)

1) Relax     times on                   with initial      given.

2) If       is the coarsest grid, go to 4;
  else:

3) Correct:          .

4) Relax     times on                     with initial guess     .

vAfIf 2 hhh2h
h

h )−(←
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←

←

←

fvVMv hhh ),(← h
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√
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Homework Due !

Chapters 1-5:                                Chapters 6-10:

CU-Boulder of 396

Storage cost: vh & fh on each level.
Estimates are approximate (n, d, …).

•  In 1-D, a coarse grid has about half as many 
    points as the fine grid.

• In 2-D, a coarse grid has about one-fourth 
    as many points as the fine grid.

• In d-dimensions, a coarse grid has about 2-d         
    as many points as the fine grid.

2122221 nn d
ddmdddd

−
<)+...++++( −

−−−− 32

4. Implementation

• Total storage cost:
     less than  2,   4/3, & 8/7 the cost of storage on the fine 

     grid for  1-D, 2-D, & 3-D problems, respectively.
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Computational cost
• Let one Work Unit (WU) be the cost of one 

relaxation sweep on the fine grid.
• Ignore the cost of restriction & interpolation 

(typically about 20% of the total cost).
• Consider a V-cycle with 2 pre-coarse-grid correction 

sweep (α1 = 2) &  1 post-coarse-grid correction 
sweep (α2 = 1) . 

• Cost of a V-cycle (in WUs):

• Cost is about 2, 4/3, & 8/7  X 3 WUs per V-cycle 
   in   1,   2,   &   3   dimensions, respectively. 

21
3222213
−

<)+...++++(
−

−−−−
d

dmddd 32
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Convergence analysis
• First, a heuristic argument:

– The convergence factor for the oscillatory error modes 
(smoothing factor) is small & bounded uniformly in h.

      smoothing factor = max |λk(R)|    for n/2≤k≤n-1.

– Multigrid focuses the relaxation process on attenuating the 
oscillatory components on each level.

⇒   The overall multigrid convergence factor is 
small & bounded uniformly in h !

smooth
k = 1

oscillatory
k = n - 1k = n/2

Relax on fine gridRelax 1st coarse grid

Bounded uniformly in h ≠ independent of h.
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Revisiting the model problem

• The BVP:

• The finite difference scheme:

• Truncation error:

=
−+− f

h2

uhuhuh

i
iii +− 11 2

uhuh
0 == n 0

i = 1,2,…,n-1

,<<)(=)($− xxfxu 10
uu =)(=)( 010

=
−+−

f
h2

u(h)u(h)u(h)

i
iii +− 11 2

i = 1,2,…,n-1+  O(h2)

u(h) = (u(xi)) = exact PDE solution vector

154

Reminder: Approximate u ’’(x) via Taylor series

• Approximate 2nd derivative using Taylor series:
0 0

• Summing & solving:

+

O(h2) means a quantity bounded in norm by Ch2 for some constant C. 

earlier
page 55
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Actual error
 A has h-2 in it here

← consistency

↑
stability

← convergence

Au(h) + O(h2) = f   ⇒  Au(h)           = f + O(h2) 

     ⇒  Auh             = f      (uh = discrete sol’n)

     ⇒  A(u(h) - uh)    = O(h2) 

     ⇒  AE              = O(h2). 

        (E = discretization error)

So  ||E|| = ||A-1 O(h2)||
            ≤ ||A-1||·||O(h2)||
            = λ max(A-1)·O(h2) = O(h2)/λ min(A) ~ O(h2)/π2

or
     ||E|| = O(h2).  
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Overall goal of computation

• Continuous problem:     Au = f,   u i = u(x i)
• Discrete problem: Ahuh = fh,   vh ≈ uh 

• Global/discretization error:  Ei  = u(xi) - ui
h

       ||E || ≤ Khp     
           (p = 2 for model problem & proper norm) 

• Algebraic error:  ei
h =  ui

h  - vi
h

• For tolerance ε, assume the aim is to find  vh so that the 
total error, ||e || = ||u(h) - vh || ≤ ε ,  where u(h) = (u (x i)).

• Then this objective is assured as follows:    
||e || ≤ ||u(h) - uh|| + ||uh - vh|| = ||E|| + ||eh|| ≤ ε. 
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1) ||E|| ≤ ε/2.  Achieve this condition by choosing an 
appropriately small grid spacing  h: 

Khp = ε/2.
2) ||eh|| ≤ ε/2.   Achieve this condition by iterating until 
     ||eh|| ≤ ε/2  = Khp on grid h;   then we’ve 

Once discretization error & algebraic error
are in balance, then it would be better to         

go to grid h/2 than to iterate more!

→
converged to the level of discretization error.

157

We can satisfy the convergence 
objective by imposing two conditions
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Convergence to the level 
of discretization error

• Use an MV scheme with convergence factor γ < 1 bounded 
uniformly in h (fixed α1 & α2).

• Assume a d-dimensional problem on an nd grid with h = 1/n. 

• Initial relative error: ||eh ||/||uh || = ||uh - 0||/||uh || = 1.

• Must reduce this to ||eh ||/||uh || = O(hp) = O(n-p).

• We can determine the number of V-cycles needed for this 
if we can bound the convergence factor, γ.

158
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Work to converge to the level 
of discretization error

• Using θ V-cycles with convergence factor γ gives an 

overall convergence factor of γθ.

• We therefore have γθ = O(n-p), or  θ = O(log n ).

• Since 1 V-cycle costs O(1) WUs & 1 WUs is  O(nd ), then 

converging to the level of discretization error using the 

MV method cost

     O(nd log n ).

• Compares to fast direct methods (fast Poisson solvers). 

But multigrid can do even better…
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Numerical example
• Consider the 2-D model problem (with σ = 0):

- uxx - uyy = 2[(1 - 6x2)y2(1 - y2)+(1 - 6y2)x2(1 - x2)]

    in the unit square, with u = 0 Dirichlet boundary.

• The solution to this problem is

                    u (x,y) = - (x4 - x2)(y4 - y2).

• We examine effectiveness of MV cycling to solve 

this problem on (n+1)x(n+1) grids [(n-1)x (n-1) 

interior points] for n = 16, 32, 64, 128. 

160
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•  We need a norm that is somehow consistent across grid levels.

•  How about one that measures 1h & 12h at about the same size?

||1h||2 = sum of 1 over about n2 grid points

•  So a good definition is  

||1h||h ≡ h ||1h||2 ≈ 1

    or generally

||rh||h = h ||rh||2 .

2

A word about norms
Numerical results

 MV cycling
Shown are the results of 
15 V(2,1)-cycles.  We 
display, after each cycle, 
residual norms, total 
error norms, & ratios of 
these norms to their 
values after the previous 
cycle.
   n = 16, 32, 64, 128.

||rh||h = h ||rh||2

scaled residual error 
||e ||h = h ||u(h) - vh||2
scaled discrete total error
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A warning about bounds

• Bounds like ||en + 1|| ≤ γ ||en || & ||u(h) - uh|| = O(h) 
are only just that--bounds!  

• If you see behavior that suggests that these 
bounds are sharp (e.g., halving h halves the 
discretization error), then great. If you don’t see 
this behavior, don’t assume things are wrong.

• Think about this:  
O(h2) = O(h) but generally O(h) ≠ O(h2 ) !!!

(Any process that is O(h2) is also O(h), 
but the converse isn’t necessarily true.)
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Reconsideration
You want to approximate uh.

A good iteration is the V-cycle.

What’s a good way to start it?

Can you do better than vh ← 0?

→  Start on the coarse grid.  ←
Use nested iteration for the V-cycle.
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Look again at nested iteration

• Idea: It’s cheaper to solve a problem (fewer iterations) 
if the initial guess is good.

• How to get a good initial guess: 
– “Solve” the problem on the coarse grid first.

– Interpolate the coarse solution to the fine grid.

•  Now, let’s use the V-cycle as the solver on each grid 
   level! This defines the  Full Multigrid (FMG) cycle. 
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Full multigrid (FMG)

• Initialize

• Solve on coarsest grid

• Interpolate initial guess
• Perform V-cycle

• Interpolate initial guess
• Perform V-cycle

ffff Hhhh ,...,,, 42
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←

←

←

←

←
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FMG-cycle (recursive form)

1) Initialize fh, f2h,…, fH.

2) If h = H, then go to 4 (where MV is a direct solve);
  
else: v2h <— FMG( f2h).

3) Set initial guess:  vh <— I2hv2h.

4) Perform vh <— MV(vh, fh)   η times.

vh <— FMG(fh), η

h We use 
η = 1.

166
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FMG cycle cost
One V(2,1)-cycle is performed per level, at a cost of
3/(1 - 2-d) WUs per grid (where the WU is for the   
size of the finest grid involved).
The size for the WU for coarse-grid j is 2-jd times 
the size for the WU for the fine grid (grid 0).
Hence, the cost of the FMG(2,1) cycle in WUs is less 
than

[3/(1 - 2-d)](1 + 2-d + 2-2d +…) = 3/(1 - 2-d)2.

d = 1:  12 WUs;    d = 2: 16/3 WUs;    d = 3: 192/49 WUs.
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Has discretization error          
been reached by FMG?

    If discretization error is achieved,  then ||eh|| = O(h2) 
& the V-cycle approximation converges to the solution of 
the PDE about as well as the discrete solution does:

||u(h) - uh || = O(h2)
||u(h) - vh || = O(h2) 

We need to be more careful… 168
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The basic FMG principle

u2h uh

u

gr
id 

2h
 lin

e grid h plane

v2h•
vh•

c
o
n
t 
i 
n
u
um

h=0

s
p
a
c
e

?

u2h, uh = exact 2h, h solutions
v2h, vh = exact 2h, h approximations

u = exact pde solution
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Simpler schematic

u2h

4ch2

ch2

uhuv2h

9ch2?

circles are 
really intervals

170

u2h, uh = exact 2h, h solutions
v2h, vh = exact 2h, h approximations

u = exact pde solution
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Comparing the right things
• Problem: We are thinking that u2h approximates uh 

to order O(h2), when all we really know is that uh 
approximates u(h) to order O(h2) (any h).

• We know that u(2h) & u(h) are the “same”, right? 
 So, if u2h approximates u(2h) to order O(4h2) &         

uh approximates u(h) to order O(h2), shouldn’t u2h 
approximate uh to order O(4h2)? How, exactly?

• When we interpolate u2h to grid h, what errors does 
interpolation introduce?

• Sorting out these comparisons is a bit technical.

• In other words, here comes the algebra…
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Interpolation stability
how interpolation affects error

• Property:       ||Pe2h|| ≤  β||e2h||
• Reasoning:

 ||Pe2h|| ≤ ||P|| ||e2h||
                     = ||PTP||1/2 ||e2h||

   ⇒    ||PT P||1/2 ≤ √2

In practice, β ≈ 1. 172

PT P =

�

�
1/2 1 1/2

1/2 1 1/2
1/2 1 1/2

�

�

�

���������

1/2
1

1/2 1/2
1

1/2 1/2
1

1/2

�

���������

=

�

�
3/2 1/4
1/4 3/2 1/4

1/4 3/2

�

�

||P||2 = max ||Pe||2/||e||2

          = max <Pe,Pe>/<e,e> 
          = max <PTPe,e>/<e,e>
          = ρ(PTP)
          = ||PTP||
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Approximation property
how the discrete solutions approximate each other

||uh - Pu2h|| ≤ αKh2

|(u(h) - Pu(2h))i| = |u(xi) - (u(xi-1 ) + u(xi+1))/2| ≤ |u”(ξi)|h2/2

               ⇒  ||u(h) - Pu(2h)|| ≤  cKh2 
 

(We need ||u”|| << ∞, so the norm is scaled by h here.) 

⇒ ||uh - Pu2h ||
            ≤ ||uh - u(h)|| +  ||u(h) - Pu(2h)||  +   ||Pu(2h) - Pu2h||
            ≤      Kh2        +         cKh2         + ||P||·||u(2h) - u2h||
              ≤      Kh2       +         cKh2         +         βK(2h)2   

≤ (1 + c + 4β)Kh2

In practice, α =  1 + c + 4β ≈ 5.
173

(||uh - u(h)|| ≈ Kh2)
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FMG accuracy
||eh|| ≤ Kh2

Assume:  
  ||e2h|| ≤ K(2h)2   induction hypothesis
  ||uh -  Pu2h|| ≤ αKh2   approximation property (α≈5)
  ||Pw2h|| ≤  β||w2h||   interpolation stability (β≈1)

Triangle inequality:  
     ||eh||  = ||uh - Pv2h||        
     ≤  ||uh - Pu2h|| + ||P(u2h  - v2h)||
     ≤       αKh2       +     βK(2h)2

     =                (α + 4β)Kh2

  ⇒8 8        ||eh||  ≤  “9”Kh2

So we need only reduce ||eh|| by “0.1”!!!
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Numerical example

• Consider again the 2-D model problem (with σ = 0):

- uxx - uyy = 2[(1 - 6x2)y2(1 - y2)+(1 - 6y2)x2(1 - x2)]

    inside the unit square, with u = 0 on the boundary.

• We examine the effectiveness of FMG cycling to 

solve the problem on (n+1)x(n+1) grids [(n-1)x (n-1) 

interior points] for n = 2, 4, ..., 2048. 
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FMG results
FMG cycle results & comparison with MV cycle costs

||e ||h = h ||u(h) - vh||2
scaled discrete total error

1.03e-04
2.58e-05
6.44e-06
1.61e-06
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Successful Scientific Inquiry

• Attitude
– Knowledge is good, but understanding rules! 
– Look for the underlying principle!
– You can do it! Be positive.
– But is it really right? Be critical.
– Don’t hope or guess. Think!
– Control your emotions! Expect ups & downs.

• Method
– Start simply. Reduce issue to the simplest possible case.
– Take tiny steps, but keep the big picture in mind.
– Study concrete examples.
– Look for analogies. Can A be done in any way like how B was done?

• Creativity
– What do you really want? What end are you really aiming for?
– What do you really need? What you’re trying may be sufficient to do 

what you want, but would an easier weak result do instead?

• Intelligence
– It doesn’t hurt to try to be “smart” too.
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Diagnostic tools
for debugging the code, the method, the problem

• Finding mistakes in codes, algorithms, concepts, & the 
problem itself challenges our scientific abilities.

• This challenge is especially tough for multigrid:
– Interactions between multilevel processes can be very subtle.
– It’s often not easy to know how well multigrid should perform.

• Achi Brandt:
– “The amount of computational work should be proportional to 

the amount of real physical changes in the computed solution.”
– “Stalling numerical processes must be wrong.”

• The “computational culture” is best learned by lots of 
experience & interaction, but some discussion helps.
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Tool # 1: Be methodical

• Modularize your code.

• Test the algebraic solver first.

• Test the discretization next.

• Test the FMG solver last.

• Beware of boundaries, scales, & concepts.

• Ask whether the problem itself is well posed.
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Tool # 2: Start simply
• Start from something that already works if you can.

• Introduce complexities slowly & methodically, testing 

thoroughly along the way.

• Start with a very coarse fine grid (no oxymoron intended).

• Start with two levels if you can, using a direct solver or lots 

of cycles on coarse grids if nothing else.

If you find trouble, your first job is 
to find the simplest case where

that trouble is still evident!!!
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Tool # 3: Expose trouble

Start simply, but don’t let niceties mask trouble:

• Set reaction/Helmholtz terms to zero.

• Take infinite or very big time steps.

• Don’t take 1-D too seriously, not even 2-D.
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Tool # 4: Test fixed point property

    Relaxation shouldn’t alter the exact solution of 

the linear system (up to machine precision).

•  Create a right side:  fh = Ahuh with uh given.

•  Make sure uh satisfies the right boundary conditions.

•  Test relaxation starting with uh:  Is rh = 0, is it zero 

after relaxation, does uh change?

•  Test coarse-grid correction starting with uh:  Is the 

correction zero?
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Tool # 5: Test on Auh = 0

• The exact solution uh = 0 is known!

• Residual norm ||Avh|| & error norm ||vh|| are computable.

• Norms ||Avh|| & ||vh|| should eventually decrease steadily 
with a rate that might be predicted by mode analysis.

• Multigrid can converge so fast that early stalling suggests 
trouble when it’s just that all machine-representable 
numbers in a nonzero vh have already been computed! 
Computing rh = fh - Avh & updating vh shouldn’t have trouble 
with machine precision if you have uh = 0 & thus fh = 0.
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Tool # 6: Zero out residual

• Using a normal test, try multiplying the residual by 0 

before you go to the coarse grid.

• Check to see that the coarse-grid corrections are 0.

• Compare this test with a relaxation-only test--the 

results should be identical.
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Tool # 7: Print out residual norms

• Use the discrete L2 norm:

||r||h = (hd Σ ri
2)1/2 = hd/2 ||r||2.

• Output ||r||h after each pre- & post-relaxation sweep.

• These norms should decline to zero steadily for each h.

• The norm after post-relaxation should be consistently 
smaller than after pre-relaxation--by the predictable 
convergence factor at least.
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dropping superscript h when it’s clear by context
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Beware of residuals
Ae = r

186

example
h-2 (-1 2 -1)

ek = sin(kπx)
λ1≈π2, λn≈4h-2

• Relative errors:     ||e||h            ||Ae||h
                                            ||u||h               ||Au||h

• Absolute range:    ||e1||h ≈ 1   &   ||Ae1||h ≈ π2

                                           ||en||h ≈ 1   &   ||Aen||h ≈ 4h-2  !!!

• Relative errors:     consider the case u = en

                             ||en||h              ||Aen||h
                                             ||u||h                    ||Au||h

                             ||e1||h              ||Ae1||h
                                             ||u||h                    ||Au||h

vs.

= 1   &                 = 1

= 1   &                 ≈ (π2/4)h2  !!!

Moral: residuals can falsely signal convergence
when the error is smooth.

||r||h
||f||h

=
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Tool # 8: Graph the error

• Run a test on a problem with known solution (Au = 0).

• Plot algebraic error before & after fine-grid relaxation.

• Is the error oscillatory after coarse-grid correction?

• Is the error much smoother after fine-grid relaxation?

• Are there any strange characteristics near boundaries, 
interfaces, or other special phenomena?
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Tool # 9: Test two-level cycling

• Replace the coarse-grid V-cycle recursive call with 
a direct solver if possible, or iterate many times 
with some method known to “work” (test ||r || to be 
sure it’s very small), or use many recursive V-cycle 
calls.

• This can be used to test performance between two 
coarser levels, especially if residual norm behavior 
identifies trouble on a particular level.
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Tool # 10: Beware of boundaries
• Boundaries usually require special treatment of the 

stencils, intergrid transfers, & sometimes relaxation.

• Special treatment often means special trouble, typically 
exposed in later cycles as it begins to infect the interior.

• Replace the boundary by periodic or Dirichlet conditions.

• Relax more at the boundary, perhaps using direct solvers.

• Make sure your coarse-grid approximation at the boundary 
is guided by good discretization at the fine-grid boundary.
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Tool # 11: Test for symmetry

• If your problem is symmetric or includes a symmetric 

case, test for it.

• Check symmetry of the fine-grid & coarse-grid matrices: 

are aij & aji relatively equal (to machine precision).

• Be especially watchful for asymmetries near boundaries.
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Tool # 12: Check for compatibility
a bit ahead of schedule, but…

• Consider the problem          

  -u” = f    with   u’(0) = u’(1) = 0.   

• It’s singular:  If u = 1, then -u” = 0 & u’(0) = u’(1) = 0. 

• It’s is solvable iff f ∈ Range(∂xx) = η⊥(∂xx ) = {1}⊥ or f ⊥ 1.

• First fix the grid h right side:  fh  ←  fh - (<fh, 1>/<1,1>)1.

• Do this on coarse grids too:  f2h  ←  f2h - (<f2h, 1>/<1,1>)1.

• Uniqueness is also a worry:  uh  ←  uh - (<uh, 1>/<1,1>)1.
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Tool # 13: Test for linearity
also a bit ahead of schedule…

• If you’re writing a nonlinear FAS code, it should agree with 

the linear code when you test it on a linear problem. Try it.

• Move gradually to the target nonlinear test problem by 

putting a parameter in front of the nonlinear term, then 

running tests as the parameter changes slowly from 0 to 1.
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Tool # 14: Use a known PDE solution

• Set up the source term (f = -u” in Ω) & data (g = u on Γ).

• Do multigrid results compare qualitatively with sampled u ?

• Monitor ||u - uh||h .

• Test a case with no discretization error (u = ax2 + bx + c).  
The algebraic error should tend steadily to 0.

• Test discretization error (uiv ≠ 0).  The algebraic error 
should decrease rapidly at first, then stall at discretization 
error level. Check error behavior as you decrease h. Does it 
behave like O(h2) (h→h/2 ⇒ e→e/2) or however it should?
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Tool # 15: Test FMG accuracy

• Make sure first that the algebraic solver converges as 

predicted, with uniformly bounded convergence factors.

• Test the discretization using Tool # 14.

• Compare FMG total error to discretization error for 

various h.  You might need to tune the FMG process here 

(play with the number of cycles & relaxation sweeps).
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• Document:        
 norms/weights, V(ν1, ν2), errors, labels (table, graph)

• Use various scenarios:       
      Ax = 0, Ax = f, varying n & νi & ω, Jacobi/Gauss-Seidel

• Thoroughly test:        
     don’t stop until you get what you expect. 
     compare with known solution, text, others.  
     study discretization & algebraic errors.  
     report on “asymptotic” factors.

• Be kind to the reader:       
     code = zzz…      tables = +      tables & graphs = ++
     tables & graphs & discussion (clear, concise) = +++

• Discuss, discuss, discuss:     
     what do you see & think? what did you learn?

Computing assignments

by hand ok
↓           ↓
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
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• Multilevel Adaptive Methods
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• Finite Elements
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What is A2h?
• Recall the 2-grid coarse-grid correction scheme:

– 1)  Relax on Ahuh = fh on Ωh to get vh.      
– 2) Compute f2h = Ih

   (fh - Ahvh) . 
– 4) Solve A2hu2h = f2h on Ω2h.         
– 5) Correct fine-grid solution vh ← vh + I2hu 2h.

• Assume that eh ∈ Range(I2h ), i. e., eh = I2hu2h for some 

u2h ∈ Ω2h. Then the residual equation can be written

                     Aheh = AhI2hu2h = rh.

 This characterizes u2h, but with too many equations.
• How does Ah act on I2h?         

h

h

h

h

5. Some theory
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2h

h
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How does Ah act on Range(I2h)?

 Thus, the odd rows of AhI2h
 are zero (1-D only) &  r2i+1 = 0.  

 So we keep the even rows of AhI2h
 for the residual equations 

 on Ω2h. We do this by applying restriction, either injection or 
 full weighting:              

h

h

h

We use full weighting from now on unless otherwise stated.
.
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Building A2h:  The Galerkin condition
• The residual equation on the coarse grid is

A2h = RAhP

•  RAP is symmetric:

•  We thus identify the coarse-grid operator as  

If PT = αR  (so that RT = (1/α)P ), then
(RAP)T = PTATRT = α(1/α)RAP = RAP.

199

•  RAP is positive definite:
If x ≠ 0, then <RAPx,x> = (1/α)<APx,Px>> 0.

P full rank ⇒ Px ≠ 0.
> 0!
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↑  Why is this the i th row of A2h ?

Computing the i th row of A2h 
• Compute             ,  where                                            .

2

(2h)2
− 1

(2h)2
− 1

(2h)2

200

Ah = h-2 [-1 2 -1]
A2h = RAhP
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• The i 
th row of A2h is                               ,

    which is the Ω2h version of Ah. 

• Note that IF  relaxation on Ωh leaves only error 
in the range of interpolation, then solving

A2h u2h = f2h

    determines the error exactly!
• This is generally not feasible,  but this logic 

motivates wanting eh ∈ Range(I2h ) & it leads to a 
very plausible representation for A2h.    

The i th row of A2h looks a 
lot like the i th row of Ah !
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Variational properties of coarsening
 The definition for A2h that resulted from the 

foregoing line of reasoning is useful for both 
theoretical & practical reasons.  Together with 
the commonly used relationship between 
restriction & prolongation, we have the 
variational properties:

Galerkin Condition 

c ∈ℜ 
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Properties of restriction
in a little more detail…

•  Full Weighting:                                or          

                                              ℜn-1    ℜn/2-1

•  n = 8:

•         has rank        & null space η(      ) with dim    .              Ih
2hn

2
−1 n

2
204
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Spectral properties of restriction

• How does         act on the eigenvectors of       ?

• Consider                         ,  1 ≤ k ≤ n-1,  0 ≤ j ≤ n-1.

• A little algebra & trigonometry shows that

   for 1 ≤ k ≤ n/2-1.
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wh
k,j = sin

�
jk�

n

�

�
I2h
h wh

k

�
j

= cos2
�

k�

2n

�
w2h

k,j

� ckw2h
k,j

c1 ≈ 1 ... cn = O(h2)ck = O(1)
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Spectral properties (cont’d)

• i.e.,         [k th mode on ΩΩh]  =  ck [ k th mode on ΩΩ2h]

                                                        ΩΩh :  n = 8,  k = 2 

                                                         ΩΩh:  n = 4,  k = 2 

•
• • •

•
• • •

•

•
•

•
•

•
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Spectral properties (cont’d)

• Let k’ = n - k  for  1 ≤ k ≤ n/2-1, so that
  n/2+1 ≤ k’ ≤ n-1.

• A little algebra & trigonometry shows that             

                                              .
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�
I2h
h wh

k�
�
j

= �sin2

�
k�

2n

�
w2h

k�,j

� �skw2h
k,j

s1 = O(h2) ... sn ≈ 1

 

s1 = O(h2) ... sn/2-1 = O(1)
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Spectral properties (cont’d)

 i.e.,            [(n - k)th mode on ΩΩh]  =  -sk [k th mode on ΩΩ2h]

                                 ΩΩh: n = 8,  n - k = 6

                                                                ΩΩh: n = 4,  k = 2

•
•

•

•

•
•

•

•

•
•

•
• •
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Spectral properties (cont’d)

• Summarizing:

• Complementary modes:  

}{

{ }∞

1 ≤ k ≤ n
2
−1

k ' = n − k

Ih
2hwn 2

h = 0

209

  

ck = O(1)

s1 = O(h2) ... sn/2-1 ≈ O(1)
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Null space of restriction

• Observe that η(Ih
  ) = span(Ahêi

h), where i is odd &   
êi

h   is the i 
th unit vector.

• Let ηi = Ahêi
h.

• While the ηi looks oscillatory, it generally contains 
all  Fourier modes of Ah:

• All the Fourier modes of Ah are needed to represent 
the null space of restriction!    

! !! !!

� 

ηi = akwk
k=1

N

∑

210
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Properties of interpolation

•  Interpolation:                                  or          

                                            : ℜn/2-1     ℜn-1

•  n = 8:

•         has full rank & null space {0}.              

211
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Spectral properties of interpolation

• How does         act on the eigenvectors of         ?

• Consider                         ,  1 ≤ k ≤ n/2-1, 0 ≤ j ≤ n/2.

• A bit of work shows that the modes of        are 
NOT “preserved” by       , but that the space        is 
“preserved”:
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�
w2h

k

�
j

= sin
�

jk�

n/2

�

Ih
2hw2h

k = cos2
�

k�

2n

�
wh

k � sin2

�
k�

2n

�
wh

k�

= ckwh
k � skwh

k�
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Spectral properties of interpolation

• Interpolation of smooth         modes excites 
oscillatory modes on       .

• Note that if             ,  then

•       is 2nd-order interpolation.

I2
h
h wswc h

kk
h
kk −= ;wk

2h

 
k  n

2
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Ih
2hw2h

k =
�

1�O

�
k2

(n� 1)2

��
wh

k + O

�
k2

(n� 1)2

�
wh

k�

� wh
k
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Range of interpolation

• The range of          is the span of the columns of        .

• Let       be the i 
th column of        .

• All the Fourier modes of        are needed to represent   
Range(       ).  

ξ i

≠,=ξ k
h
kk

k

h
i ∑

n-1

= 1
bwb 0
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Use all the facts to analyze the 
coarse-grid correction scheme

relax only before correction
1)  Relax once  on         :                                    . 
     
2) Compute  &  restrict residual:                                          .
                                     
3) Solve residual equation:                                   .
         
4) Correct fine-grid solution:                                   .

The entire process appears as

The exact solution satisfies                              

vAfIf 22 hhhh
h

h )−(←

vRωv hh ← + B f h

AfIAIRωv   v hhh
h

hh
h

h )−()(+ − 212
2 )vRω h + B f h(      ←  +B f h

AfIAIuRωu hhh
h

hh
h

hh )−()(+ − 212
2 )uRω h( = + B f h

215

     h

←

+ B f h

error propagation matrix
not restriction!
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CG error propagation

• Subtracting the previous two expressions, we get

• How does  CG act on the modes of Ah ?  Assume e 
h     

consists of the modes        &        for                     
&                .

• We know how 
    act on       &      .

eRωAIAIIe hhh
h

hh
h

h )(−← 212
2

−

IAIA ,)(,,, hh 2Rω −α hhhh 122

1 ≤ k ≤ n
2
−1

k ' = n − k

216
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CG error propagation
For now, assume no relaxation.  Then

    is invariant under CG:

    where  
   

217
ck = O(1)s1 = O(h2) ... sn/2-1 ≈ O(1)

sk = sin
2 kπ
2n

⎛
⎝⎜

⎞
⎠⎟

ck = cos
2 kπ
2n

⎛
⎝⎜

⎞
⎠⎟
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CG error propagation for k <<n

• Consider the case k << n (extremely smooth & 
oscillatory modes):

• Hence, CG eliminates the smooth modes but does 
not damp the oscillatory modes of the error!
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wk � O

�
k2

(n� 1)2

�
wk + O

�
k2

(n� 1)2

�
wk�
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�

1�O

�
k2

(n� 1)2
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�
1�O

�
k2
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CG with relaxation

Next, include one relaxation sweep.  Note that 
error propagator Rω  preserves the modes of Ah 

(although this is often unnecessary).   Let  λk 
denote the eigenvalue of Rω  associated with wk .  

For k ≤ n/2-1:  

Small!

Small!

wswsw kkkkkkk λ+λ→ ;

wcwcw kkkkkkk ;;;; λ+λ→
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Crucial observation

• Between relaxation & coarse-grid correction, 
both smooth & oscillatory components of the 
error are effectively damped.

• This is the “spectral” picture of how multigrid 
works.  We examine now another viewpoint, 
the “algebraic” picture of multigrid.
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Recall the variational properties

All the analysis that follows assumes that the 
variational properties hold:

Galerkin Condition 

c ∈ ℜ
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Fundamental Theorem of Linear Algebra

• x ε N(B)
⇒ <x, y > = <x, BTz> = <Bx, z> = 0.

    ⇒ x ε R(BT)⊥ 

⇒ N(B) ⊂ R(BT)⊥.

• x ε R(BT)⊥
⇒ 0 = <x, BTz> = <Bx, z> = <Bx, Bx>.

   ⇒ x ε N(B)

⇒ N (B) ⊃ R (BT ) ⊥.

N(B) = R(BT)⊥

any y∈R(BT)
↓

some z
↓

 any z 
↓

 z = Bx 
↓

222
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Algebraic interpretation of CG
consider the subspaces that make up Ωh & Ω2h

From now on, ‘R( )’ means 
Range & ‘N( )’ Null Space.

Ih Ah  !
 So we really care about N(Ih Ah) !?!? 

Because the Fundamental Theorem 
of Linear Algebra shows that

or
IRIN ))((=)( Th
h

h
h

22

IRIN )(=)( h
h

h
h 2
2

⊥

⊥

Ih  transfers errors? 
Does Ih  transfer errors? 

 If not, what does?
223

2h 2h

2h

2h
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“Energy” inner product & norm

• Inner product symmetry: 

 <Ax,y > = <x,Ay > = <Ay,x >. 

• Inner product linearity:   

 <A(ax+by),z > = <aAx+bAy,z > = a<Ax,z > + b<Ay,z >. 

• Inner product positive definiteness:

<Ax,x > ≥ 0    &    <Ax,x > = 0  ⇒  x = 0. 

• Norm:

<Ax,x > is an inner product ⇒ <Ax,x >1/2 is a norm. 
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Subspace decomposition of Ω h   
• If uh ∈ N (Ih Ah),   then, for any u2h, we have

      0 = 〈 Ih  Ahuh, u2h 〉 = 〈 Ahuh, I2hu2h 〉 ,

    so
                                                          , 
    where                   means      .
• Moreover,  any       can be written as     ,
    where                  &                        . 
• Hence, we get the “energy-orthogonal” decomposition 

               .

h

“energy”
inner product
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2h

2h

errors touched
by coarse grid

errors invisible
to coarse grid
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Characteristics of the subspaces 

• Since                     for some                , we 
associate       with the smooth components of    . 
But,      generally has all Fourier modes in it.  
Recall the basis vectors for     :

• Similarly, we associate        with oscillatory 
components of     , although     generally has all 
Fourier modes in it as well.  Recall that           is 
spanned by               , so                 is spanned by 
the unit vectors                                      for odd i, 
which “look” oscillatory.

Th
i ),...,,,,...,,(= 001000
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Algebraic analysis CG

• Recall that (without relaxation)

• First note that if                ,  then                 .  
This follows since                     for some                
& therefore 

• It follows that N(CG)=R(     ), that is, the null 
space of CG is the range of interpolation.        

by Galerkin property

I2h
h

.

.

What does this imply?
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More algebraic analysis of CG

• Next, note that if                         ,  then

• Thus, CG is the identity on          . 

⇒

What does this imply?

228  Together:     CG(sh + t h) = t h



CU-Boulder of 396

How does the algebraic picture 
fit with the spectral view?

 We may view         in two ways:

           =

 that is, 

 or

Low frequency modes
1  ≤  k  ≤ n/2 

High frequency modes
n/2  <  k  <  n

Are these “orthogonal” decompositions?

.

229

Illuminates 
relaxation

(Jacobi)

Illuminates 
CG

(exact)
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Actually, each view is just part 
of the picture

• The operations we’ve examined work on different spaces!

• While                  is mostly oscillatory, it isn’t      ,           
&    while               is mostly smooth, it isn’t      .   

• Relaxation “eliminates” error from      .

• Coarse-grid correction eliminates error from        . 

230
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How it actually works (cartoon)

wlarge k

wsmall k
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Why is this
working well?

How it actually works (cartoon)
hCG eliminates error in R(I2h),

but can increase error in H h
Relaxation “eliminates” H,

but can increase the error in R(I2h) .
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What if L points away from R(I2h)?

233
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√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√

√

√

Homework Due !
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Chapters 1-5:                                Chapters 6-10:
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6. Nonlinear problems

• How should we approach the nonlinear system
                       A(u) = f
   & can we use MG to solve it?

• A fundamental relation we’ve relied on is the linear 
residual equation:

Au - Av = f - Av   ⇒   Ae = r.

• We can’t rely on this now  since a nonlinear A(u)  
generally means

A(u) - A(v) ≠ A(e).

HANG ON !!!
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The nonlinear residual equation

   We still base our development around the residual 
equation, now the nonlinear residual equation:

A(u) = f
⇒    A(u) - A(v) = f - A(v) 

 ⇒    A(u) - A(v) = r

How can we use this equation as the 
basis for a solution method?
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Newton’s method for scalar F: ℜ→ℜ
Best known & most important nonlinear solver!

• Expand F  in a Taylor series about x :
F(x + s) = F(x) + sF’ (x) + s 2F” (ξ). 

Ex:     (x + s)e 
(x + s) - 1 = x e 

x - 1 + s (1 + x) e 
x + h.o.t.

• Dropping higher-order terms (h.o.t.), if x + s is a solution,
0 = F(x) + sF’ (x) ⇒ s = -F(x)/F’ (x). 

• We thus arrive at Newton’s method:
x ← x - F(x)/F’ (x)

•We wish to solve F(x) = 0. 
Ex:                 F(x) = x e 

x - 1,         F’ (x) = (1 + x) e 
x.

exponent, not error
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Newton’s method for systems

•   Taylor series about v :    A(v + e) = A(v) + J(v)e + h.o.t.

• Ex:  - u ”(x) + u(x) e 
u(x) = f may be discretized  as

error, not exponent

Jacobian
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Newton for systems
• The system A(u) = f in vector form is

•   Expanding A(v + e) in a Taylor series about v :

A(v + e) = A(v) + J(v)e + h.o.t.
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Newton for systems (cont’d)

• J(v) is the Jacobian

• If  u = v + e is a solution, f = A(v) + J(v)e + h.o.t., so  

                           e ≈ [J(v)]-1(f - A(v)).

• This leads to the iteration

v  ←  v + [J(v)]-1(f - A(v))
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Newton’s via the residual equation
• The nonlinear residual equation is

A(v + e) - A(v) = r.

• Expanding A(v + e) in a two-term Taylor series about v  
& ignoring h.o.t.:

A(v) + J(v) ê - A(v) = r
    or

J(v) ê = r.

• Newton’s method is thus:

v  ←  v + [J(v)]-1 r,     r = f - A(v)

ê ≈ e
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How does multigrid fit in?

• One obvious method is to use multigrid to solve    
J(v) ê = r at each iteration step. This method is 
called Newton-MG & can be very effective.

• However, we might want to use multigrid ideas to 
treat the nonlinearity directly.

• To do that, we need to specialize multigrid 
components (relaxation & coarsening) for the 
nonlinear case.
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What is nonlinear relaxation?

• Nonlinear Gauss-Seidel:
   For each i = 1, 2, …, n-1 :

      Change the value of vi so that the ith equation 

      is satisfied:   (A(v))i = fi .

• Equivalently:

   For each i = 1, 2, …, n-1 :
      Find s ∈ � such that (A(v + s εi))i = fi,

 where  εi is the ith canonical unit basis vector. 

A(u) = f
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How is nonlinear Gauss-Seidel done?
• Each (A(v))i = fi is a nonlinear scalar equation for vi. 

We can use the scalar Newton’s method to solve! 

• Example:  - u”(x) + u(x) eu(x) = f may be discretized  
so that (A(v))i = fi is given by

•  Newton iteration for vi is given by

fev
vv

h

i
v

i
h

vvv

ii +

−+
−←

−+−
iiii +−

2

2
11

2

2

vi )+( 1 ive

=+
−+−

fv
h

vvv
i

v
i

iii +−

2
11 2

ie 1 ≤ i ≤ n −1
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How do we coarsen
for nonlinear multigrid?

• Recall the nonlinear residual equation
A(v + e) - A(v) = r.

• In multigrid, we obtain an approximate 
solution vh on the fine grid, then solve the 
residual equation on the coarse grid.

• The residual equation on Ω2h appears as 
A2h (v2h + e2h) - A2h(v2h) = r2h.
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A2h ?  r2h ?

v2h ?!

h  I2hrh !We should have a routine for that.

h  I2hvh !
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Look at the coarse residual equation

• We must evaluate the quantities on Ω2h in
A2h (v2h + e2h) - A2h (v2h) = r2h.

• Given vh, a fine-grid approximation, we restrict 
the residual to the coarse grid:  

                                                           .

• For v2h, we restrict vh  by                    .

vAfIvIAevIA 222222 hhhh
h

hh
h

hhhh
h

h ))(−(+)(=)+(

Thus,
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vAfIvIAevIA 222222 hhhh
h

hh
h

hhhh
h

h −( ) )((( ))+ =−
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We’ve obtained a coarse-grid 
equation of the form A2h(u2h) = f2h

• Consider the coarse-grid equation:

• We solve                      for                            &  
obtain

• We then apply the correction:      

f 2h

all quantities are knowncoarse-grid unknown

eIvv h
hhhh +← 2

2
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Full approximation scheme (FAS)
2-grid form

• Perform nonlinear relaxation  on                     to 
obtain an approximation     .

• Restrict the approximation & its residual:
        .
• Solve the coarse-grid equation:

• Extract 2h approximation to h error:
     .

• Interpolate & correct:
        .eIvv hh

h
hh +← 2

2

A2h (u2h ) = A2h (v2h )+ r2h= Ih2h f h + A2h (Ih2hvh )− Ih2hAh (vh ).

vAfIr 22 hhh
h

h ))(−(= h
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A few observations about FAS

• If A is a linear operator, then FAS reduces directly to 

the linear two-grid correction scheme:

• An exact solution to the fine-grid problem is a fixed 

point of the FAS iteration:

  

00
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A few more observations about FAS

• The FAS coarse-grid equation can be written as

    where                                      is the so-called tau 
correction term &       is the original 2h source term, 
provided  you choose it that way:   . 

• In general, since             , the solution       to the FAS 
coarse-grid equation is not the same as the solution 
to the original coarse-grid problem        

                                                       
• The tau correction is as a way to alter the coarse-

grid equation to enhance its approximation properties. 

 

τh
2h A(Pvh)-PA(vh)

250

f=I 2 hh
hf 2h

f 2h
τ h
2h = A2h (Ih

2hvh ) − Ih
2hA2h (vh )

.
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Still more observations about FAS

• A true multilevel FAS process is recursive, using 
FAS to solve the nonlinear Ω2h problem using Ω4h. 

• Hence, FAS is generally employed in a V- or W-
cycling scheme.
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Even more observations about FAS
• For linear problems, we use FMG to obtain a good 

initial guess on the fine grid.  Convergence of 
nonlinear iterations depends critically on having a 
good initial guess.

• When FMG is used for nonlinear problems, the 
interpolant              is generally accurate enough 
to be in the basin of attraction of the fine-grid 
solver.

• Thus, whether FAS, Newton, or Newton-multigrid 
is used on each level, one FMG cycle should provide 
a solution accurate to the level of discretization, 
unless the nonlinearity is extremely strong. 
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Intergrid transfers for FAS

• Generally speaking, the standard operators (linear 
interpolation, full weighting) work effectively in 
FAS schemes.

• For strongly nonlinear problems or for the coarse-
grid approximation that is to become a fine-grid 
initial guess, higher-order interpolation (e.g., cubic 
interpolation) may be beneficial.
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What is A2h(u2h) in FAS?
As in the linear case, there are two basic possibilities:

1.  A2h(u2h) is determined by discretizing the nonlinear 
operator, A(u), in the same fashion as was employed 
to obtain Ah(uh),  except that the coarser mesh 
spacing is used.

2.  A2h(u2h) is determined from the Galerkin condition
A2h(u2h)= I 2hA2h(I2hu2h) 

 where the action of the Galerkin product can be 
captured in an implementable formula.  

h
h

254
The first method is usually easier & more common.
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Example: Newton-MG vs. FAS

• PDE

- u”(x) + u(x) eu(x) = f(x).

• Discretization:

                                                              .=+
−+−

fev
h

vvv
j

v
j

jjj +−
2

11 2
j

(er, ODE):
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One Newton-MG step
• Step 0. Given v, form the grid h linear correction equation:

 Initialize the Newton correction approximation: e = 0. 
• Step 1: Relax on the grid h linear equation. 
• Step 2: Solve the grid 2h error correction equation:

• Step 3: Correct the grid h Newton correction:

• Step 4: Stop if you’ve “solved” the linear equation well 
enough for Newton correction e & set v ← v + e.   Else,   
leave v alone & return to Step 1.

−ej−1 + 2ej −ej +1

h2 + (1+ vj )e
v j ej = rj ≡ f j −

−vj−1 + 2vj −vj +1

h2 + vj e
v j( ) 

−ej−1
2h + 2ej

2h −ej +1
2h

(2h)2 + (1+ v2j)e
v 2jej

2h
= r2 j −(−e2 j−1 + 2e2 j −e2 j +1

h2 + (1+ v2 j )e
v2j e2 j)

e ← e + I2 h
 h e 2 h

256
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One FAS step
• Step 0. Given v, form the grid h nonlinear equation:

• Step 1: Relax on the grid h nonlinear equation to improve v.

•  
• Step 2: Solve the grid 2h FAS correction equation:

• Step 3: Correct the grid h approximation v :
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unknowns

v ← v + I2 h
 h e 2 h

=+
−+−

fev
h

vvv
j

v
j

jjj +−

2

11 2
j

−ej−1
2h + 2ej

2h −ej +1
2h

(2h)2 + v2 j
h + ej

2h( )e
v2 j

h
+e j

2h

−v2 j
h e

v2 j
h

= Ih
2h rh( )j

fev
vv

h

j
v

j
h

vvv

jj
+

−+
−←

−+− jjjj +−

2

2
11

2

2

vj )+(1 jve
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Nonlinear problems: 2d example

• Consider 

    on the unit square, [0,1] x [0,1], with homogeneous 
Dirichlet boundary conditions & a regular h = 1/128 
Cartesian grid.

• Suppose the exact solution is

              .

−Δu( x,y) + γu( x,y) eu(x,y)
= f ( x,y)
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Discretization of the nonlinear example
• The operator can be written (sloppily) as

• Relaxation (nonlinear Gauss-Seidel) is given by

v
vv

vh
jih

h
ji

h
ji

,

ji,
,,

)+(γ+

f ji,−vA hh ))((
−← 4

2 1 ji,
h

e

e

ji,vA hh ))((
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FAS & Newton’s method on 

• FAS V(2,1)-cycles until ||r|| < 10-10.

• Newton’s Method with exact inner solves until ||r|| < 10-10.

n = 128
convergence factor is for the last cycle

−Δu( x,y) + γu( x,y) eu(x,y)
= f ( x,y)

1 10 100 1000
convergence factor 0.135 0.124 0.098 0.072

number of FAS cycles 12 11 11 10

1 10 100 1000
convergence factor 4.00E-05 7.00E-05 3.00E-04 2.00E-04

number of Newton iterations 3 3 3 4
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Newton, Newton-MG, & FAS on

• Newton uses exact solves, Newton-MG is with a fixed 
number of inner V(2,1)-cycles for  the Jacobian problem, 
overall stopping criterion ||r|| < 10-10.  

n = 128,  γ  = 10

261

−Δu( x,y) + γu( x,y) eu(x,y)
= f ( x,y)
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Compare FMG-FAS & FMG-Newton-MG

 
• We do one FMG cycle using one FAS V(2,1) -cycle 
as the “solver” at each new level.  We then follow 
that with as many FAS V(2,1)-cycles as is needed to 
obtain ||r|| < 10-10.

• Next, we do one FMG cycle using a Newton-MG 
step at each new level (with one linear V(2,1)-cycle 
as the Jacobian  “solver.”)  We then follow that with 
as many Newton-multigrid steps as is needed to 
obtain ||r|| < 10-10.
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Don’t try this at home !!!

−Δu( x,y) + γu( x,y) eu(x,y)
= f ( x,y)
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Compare FMG-FAS & FMG-Newton-MG

 
n = 128,  γ  = 10

u(h) − vh
h

u(h) − vh
h

rh
h

rh
h
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Done !!!

−Δu( x,y) + γu( x,y) eu(x,y)
= f ( x,y)
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Remembering coarse-grid correction

• Relax (damped Jacobi) to smooth e = u - v :
v ← v - ωD-1(Av - f).

• Form the residual equation Ae = r :
Ae = A(u - v) = f - Av = r.

• Use premise that smooth error ⇒ e = I2he2h :

AI2he2h = r. 

• Use transpose I 2h = (I2h)T to reduce equations:

I2hAI2h e2h = I2hr.

h

h

h
h

h h

hI2h↑

fewer unknowns

fewer equationsh

A2h
264
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Motivating FAS for nonlinear A
 A(v + e) = f  →  A2h(v2h + e2h) = “f2h ”

• What overriding principle can we find to get from h to 2h ?
• With known v, how do we discretize a PDE of the form 
          A(v + e) = f ?
• Example:  

γuu’ - u’’ = f   →  γ (v + e) (v + e)’ - (v + e)’’ = f.
• Expand to get an equation in e of form g + ae + be’ + …:

γvv’ - v’’ + γ (v’e + ve’ + ee’ ) - e’’ = f.

A(v)

? ?
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Differential residual equation
 γ (v’e + ve’ + ee’ ) - e’’ = f - A(v) ≡ r(v) 

• Right side (analogous to injection):  

r(v) → rj
h = r(xj).

• Coefficients:  

v → vj
h = v(xj),      v’ → (v’)j

h = (v(xj+1) - v(xj-1))/(2h).

• Unknowns:  

e → ej
h,       e’ → (e’)j

h = (ej+1 - ej-1)/(2h),

e’’ → (e’’)j
h = (ej+1 - 2ej + ej-1)/h2.

h h

h h h
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Leading to FAS…
γuu’-u’’ = f → A(v+e) = f → γ (v’e+ve’+ee’ )-e’’ = f-A(v)

• Fine-grid residual equation (at h point 2j):

• Coarse-grid residual equation (at 2h point j):

• FAS

+γv2 j
h e2 j +1

h
−e2 j−1

h

2h
−e2 j +1

h
+ 2e2 j

h
−e2 j−1

h

h2+
γ e2 j

hv2 j +1
h

−v2 j−1
h

2h +γe2 j
h e2 j +1

h
−e2 j−1

h

2h = r2 j
h

−ej +1
2h

+ 2ej
2h
−ej−1

2h

(2h)2+γv2j
h ej +1

2h
−ej−1

2h

4h
+γ ej

2hv2j+2
h
−v2j −2

h

4h
+γej

2h ej +1
2h
−ej−1

2h

4h = Ih
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology
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7a. Neumann boundary conditions

• Consider the 1-D problem
- u”(x) = f(x),   0 < x < 1,

u’(0) = u’(1) = 0.
• We discretize on the interval [0,1] with h = 1/n         

grid spacing & nodes xj = jh,  j = 0,1,2, …, n. 

• We extend the interval with two ghost points: 

7. Selected applications

0                                        x                                         1

-1 n+1   0      1               j-1       j       j+1              n-1     n

←???
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Central differences at boundary
• We use differences as before, but now also for 

the derivative in the Neumann condition: 

• This yields the system

-1 n+10      1                j-1       j       j+1              n-1     n

′′u (1) ≈
−uj−1 + 2uj − uj+1

h2

0 ≤ j ≤ n

u1 − u−1

2h
= un+1 − un−1

2h
= 0

270

u '(1) ≈ u1 − u−1

2h

−uj−1 + 2uj − uj+1

h2
= f j

′′u (1) ≈
−uj−1 + 2uj − uj+1

h2
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Eliminating the ghost points

• Use the boundary conditions to eliminate u-1 & un+1: 

• Eliminating the ghost points in the j = 0 & j = n 
equations gives the (n+1)x(n+1) system of equations:  

un+1 − un−1
2h

= 0u1 − u−1

2h
= 0 u−1 = u1 un+1 = un−1

1 ≤ j ≤ n −1

−2un−1 + 2un
h2

= fn
2u0 − 2u1

h2
= f0
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−uj−1 + 2uj − uj+1

h2
= f j
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Write the system in matrix form

• We can write Ah uh = fh,  where

• Note that Ah is (n+1)x(n+1) & nonsymmetric, & the 
system involves unknowns      &      at the boundaries.u0

h un
h

272

 

Ah =
1
h2

2 −2
−1 2 −1

−1 2 −2
  

−1 2 −1
−2 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.
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We must consider compatibility

• The problem - u”(x) = f(x), for 0 < x < 1, with         
u’(0) =u’ (1) = 0, is not well-posed! 

• If u(x) is a solution, then so is u(x) + constant.
• We cannot be certain a solution exists. If one does, 

it must satisfy

• This integral compatibility condition is necessary! 
If f(x) doesn’t satisfy it, there is no solution!
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The well-posed system
• The compatibility condition is necessary for a solution to 

exist.  In general, it is also sufficient: 
                         − ∂2/∂x2 is a well-behaved operator on 
          the space of functions u(x) with zero mean.
• Thus, we may conclude that if f(x) satisfies the 

compatibility condition, then the problem is well-posed:
- u”(x) = f(x),   0 < x < 1,

u’(0) = u’(1) = 0,
∫0

1u (x)dx = 0.
• The last says: of all possible solutions u(x) + constant, we 

choose the one with zero mean. 
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The discrete problem is not well posed
• Since all row sums of Ah are zero, then 1h ∈ N(Ah).

• It’s easy to see that dim(N(Ah)) = 1, so N(Ah) = span{1h}.
• By the Fundamental Theorem of Linear Algebra, Ahuh = fh 

has a solution if & only if fh ∈ N((Ah)T)⊥.

• For our simple case: N((Ah)T) = c(1/2, 1, 1, …, 1, 1/2)T.
• Thus, Ahuh = fh has a solution if & only if

 fh ⊥  c(1/2, 1, 1, …, 1, 1/2)T.
• So, the discrete compatibility condition is

1
2
f0
h + f j

h

j=1

n−1

∑ +
1
2
fn
h = 0

???
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We have two issues to consider

• Solvability: A solution exists iff fh ∈ R(A) = N((Ah)T)⊥.

• Uniqueness:  If uh is a solution, then so is uh + vh for 
any vh ∈ N(Ah).

• Note that if Ah  = (Ah)T,  then N((Ah)T) = N(Ah)
    & solvability & uniqueness can be handled together.

• This is easily done. Multiply the first & last equations 
by 1/2, giving    

???
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Ah =
1
h2

1 −1
−1 2 −1

−1 2 −2
  

−1 2 −1
−1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.
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The new system is symmetric
• We have the symmetric system                 :

• Solvability is guaranteed by ensuring that     is 
orthogonal to the constant vector 1h:

 
f
h
,1h = f j

h

j=0

n

∑ = 0

 Â
huh = f

h

 f
 h
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1
h2
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1 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 1
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��������

�

��������

uh
0

uh
1

uh
2
...

uh
n�1

uh
n

�

��������

=

�

��������

fh
0 /2
fh
1

fh
2
...

fh
n�1

fh
n/2

�

��������
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One-sided differences at boundary
a similar result

• No ghost points: 

• This yields the system

0      1                j-1      j       j+1              n-1     n

1 ≤≤ nj

2 2
un − un−1

h
= 0u1 − u0

h
= 0

u '(1) ≈ un − un−1
h

278

u '(0) ≈ u1 − u0
h

−uj−1 + 2uj − uj+1

h2
= f j

′′u (1) ≈
−uj−1 + 2uj − uj+1

h2
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The well-posed discrete system
back to central differences @ boundary

• The (n+2)x(n+1) system is:

   
or, more simply

(choose the zero mean solution)

for one-sided scheme
0

 

0
 

−un−1 + un
h2

= fn
2

1≤ j ≤ n −1

ui
h = 0

j=0

n

∑

u0 − u1
h2

= f0
2

 A
 huh = f

h
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Multigrid for the Neumann problem
• We must have the interval endpoints on all grids

• Relaxation is performed at all points, including endpoints:

• We add a global Gram-Schmidt single step after relaxation 
on each level to enforce the zero-mean condition:

xn /2
h xn

h

xn /4
2h xn /2

2h
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 vn
h ← vn−1

h + h2 f n
h

 
vj
h ←

vj−1
h + vj+1

h + h2 f j

h

2
←

←
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Interpolation must include the 
endpoints

We use linear interpolation:
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Restriction also treats 
the endpoints

    For restriction, we use                      , yielding the 
values

42
fff 10

2
0

hhh += 11

fff n 
hh

n-1
h

n
2 +=    

2
1

4
1

424
ffff

h
jj

hh
j

h
j 12212
2 ++= 111

+−
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The coarse-grid operator

• We compute the coarse-grid operator using the 
Galerkin condition

                      .
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Coarse-grid solvability

• Assuming      satisfies                   , the solvability 
condition, we can show that theoretically the coarse-
grid problem                                      is also solvable.

• To be certain numerical round-off does not perturb 
solvability, we incorporate a Gram-Schmidt-like step 
each time a new right-hand side        is generated for 
the coarse grid:

f
h

f
2h

f

ff 2
22

22

22 h
hh

hh

hh

,

,

−← 1
11

1

.
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Neumann problem: An example
    Consider the problem

    
    which has                            as a solution for any c 

(c = -1/12 gives the zero mean solution).  

V(2,1)
cycles

grid size average number
n  conv. factor of cycles

32 6.30E-11 0.079 9.70E-05 9
64 1.90E-11 0.089 2.40E-05 10

128 2.60E-11 0.093 5.90E-06 10
256 3.70E-11 0.096 1.50E-06 10
512 5.70E-11 0.100 3.70E-07 10

1024 8.60E-11 0.104 9.20E-08 10
2048 2.10E-11 0.112 2.30E-08 10
4096 5.20E-11 0.122 5.70E-09 10

, , ,

u(h) − vh
h

rh
h
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7. Selected applications
7b. Anisotropic problems

• All problems considered thus far have had -h-2 as 
the off-diagonal entries.

• We consider two situations when the matrix has 
two different constants on the off-diagonals.  
These situations arise when
‣ the (2-d) differential equation has constant but 

different coefficients for the derivatives in the 
coordinate directions

‣ the discretization has constant but different mesh 
spacing in the different coordinate directions 

286
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We consider two types of anisotropy
• Different coefficients on the derivatives

- uxx - εuyy = f
    discretized on a uniform grid with spacing h .

• Different mesh spacings:

hx = h =
1
n

hy =
hx
ε
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Both problems lead to the same 
stencil

 −+−
+

−+−

h

uuu

h

uuu kjkjkjkjkjkj +,,−,,+,,−

2

11

2

11 22

ε

ε
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Why standard multigrid can fail

• Note that Ah has weak connections in the y-direction.  
MG convergence factors degrade as ε gets small, with 
poor performance already at ε = 0.1. 

• Consider the limiting case ε ⇒ 0: 
• Collection of disconnected 1-D problems!
• Point relaxation smoothes oscillatory errors in the           

x-direction (strong connections), but with no 
connections in the y-direction, the errors in that 
direction will generally be random; point relaxation 
provides no smoothing in the y-direction. 
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We analyze weighted Jacobi
The eigenvalues of the weighted Jacobi iteration 
matrix for this problem are
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Two strategies for anisotropy

• Semicoarsening:  The equations are weakly 
coupled in the y-direction, so we can’t expect the 
error after point relaxation to have any connection 
to the errors above or below it. We therefore can & 
should coarsen only in the x-direction.

• Line relaxation: The equations are strongly 
coupled in the x-direction, so we could solve 
simultaneously for all the unknowns along lines of 
constant y. This should expose whatever weak 
smoothness there might be in the x-direction, which 
should allow standard coarsening.
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Semicoarsening with point relaxation
• Point relaxation on                                smoothes in the 

x-direction. Coarsen by removing every other y-line. 

• We do not coarsen along the remaining y-lines.

• Semicoarsening is not as “fast” as full coarsening. The 
number of points on Ω2h is about half the number of 
points on Ω2h, instead of the usual one-fourth.
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Interpolation with semicoarsening

• We interpolate in the 1-D way along each line of 
constant y.

• The formulas for interpolating the correction 
from the coarse to the fine grid for the 2D model 
problem are
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Line relaxation with full coarsening

• The other approach to this problem is to do the 
usual full coarsening, but to relax entire x-lines 
(constant y) of variables simultaneously.

• Consider an x-line equation specified by a fixed j:

−vi, j+1
−vi−1, j +(2 + 2ε)vi, j −vi+1, j

−vi, j−1

= h2 fi, j 1 ≤ i ≤ n-1

−vi−1, j + (2 + 2ε)vi, j − vi+1, j = h
2 fi, j + vi, j+1 + vi, j−1
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Line relaxation

• Nice 1D system, analogous to the discretization of 
-u” + αu = g,      α = 2εh-2 > 0!

• One sweep of line relaxation consists of solving a tridiagonal 
system for each constant y. Total cost is an optimal O(n2).

• Each solve can be done by Gaussian elimination since the 
system is tridiagonal, or a 1D multigrid solver (useful for 
generalization to higher dimensions).

• The individual lines can be solved simultaneously in a Jacobi 
way or sequentially in a Gauss-Seidel way.

−vi−1, j + (2 + 2ε)vi, j − vi+1, j = h
2 fi, j + vi, j+1 + vi, j−1
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Why line relaxation works

   Eigenvalues of the weighted block Jacobi iteration matrix:

0.2
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Semicoarsening & line relaxation
• We might not know the direction of weak coupling 

or it might vary over the domain.

• Suppose we want a method that can handle either

                                         or 

• We could use semicoarsening in the x-direction to 
handle      & line relaxation in the y-direction to  
take care of     . 
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Semicoarsening & line relaxation

• The original grid. • Original grid 
viewed as a stack 
of “pencils.” Line 
relaxation is 
used to solve 
problem along 
each “pencil”. 

• Coarsening is 
done by deleting 
every other 
pencil.
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An anisotropic example

• Consider - uxx - εuyy = f with u = 0 on the boundaries of the 
unit square, & stencil given by

                                                                 .

• Suppose that f (x,y) = 2(y - y2) + 2ε (x - x2) so that the 
exact solution is u (x,y) = (y - y2)(x - x2).

• Note: If ε is small, then the x-direction dominates, while if  
ε is large, then the y-direction dominates.
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What is smooth error?

• Consider ε = 0.001 & suppose point Gauss-Seidel is 
applied to a random initial guess.  The error after 
50 sweeps appears as: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02
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0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02
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0.1
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Error along line of constant x

Error along line of constant y
xy
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We experiment with 3 methods

• Standard V(2,1)-cycling, with point Gauss-Seidel 
relaxation, full coarsening, & linear interpolation.

• Semicoarsening in the x-direction. Coarse & fine 
grids have the same number of points in the y-
direction. 1-D full weighting & linear interpolation 
are used in the x-direction, with no y-coupling in 
the intergrid transfers.

• Semicoarsening in the x-direction combined with 
line relaxation in the y-direction. 1-D full weighting 
& interpolation.
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With semicoarsening, the 
operator must change

• To account for unequal mesh spacing, the residual & 
relaxation operators must use a modified stencil:

• Note that, as grids become coarser, hx grows while 
hy remains constant.

.
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How do the 3 methods work for 
various values of ε ?

   Asymptotic convergence factors of V(2,1)-cycles:

    Note: semicoarsening in x works well for ε  < 0.001 
but degrades noticeably even at ε  = 0.1.

scheme 1000 100 10 1 0.1 0.01 0.001 1E-04
standard method 0.95 0.94 0.58 0.13 0.58 0.90 0.95 0.95

x-semi 0.94 0.99 0.98 0.93 0.71 0.28 0.07 0.07
x-semi & line relax 0.04 0.08 0.08 0.08 0.07 0.07 0.08 0.08

ε

y-direction strong x-direction strong

n = 16

why is this bad???

Poisson
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A semicoarsening subtlety
• Suppose ε  is small, so that semicoarsening in x is 

used. As we progress to coarser grids, hx
-2 gets small 

but hy
-2 remains constant.

• If, on some coarse grid, hx
-2 becomes comparable to 

ε hy
-2, then the problem effectively becomes 

recoupled in the y-direction.  Continued 
semicoarsening can produce artificial anisotropy, 
strong in the y-direction.

• When this occurs, it is best to stop semicoarsening & 
use full coarsening on any further coarse grids.   
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• Non-uniform grids are commonly used for domain or 
data irregularities or emerging solution features. 

• Consider how we might approach the 1-D problem
- u”(x) = f(x),   0 < x < 1,

u(0) = u(1) = 0
   posed on the following nonuniform grid:

7c. Variable meshes

7. Selected applications

x = 0                  x = 1

x0                      xj - 1  xj           xj + 1                       xn 
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We need some notation for the 
mesh spacing

    Let n be a positive integer.  We define the spacing 
interval between xj & xj + 1: 

hj + 1/2  ≡ xj + 1 - xj ,   j = 0, 1, …, n -1.

         hj + 1/2

x = 0                  x = 1

x0                      xj - 1  xj            xj + 1                    xn

306
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Building second divided differences

uj-1            uj           uj+1             

uj-1/2 = (uj+1/2 - uj-1/2)/hj’’ ’ ’

hj  =  (hj-1/2 + hj+1/2)/2

hj-½                                                        hj+1/2

| |

uj-1/2 = (uj - uj-1)/hj-1/2' uj+1/2 = (uj+1 - uj)/hj+1/2'
↓ ↓
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The discrete differential operator
• Using 2nd-order finite differences (& messy 

algebra!), we obtain the discrete representation

 

    where

• Multiplying by (hj-1/2 + hj+1/2)/2 yields an SPD 
matrix with stencil

α j
h =

2

hj− 12 hj− 12 + hj+ 12( ) β j
h =

2

hj+ 12 hj− 12 + hj+ 12( )

.

&

1≤ j ≤ n −1
u0
h = un

h = 0

.

Ah = − 1
h
j− 1
2

1
h
j− 1
2

+ 1
h
j+ 1
2

− 1
h
j+ 1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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Modify interpolation for variable h
• We choose every other fine-grid point as a coarse-

grid point:

• In [x0 ,  x2 ], linear means    

       v (x) = v0   + (v1  - v0   ) (x - x0 )/(x2  -  x0  ).

• Plug in x = x1  : writing vh = I2h vh yields 

h hh2h 2h2h

hh

h

xn /2
2h

xn
h

h

1 ≤ j ≤ n/2-1., ,
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Proper linear interpolation is needed

error
simple averaging

v2j+1 = (vj   + vj+1)/2h 2h 2h

linear interpolation
error

↑OK if the point is here.
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We use the variational properties 
to derive restriction & A2h

• This produces a stencil on Ω2h that is similar, but 
not identical, to the fine-grid stencil.  If the 
resulting system is scaled by (hj-1/2 + hj+1/2), then 
the Galerkin product is the same as the fine-grid 
stencil.

• For 2-D problems, this approach can be generalized 
readily to tensor-product grids.  However, for 
general irregular grids, AMG is a better choice.  
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Tensor-product grids?

312
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• A common difficulty is variable coefficients, 
exemplified in 1-D by

- (a(x) u’(x))’ = f(x),   0 < x < 1,
u(0) = u(1) = 0,

   where a(x) is a positive function on [0,1]. 
• We seek to develop a conservative, or self-adjoint, 

method for discretizing this problem.
• Assume we have available to us the values of a(x) 

(aj + 1/2 ≡ a (xj + 1/2)) at midpoints of the uniform grid 

7d. Variable coefficients
7. Selected applications

xn
h
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Discretize using central differences

   We can use second-order differences to 
approximate the derivatives.  To use a grid spacing 
of h, we evaluate a(x)u’(x)  at points midway 
between the gridpoints: 

=

Points used to evaluate (au’)’  at xj 

xn
h

314
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Discretize using central differences
(cont’d)

   To evaluate                ,  we must sample a(x) at the 
point xj + 1/2 & use second-order differences: 

   where 

Points used to evaluate (...)’ at xj

Points used to 
evaluate u’ at

xj + 1/2

.

xn
h

315

u0 = un = 0
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The basic stencil

   We combine the differences for u’ & for (au’)’  to 
obtain the operator

   & the problem becomes

.
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Coarsening the variable 
coefficient problem

• A reasonable approach is to use a standard multigrid 
algorithm with linear interpolation, full weighting, &  
the stencil

   where

• The same stencil is obtained by the Galerkin relation.

.
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Variable mesh vs. variable coefficients
after scaling by  ηj = (hj-1/2 + hj+1/2)/2  &  h

• Variable mesh

• Variable coefficients

• Correspondence

⇔ aj−1/ 2

h
          ⇔ aj +1/ 2

h
1

hj−1/ 2

1
hj +1/ 2

318

� 1
h

j� 1
2

uh
j�1 +

�

� 1
h

j� 1
2

+
1

h
j+

1
2

�

� uh
j �

1
h

j+
1
2

uh
j+1 = �jf

h
j

1
h

�
�a

j� 1
2
uj�1 +

�
a

j� 1
2

+ a
j+

1
2

�
uj � a

j+
1
2
uj+1

�
= hfj

CU-Boulder of 396

A variable coefficient example
• We use V(2,1) cycle, full weighting, linear interpolation.
• We use a(x) = 1 + ρ sin(kπx)  &  a(x) = 1 + ρ rand(x).

             n = 1024   
             a(x) = 1 + ρ sin(kπx)            a(x) = 1 + ρ rand(x)

0.085
0.083
0.173
0.394
0.472
0.6720.95 0.191 0.681 0.69 0.694

k=3 k=25 k=50 k=100
0 0.085 0.085 0.085 0.085

0.25 0.084 0.098 0.098 0.094
0.5 0.093 0.185 0.194 0.196

0.75 0.119 0.374 0.387 0.391
0.85 0.142 0.497 0.511 0.514

ρ
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Standard multigrid degrades if   
a(x) is highly variable

    MG for variable coefficients is equivalent to MG (with 
simple averaging) for Poisson’s equation on a variable mesh.

    But simple averaging won’t accurately represent smooth 
components if          is close to       but far from           .

-(au’)’ = f

-u’’ = f
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Pretend variability comes from mesh

• We can solve for the mesh sizes:

• So linear interpolation yields

• This is like saying that

• We just used operator interpolation!
• Works for any stencil:   [-α   α + β  -β].
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which can be rewritten asor, assuming that we’ve already interpolated to 
C-points 2j & 2i+2, it can be rewritten as
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Operator interpolation

• Assume smooth error with the ansatz that r = 0. 

• Applying this at point i :   - α ei-1 + (α + β)ei  - β ei+1 = 0.

• Solving for i :

                   ei  =           ei -1 +           ei+1 .

• Accidental: F-points connect only to C-points.What do we do 
otherwise???

α
α + β

β
α + β

• Assume that the error is known on the coarse grid: 

i-1 i i+1

x x

Easy!

Our task!

So we can assume that e is known 
on the fine grid at F-points i±1. 

We then just need to relate ei to ei±1.

i-1          i           i+1
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√

√

√

√

√
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Homework Due !

Chapters 1-5:                                Chapters 6-10:
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8. Algebraic multigrid (AMG)
 Automatically determines coarsening. 

 AMG has two distinct phases:
—setup phase: define MG components.
—solution phase: perform MG cycles.

 AMG differs from geometric MG:
—fix relaxation: point Gauss-Seidel.
—choose coarsening: “grids” & prolongation, P.

 AMG principles:
—algebraically smooth errors have small residuals: Ae ≈ 0.
— “strong” connections mean good neighbors: good C-points.
—smooth error is locally almost constant: e ≈ c for this A.
—prolongation must match “smooth” error: e ∈ range(P ).
—variational conditions apply: given P, set R=PT & Ac=RAP.
—only real task is to compute C & P: write eF in terms of eC.

unstructured grids, variable coefficients,…   assume SPD A
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-1-1
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-1

4

-1-1

-1

3-1

-1

2

Why AMG?

Even if you
could choose
good C points,
how would you

get the weights?

Even with
this nice 

stencil, the
geometry
can give us

trouble!

1 −1
−1 1

⎛
⎝⎜

⎞
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Graph Laplacian
all links
are -1

10 links4 links
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  Solve Phase 
Standard MG processes: V-cycle, W-cycle, FMG, FAS, …

AMG has two phases
• Setup Phase

– Select coarse “grids,” 

– Define interpolation, 

– Define restriction & coarse-grid operators,
                        

  All AMG processes parallelize well, although coarse-grid
    selection must be done with care.

327
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AMG fundamental concept:
smooth error = “small” residuals/energy

• Error propagation via weighted Jacobi smoothing:
ek+1 = (I - ωD-1A) ek .

• Error that is slow to converge satisfies
(I - ωD-1A) e ≈ e   ⇒  ωD-1A e ≈ 0

•   A little more precisely, assuming that ωD ≈ I, then 
   slow-to-converge error has relatively small energy:

 <Ae, e >  <<  <e, e>||A||

⇒  r ≈ 0
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AMG uses strong connection to 
determine MG components

• Smoothing assumption:   
r ≈ 0   or   <Ae, e > ≈ 0.

• We say that i is strongly connected to j if

• Zero-row-sum “M-matrices” actually satisfy

• So smooth error is more or less constant 
along strong connections.

< Ae,e >  ≈ −
aij
2i≠ j

∑ (ei − ej )
2 ≈ 0.

.
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We really mean matrices that 
have stencils like we’ve seen.
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Operator-induced interpolation

i
kj

f
C-points j, k

F-point i
F-point f 

assume a graph of A & given coarse points

ri = 0    ⇒   aii ei + aij ej + aik ek + aif ef = 0.?

⇒ F-points determined by C-points!
We’ll instead replace ef by ej & ek in proportion to afj & afk . 

Erase it?!
Use the smoothness principle that e is locally almost constant.

    ef = ei    ⇒      (aii + aif)ei + aij ej + aik ek = 0

To define ei in terms of ej & ek , we must eliminate ef .
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Some useful set definitions

• The set of strong connections of a variable ui,  
that is, the variables upon whose values the value 
of ui depends, is defined as 

• The set of points strongly connected to variable   
ui is denoted                          .

• The set of coarse-grid variables is denoted C.
• The set of fine-grid variables is denoted F.
• The set of interpolatory coarse-grid variables 

used to interpolate the value of the fine-grid 
variable ui is denoted Ci.

.
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Choosing the coarse grid

• Two Criteria:

– (C1) For each i ∈ F, every j ∈ Si  should either be in C 
or strongly connected to at least one point in Ci .

 
– (C2) C should be a maximal subset with the property 

that no C-points are strongly connected to each other.

• Satisfying (C1) & (C2) is sometimes impossible.  

• We use (C2) as a guide while enforcing (C1).
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Selecting the coarse-grid points
choose C-point to allow most F-points (“value”)

C-point selected 
(point with 
largest “value”)
Neighbors of 
C-point become 
F-points
Next C-point 
selected (after 
updating “values”)
F-points 
selected, etc.
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Sample grids for the Laplacian
5-pt FD, 9-pt FE (quads), & 9-pt FE (stretched quads) 

5-pt FD 9-pt FE (quads)

9-pt FE 
(stretched quads)

334
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Prolongation is based on smooth error, 
strong connections (from M-matrices) 

Prolongation :

Smooth error is given by:
ri = aiiei + aij

j∈C∪F
∑ ej ≈ 0.

Actually, we want to allow for the possibility 
that we don’t interpolate from all of C…

i

C
C

C
F F

F
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Pe( )i =
ei ,              i ∈C

wik
k∈C
∑ ek ,     i ∈F

⎧
⎨
⎪

⎩⎪
.

connections
strong to C
strong to F

weak 
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Prolongation is based on smooth error, 
strong connections (from M-matrices) 

Smooth error at i means that

(C1) ⇒ j is strongly connected to Ci,
so ej ≈ ek for k ∈ Ci & we can write ej
as a properly scaled sum of the ek: 

           Strongly connected C-pts.
           Strongly connected F-pts.
           Weak connections.

Di {
Ci 

aiiei = − aikk∈Ci
∑ ek − aijj∈Di

∑ ej .

ej =
ajkk∈Ci

∑ ek
ajkk∈Ci

∑ .

Now we just substitute to get interpolation weights!

i

C
C

C
F F

F

only if i is strongly
connected to j , but
a weak connection

is no worries!  one of these
must be strong

weak so
no worries!
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Interpolation weights--the algebra

ej =
ajkk∈Ci

∑ ek
ajkk∈Ci

∑ =
ajk

a jll∈Ci
∑k∈Ci

∑ ek

aiiei = − aikk∈Ci
∑ ek − aijj∈Di

∑ ej

+

⇒

wik = � 1
aii

�
aik +

�
j�Di

aij
ajk�

l�Ci
ajl

�
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Ideal setting

= C-point•
= F-point•

Suppose F-points are only connected to C-points.
Interpolation only care about smooth e, so assume ri = 0.

•
• • •

•

-1

-1-1

-1

4

The stencil tells us what ei is 
in terms of ek at the C-points.
Here, ei = Σ(¼) ek.

338

1

11

1 We often just show 
connections without 
minus signs or diagonal.
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Real setting

= C-point•
= F-point•

Suppose F-points are usually connected to other F-points.
How do we eliminate these F-F connections?

•
• • •

• •

-1

-1-1

-1

5

-1

We could just cut it.

But then we get a stencil 
that says ei = Σ(⅕) ek.

OK, so just change aii.

-1

-1-1

-1

4

-1
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Can we do better?
• We now have a direct way to determine interpolation.

• We just clip F-F connections & then adjust the diagonal 
(denominator) to make the weights sum to 1.

• Observe that what we are doing here is trying to write 
an F-point as a combination of neighboring C-points in a 
way that reflects the nature of smooth error.

• But if we assume that F-points are in the minority, can 
we use this our crude direct interpolation idea to 
eliminate an F-F connection by replacing the offending F-
point with a linear combination of C-points in i’s 
neighborhood (Ci)?
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Example of AMG compution of P

= C point•
= F point• A =

−1 −1 −1
−1 8 −1
−1 −1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

?1

11

11

11

1

1 11

11

11

1

1

1

1/2

1/21.5

11

1

1.51

1

−2
−2 8 −2

−2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 2 

 2 2

2

341

• • •
• • •
• • •

ei = Σ(¼) ek
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AMG setup costs

• Many geometric MG methods need to compute prolongation 
& coarse-grid operators.

• The only additional expense in the AMG setup phase is the 
coarse-grid selection algorithm. 

• So AMG’s setup phase is usually only 10-25% more expensive 
than in geometric MG.

• But AMG is more robust in terms of geometric difficulties.
342
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AMG performance:
Sometimes a success story

• AMG performs extremely well on the model problem 
(Poisson’s equation, regular grid): optimal convergence 
factors (e.g., 0.14) & scalability w.r.t. problem size.

• AMG appears to be both scalable & efficient on 
diffusion problems on unstructured grids (e.g., 0.1-0.3).

• AMG handles anisotropic diffusion on structured & 
unstructured grids relatively well (e.g., 0.35).
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How does it perform (vol I)?
regular grids, plain, old, vanilla problems,
unit square, n = 64, Dirichlet boundaries

• Laplacian:

• Anisotropic 5-Point Laplacian: 

 Convergence Operator Time

Stencil per cycle Complexity per cycle

5-pt 0.054 2.21 0.29
5-pt skew 0.067 2.12 0.27
9-pt (-1,8) 0.078 1.30 0.26
9-pt (-1,-4,20) 0.109 1.30 0.26

ε 0.001 0.01 0.1 0.5 1 2 10 100 1000
Convergence/cycle 0.084 0.093 0.058 0.069 0.054 0.079 0.087 0.093 0.083

−εuxx − uyy = 0

−uxx − uyy = 0

344

�

�
�1 �1

4
�1 �1

�

�

�

�
�1 �1 �1
�1 8 �1
�1 �1 �1

�

�

�

�
�1 �4 �1
�4 20 �4
�1 �4 �1

�

�



CU-Boulder of 396

How does it perform (vol II)?
structured meshes, rectangular domains

    5-point Laplacian on regular rectangular grids
     Convergence factor (y-axis) plotted against number of nodes (x-axis)
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How does it perform (vol III)?
unstructured meshes, rectangular domains

    Laplacian on random unstructured grids    (regular 
triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

        Convergence factor (y-axis) plotted against number of nodes (x-axis)
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How does it perform (vol IV)?

Problems used: “a” means parameter c = 10, “b” means c = 1,000

 16642 points   66049 points   13755 points    54518 points
  structured       structured     unstructured    unstructured

 −∇i d(x, y)∇u( ) = 0 on structured, unstructured grids
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How does it perform (vol V)?
Laplacian operator, unstructured grids

Convergence factor

0.1002

0.1715

0.2198

0.1888

0.2237

0.2754

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50000 100000 150000 200000 250000 300000 350000

Gridpoints

Now for a glimpse at several other AMG topics…
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AMG for systems

• How can we do AMG on systems?

• Naïve approach: “Block” AMG (block Gauss-Seidel, 
using scalar AMG to “solve” at each cycle) 

Great Idea! Except that it often doesn’t work!
    Block AMG doesn’t account for strong inter-variable coupling.
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AMG for systems: A solution 
• To solve the system problem, allow interaction between 

the unknowns at all levels: 

                                        &            .

• This is called the “unknown-based” approach.
• 2-D biharmonic (-Δ)2u = f, Dirichlet & Neumann 

boundaries, unit square, uniform quadrilateral mesh:

Mesh spacing 0.125 0.0625 0.03135 0.015625

Convergence factor 0.22 0.35 0.42 0.44
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Adaptive AMG (αAMG)
to broaden applicability

adaptive interpolation

based on discovering the sense of smoothness
+ 

adaptive C-point choice

auto-determination of good coarse points
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Standard interpolation

   Standard AMG collapses stencils by assuming smooth 
error is locally constant (Poisson “sense of smoothness”):

ej =
ajkk∈Ci

∑ ek
ajkk∈Ci

∑

Strong C F & Weak C

aiiei = − aikk∈Ci
∑ ek − aijj∈Di

∑ ej
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Isn’t standard interpolation OK? 

• Suppose someone tried to make A “nice” for relaxation 

by scaling the diagonal so it’s the identity:

A ← D-1/2AD-1/2,    D = diag(aii).

•  Relaxation still gives small residuals:

A e ≈ 0.
• But

A e = (D-1/2AD-1/2)e ≈ 0  ⇒ A(D-1/2e) ≈ 0 ⇒ e ≈ D1/2 c.

• So “smooth” here means ei ≈ c  aii . This could vary a lot!   

How can we discover what smooth vectors actually look like?
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Discovering smoothness

• What if we found a smooth error x that’s far from c ?

• If, say, xj = 1.4xk for j ∈ Di & all k ∈ Ci, then we could set 

                 ej  →  ( Σ  ajk 1.4ek )/( Σ  ajk ).

• If xj /xk varies with k, then it’s just a bit more complicated.

k∈Ci k∈Ci

Relax on Ax = 0 !!!
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Adaptive C-point choice
• What does a “good” C mean?
• We want each i in F to “depend” on C :
          ek given ∀ k ∈ C ⇒ ei well determined ∀ i ∈ F. 

• Let’s look at the matrix:

• What do we know about smooth e?
• Given ec, is ef well determined? Does rf = 0 determine ef ?

• Given ec, when does rf = 0 not determine ef ? 

• What if Aff  is singular? 

• Then ef  cannot fully depend on ec .

• We want Aff to be well conditioned!!! 

rf = Aff ef + Afcec = 0.

Systems???
Irregular grids???
Variable coeffs???

How can we tell?
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Compatible relaxation (CR) 
• To ensure that C is a really good set of coarse grid points, 

we want Aff to be well conditioned. Thus, we can assess 
whether we have good C-points by “CR”: 

relax on Aff xf = 0. 
• Fast CR means that F depends on C in the sense that 

smooth error (rf  = 0) is quickly recovered from C.
• Fast CR also has the benefit that the F-point residuals 

can be made really small after F-point relaxation.
• We can also show that fast CR means that a P exists that 

gives good MG convergence:   -Aff Afc .
• This P isn’t local; hopefully, CR can give us a good local P. 
Problem: If Aff isn’t well conditioned, what then???

-1
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√

√

√

√

√

√

Homework Due !
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9. Multilevel adaptive methods
fast adaptive composite grid method (FAC)

two-spike problem

Local enhancement to resolve
special regions of activity or interest.
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Model 1-D problem

- u”(x) = f(x), 0 < x < 1
 u(0) = u(1) = 0

0 1
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Local refinement
suppose f(x) has a spike at x = 3/4

but is smooth elsewhere 

O
fine grid ( = interface)

coarse grid

x

y = f(x)

 

Unneeded
resolution

&
accuracy.
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Strategy

• Recognize that there’s little value of having the fine grid 
in the smooth region, [0, 1/2].

• Start with uniform grid & standard MG, then:
– first eliminate relaxation in [0, 1/2].
– then eliminate intergrid transfers & residual calculations.

• Then interpret this process via the composite grid                     
(= 2h-points in [0, 1/2] + h-points in [1/2, 1]).

• We’ll try absurdly hard to eliminate work @ x = 1/2,
but we have in mind multi-dimensions & smaller patches.
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Local-Relaxation/Global-Correction MG

Compute & transfer
residuals.

To save all of the work of computing & transferring residuals
& corrections in regions where they don’t change,

we need some messy ALGEBRA!

We start by using local relaxation &
eliminating unnecessary residual transfers.

Trust me on the more messy stuff…

Transfer & add 
correction.

→ → WARNING: You won’t get zero residuals on all of grid h. ← ←
Remember that the concept is right here, but we need to

make it efficient--without changing the results!!! 
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Now correct via the coarse grid as usual.
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Relax only in the local region.
x = 1/2 becomes a boundary point.
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Eliminate relaxation

• Relax on vh on the local fine grid (x5
h, x6

h, x7
h).

• Compute rh = fh - Ah vh (@x3
h -x7

h) & transfer to 2h:
f2

2h
 ! (r3

h  + 2r4
h  + r5

h )/4  &  f3
2h

 ! (r5
h  + 2r6

h  + r7
h )/4.

• Compute an approximation, v2h, to the solution of the 2h 
residual equation, A2h u2h = f2h.

• Update the residual at x1
2h for later cycles:   

 f1
2h

 ! f1
2h - (- v0

2h + 2v1
2h - v2

2h )/(2h)2.

• Correct:   vh ! vh + I2hv 2h.

notation
vh = (vi

h ) 

h

Once & forall:
it changes only

on 2h.↩• Initialize vh = 0  &  f1
2h

 ! (f1
h  + 2f2

h  + f3
h )/4. 

cycle
Why save vh outside of local region? 363
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• Initialize vh = 0, w1
2h = 0,  & f1

2h
 ! (f1

h  + 2f2
h  + f3

h )/4. 
• Relax on vh on the local fine grid (x5

h, x6
h, x7

h).
• Compute r h = f h - Ah v h (@x2

h -x7
h) & transfer to 2h:

f2
2h

 ! (r3
h  + 2r4

h  + r5
h )/4  &  f3

2h
 ! (r5

h  + 2r6
h  + r7

h )/4.
• Compute an approximation, v2h, to the solution of the 2h 

residual equation, A 2h u2h = f2h.
• Update the residual at x1

2h for later cycles:   
 f1

2h
 ! f1

2h - (- v0
2h + 2v1

2h - v2
2h )/(2h)2.

• Accumulate the 2h approximation: w1
2h  ! w1

2h + v1
2h.

• Correct:   vh ! vh + I2hv 2h (@x3
h -x7

h).

Store v h only @ x3
h -x7

h    &  save v2
h on 2h (call it w1

2h). 

h

Eliminate more
f2

2h involves r3
h & r4

h,
so we “need” v2

h -v7
h. 

cycle
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r3
h doesn’t change on h.

Compute change in r3
h on 2h.

• Initialize v h = 0, w1
2h = 0,  & f1

2h
 ! (f1

h  + 2f2
h  + f3

h )/4. 
• Relax on v h on the local fine grid (x5

h, x6
h, x7

h).
• Compute the right sides for 2h: 

f2
2h

 ! g2
2h - (- w1

2h + 2 v4
h - v6

h )/(2h)2   & 
f3

2h
 ! (r5

h  + 2r6
h  + r7

h )/4 .
• Compute an approximation, v2h, to the solution of the 2h 

residual equation, A2h u2h = f2h .
• Update the residual at x1

2h for later cycles:
   f1

2h
 ! f1

2h - (- v0
2h + 2 v1

2h - v2
2h )/(2h)2.

• Accumulate the 2h approximation: w1
2h  ! w1

2h + v1
2h.

• Correct:   vh ! vh + I2hv 2h (@x4
h -x7

h).

Eliminate the rest

2h residual @ x2
2h = g2

2h - (- w1
2h + 2 v4

h - v6
h )/(2h)2,

where g2
2h = (f3

h  + 2f4
h  + f5

h )/4. (Messy algebra!)

h
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Interpretation
composite grid

      What equation in vh are we solving?

(- v0
c + 2 v1

c - v2
c )/(2h)2 = f1

c
   ≡ (f1

h + 2 f2
h + f3

h )/4

(- vc
i-1 + 2 vi

c - vc
i+1

 )/h      = fi
c   

 ≡ fh
i+2            i = 3,4,5

(- v1
c + 3v2

c - 2v3
c )/(2h)2 = f2

c
   ≡ (f3

h + 2 f4
h)/4

}usual

@interface

→ → The key is to treat the interface correctly. ← ←
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Finite Element Local Refinement

• • • • •
•

•••

continuous piecewise linear: 
1 at node i=5,6,7 only, 
0 @ all other nodes.

hε(5)

i=5

367

•

• • •• •••
hε(6)•

i=6

• • ••
•

••
hε(7)

• i=7

• • • ••••
•

• uh

•
•

CU-Boulder of 396

Local Fine-Grid Refinement

368

• • • ••••
•

• Hh

• • H2h

•
••

• •
•

•
• H2h∪Hh

•

•

oscillatorysmooth
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Abstract FE relaxation & 2h correction

• Minimize F(uh - s ε(i)) over s for i = 5,6,7 in turn.

  

• Minimize F(uh + u2h) over u2h in H2h.
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• • •
•

••
hε(7)

• i=7• •• • ••••
hε(6)•

i=6• •• • • • •
•

•••
hε(5)

i=5

•
h

• •
•

•• u2h

CU-Boulder of 396

Issues

• Adaptivity
• Error estimates
• Norms (proper scaling)
• Multiple dimensions

– Slave points
– More complicated stencils

• Data structures
• Parallel algorithms (AFAC)
• Time-space

◊ ◊ ◊
◊

◊

◊

◊

◊

◊
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Two-spike example (Laplacian)

• Global grid h & one double-patch refined level h/2.
• V(1,0)-cycles, Gauss-Seidel.
• Asymptotic convergence of the solver.
• Scaled L2 discretization error estimate.
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√

√

√

√

√

√

√

Homework Due !
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10. Finite elements
FE, a variational discretization methodology

FE methodology
FD methodology

method methodmethod

Other methods: finite volume, collocation, spectral, …

FD: differences at nodes & truncation error.
FE: weak form on discrete functions & approximation property.
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Discretization

What do you see?

•
• • •

•
• ••

•
→ →FIRST KEY POINT← ←

FE sees grid points (nodes or dofs) 
only as characterizations of

continuum functions.

But this is gobal.
You’re eyes see rises 

& drops coming.
We want to capture 

local physics.

374

•

This is a subspace view.
These discrete functions are 

in the space of solutions.

Discrete because they 
are determined by a 

finite number of nodes
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Localize

•
•

What choice 
do you have?

→ →SECOND KEY POINT← ←
FE functions are localized to ensure a sparse matrix.
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uh

Continuous piecewise linear functions

•
• • •

•
• ••

•

How do you take 
2nd derivatives of uh ?

→ →THIRD KEY POINT← ←
FE integrates away 2nd derivatives.

??? - u” = f  ???

376

How can you eliminate derivatives?
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Weak form!
−u" = f

⇒  − u"v = fv                        ∀v

⇒  (−u")vdx =∫ fvdx           ∀v∫
⇒  u 'v 'dx − u 'v |0

1 =∫ fvdx    ∀v∫
⇒  u 'v 'dx =∫ fvdx               ∀v∫ ∍ v(0) = v(1) = 0

⇒  u ',v '( ) = f ,v( )                   ∀v ∍ v(0) = v(1) = 0

hu    

↓
?
↓↓

u =  trial function
v =  test function

⇒ can actually be reversed to
⇐ if u is smooth enough.

So the weak & strong forms are “equivalent”.

Need basis for space of admissible uh & v. 
How would we discretize this?
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How is this weaker?
Hint: 2 ways.

Why we 
have 
H1!!!

↓
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Representation
a basis of “hat” functions

• • • • •
•

•••

ε(i) is 
continuous piecewise linear 

& 0 at all nodes except
node i where it’s 1.

 
h

hε(i)

Any continuous piecewise linear
function can be represented by

uh = Σi ui ε(i). h  h 

i

Now we’re back to 
using node values.

↵

378

•
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Weak form & Galerkin discretization
(u ',v ') = ( f ,v)                          ∀v ∍ v(0) = v(1) = 0.

↓ ↓
( uj

h
j∑ ε( j )

h ',ε(i )
h ') = ( f ,ε(i )

h )        ∀i.

(
j∑ ε(i )

h ',ε( j )
h ')uj

h = ( f ,ε(i )
h )        ∀i.

( uj
h

j∑ ε( j )
h ',v ') = ( f ,v)              ∀v ∍ v(0) = v(1) = 0.

↓

Ahuh = f h

379

the matrix is

Ah = a
ij

h( ) = (ε(i )
h ',ε( j )

h ')( )
& the right side is

f h = f
i

h( ) = ( f ,ε(i )
h )( )

So the unknown is                      ,                                           uh = uj
h( )

, .
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2D FE constructs
• Assume that Ω is the unit square.
• Consider an nxn grid of square “cells”.
• Continuous piecewise bilinear 

elements: Hh ⊂ H0
1(Ω).

• Each uh in Hh is determined by its node 
values. This is how we’ll represent them!

• Within each square:   
          uh = axy + bx + cy + d
  (uh is linear in each coordinate direction).

• If uh on one side of an element matches uh  
on the other at the nodes, then we want to 
know that it matches on the common edge 
so that uh is continuous: we want to know 
that specifying a piecewise bilinear 
function at the nodes gives us continuity.

hat
function

380Why do we care???
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Continuity
If 
  uh = axy + bx + cy + d 
in this cell, then uh = (ay0 + b)x + (cy0 + d)

on this y = y0  edge.  

Same on this cell.

So uh is linear on the edge.
If uh above & below the edge
have the same values at the   , 

then uh must be the same 
linear function on the edge. 

•

y
x

381

Linear!!!

•
• ••

••
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Weak form
• The Gauss Divergence Theorem & homogeneous 

boundary conditions yield

     (Lu, v) = (- uxx - uyy, v) = (-∇•∇u, v) = (∇u, ∇v). 

•  Note: 
  (∇u, ∇v) = ∫Ω(uxvx + uyvy)dΩ.

• So the problem becomes
      (∇uh, ∇vh) = (f, vh)     ∀ vh ε Hh 

 or
   ∫Ω(uxvx + uyvy )dΩ = ∫ΩfvhdΩ        ∀ vh ε Hh.h h h  h
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� 

∇u =
ux
uy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Towards the matrix equation
for nodal values

       (∇uh, ∇vh) = (f, vh)     ∀ vh ε Hh 

• Using uh(x,y) = Σij uij ε(ij) (x,y) & choosing vh = ε(kl): 
           Σij uij (∇ε(ij), ∇ε(kl)) = (f, ε(kl))     ∀ k, l.

• Matrix terms (∇ε(ij), ∇ε(kl)) are 0 when 
   |i - k|  or  |j - l|  >  1.

• We compute
  (∇ε(ij), ∇ε(ij)) = 8/3   &   (∇ε(ij), ∇ε(i ±1 j ±1)) = -1/3.
• Assume f is fairly smooth locally:
  (f, ε(kl)) = ∫Ωf ε(kl)dΩ ≈ h2f(xkl).

actually,
Bh fh

(mass matrix)

 h  h h

h h h h

 h  h

h  h    h h

h h

huh = (uij)    &   fh = (h2f(xkl))  
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h
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The matrix equation
Ahuh = fh

where   

     uh = (uij)   &   fh = (h2f(xkl))

& the matrix is given by the stencil

h

stiffness matrix

384

.Ah
ij =

1
3

�

�
�1 �1 �1
�1 8 �1
�1 �1 �1

�

�
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Some matrix properties

• Symmetric!  ij  “reaches” to  i±1j±1  as  i±1j±1  to  ij. 
• Singular?  Ah 1 = 0 ?!   Depends on boundaries!

    Dirichlet west boundary:

• Positive definite!  

    Diagonally dominant (strictly so @ boundaries).

       But now we need to understand the PDE better, 
       starting with choosing our universe of functions…
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0

A
ij
h = 1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

A
ij
h = 1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .A

ij
h = 1

3

−1 −1
8 −1
−1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .
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A word about Sobolev spaces
• We’re mucking about with forms like ∫Ω(uxvx + uyvy)dΩ, so we need to know 

that derivatives of functions in our universe can be multiplied together & 
integrated. It’s enough to have ∫Ω(ux

2
 + uy

2)dΩ  <  ∞, so our universe is    
H0

1(Ω) = {u : u, ux , uy ε L2(Ω), u|∂Ω = 0}, where L2(Ω) = {u : ∫Ωu2dΩ < ∞}.
• We want what we compute to get close to what we want, so we’re 

concerned about convergence in our universe: we need to know that limits 
of things that satisfy ∫Ω(ux

2
 + uy

2)dΩ  <  ∞ also satisfy it, that is, stay in 
our universe (completeness). Even if you start with nice continuous 
differential functions, you are led to some strange ones in your space.

• Think of L2(Ω) = {u : ∫Ωu2dΩ < ∞}. If u = 0 except at finitely many points 
(say, u (i/n, j/n) = 1 for i, j = 1, 2,…, n,), then ∫Ωu2dΩ = 0, so u = “0” ! This is 
true for any finite n, so it’s true for a countable infinity of nonzeros!

•• •• •• •••• • • • •• ••• •• •• •• •••• • • • •• ••• •• •• •• •••• • • • •• ••• •• •• •• •••• • • • •• •••
This is what
“0” looks like!
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FE twin towers
weak form               vs.               functional

• Model problem Ω ⊂ ℜ2:
 Lu ≡ - uxx - uyy = f    in  Ω
                         u = 0   on ∂Ω
• Sobolev spaces:
    L2(Ω) = {u : ∫Ωu2dΩ < ∞}
    H0

1(Ω) = {u : u, ux , uy ε L2(Ω), u|∂Ω = 0}
    (u, v) = ∫Ωu v dΩ
• L is self-adjoint positive definite (more later):
    “(Lu, v)” = (∇u, ∇v) = ∫Ω(uxvx+uyvy)dΩ = “(Lv, u)” 
    “(Lu, u)” > 0  if u≠0: ∫Ω(ux+uy)dΩ ⇒ u=c, but u|∂Ω=0.

387

(∇u, ∇v) = (f, v) (∇u, ∇u)/2 - (f, u)

• Duality: Solving Lu = f  is 
 equivalent to minimizing 
 the weak functional
   F(u) = “(Lu, u)”/2 - (f, u)
              = (∇u, ∇u)/2 - (f, u) 
• Short story: 
    1st derivative test
  ∇F(u) = Lu - f  = 0
    2nd derivative test
  F”(u) = L > 0

We use “(Lu, u)” for simplicity, 
but we really mean (∇u, ∇v). 

This is formal:
Lu is not defined 
on all of H0

1(Ω). 

2 2

Possible because
L is self-adjoint.
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Long story…
dropping “ ” from (L⋅, ⋅) for simplicity

• Using symmetry & linearity of L & bilinearity of the inner product:
   F(u + v)  = (L(u + v), u + v)/2 - (f, u + v)
                = (Lu, u)/2 + (Lu, v) + (Lv, v)/2 
   - (f, u)   -  (f, v)
                = F(u) + [(Lu, v) - (f, v)] + (Lv, v)/2.

• Suppose u minimizes F but [(Lu, v) - (f, v)] < 0 for some v. (Just flip 
the sign of v for the case [(Lu, v) - (f, v)] > 0.) Now replace v by εv:

   F(u + εv)  = F(u) + ε {[(Lu, v) - (f, v)] + ε(Lv, v)/2}] .
• Small enough ε>0 means [(Lu, v) - (f, v)] + ε(Lv, v)/2 < 0, which leads 

us to conclude that F(u + εv)  < F(u), a contradiction. 
• This contradiction shows that (Lu, v) - (f, v) must be 0 for all v. 

Since this argument can easily be reversed, we thus conclude that
   F(u + v)  ≥ F(u )     ∀ v ε H0

1(Ω)   ⇔   (Lu, v) = (f, v)     ∀ v ε H0
1(Ω). 

388
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Minimizing F via Rayleigh-Ritz
F(u) = (Lu, u)/2 - (f, u)

• Discretize by minimizing     
  F(uh) = (Luh, uh)/2 - (f, uh) 
  over  uh ε Hh. 

• Same as Galerkin that solves    
  (Luh, vh) = (f, vh)     ∀ vh ε Hh.

• Basis:   ε(ij) is the element of Hh that 
 equals 1 @ node ij & 0 elsewhere.

• Expansion:  uh(x,y) = Σij uij ε(ij) (x,y).

• Old problem:  What is Luh ≡ - uxx - uyy ???h h

h

hh

(Luh, vh) = (∇uh, ∇vh)
389 CU-Boulder of 396

Abstract FE relaxation

• Relaxation involves “local” changes: uh ← uh - s ε(ij) for some 
scalar s & εh = ε(ij).

But how do we pick s ???

• Use FE principle of minimizing F(uh - sεh) over s :
  F(uh - sεh) = (L(uh - sεh), uh - sεh)/2 - (f, uh - sεh) 
            = F(uh) - s (Luh - f, εh) + (s2/2) (Lεh, εh).

• Let s be the root of the derivative of this quadratic 
polynomial w.r.t. s :  s = (Luh - f, εh)/(Lεh, εh) = rij/Lij,ij, so

 F(uh - sεh) - F(uh) = - (Luh - f, εh)2/(2(Lεh, εh)) = - rij/(2Lij,ij).

h

   This is just Gauss-Seidel!

2

h

h

390

h
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Abstract FE coarsening
again with focus on functions

• Coarsening involves a “global” change:  uh  ← uh + w2h  for 
some coarse-grid function w2h.

But how do we pick w2h ???

391

• Use FE principle of minimizing F(uh + w2h) over w2h:

  F(uh + w2h) = (L(uh + w2h), uh + w2h)/2 - (f, uh + w2h) 
             = F(uh) + (Luh - f, w2h) + (Lw2h, w2h)/2.

• Let w2h be the root of the gradient of this quadratic
functional w.r.t. w2h.  This is tricky because you need to
write the gradient as a function in the subspace H2h. 
We go instead from abstract functions to nodal vectors…
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Concrete FE coarsening: I2h
now with focus on nodal vectors

• Adding nodal representations of vh & v2h:
  v2h(x,y) = Σij v2h

ij ε2h
(ij)(x,y)

                        2h  nodal values

      = Σij vh
ij εh

(ij)(x,y) ???

           h  nodal values

• We should be able to do this because v2h  ε H2h ⊂ Hh.
• Cell “2i+,2j+”:

(sum over 2h indices
↔ even h indices)

vh
2i 2j       = v2h

ij 
vh

2i+1 2j    = (v2h
ij + v2h

i+1 j)/2 
vh

2i 2j+1    = (v2h
ij + v2h

ij+1)/2
vh

2i+1 2j+1 = (v2h
ij + v2h

i+1 j   + 
    v2h

ij+1  + v2h
i+1 j+1)/4

h

(sum over h indices)

•
•

• •
• •

•
•
•

Bilinear interpolation! 392

2i 2j ↔ ij
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Concrete FE coarsening (cont’d)
 Ahuh = fh

• Solving this matrix equation is equivalent to minimizing
   Fh(vh) ≡ (Ah vh, vh)/2 - (fh, vh)  (parens here mean Euclidean norm)

 over vh ε Hh.  So how do we now correct vh ???

• We minimize Fh(vh + I2h v2h) over v2h ε H2h :

   Fh(vh + I2h v2h) 

     = (Ah (vh + I2h v2h), vh + I2h v2h)/2 - (fh, vh + I2h v2h)  

    = Fh(v h) + (A2h v2h, v2h)/2 - (f2h, v2h)

h

h h h

h

F2h (v2h).≡ Fh(vh) +

variational conditions

f2h = I2h(fh- Ah vh)

A2h = I2hAhI2h
 

 hT

  hhT
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Ah
ij =

1
3

�

�
�1 �1 �1
�1 8 �1
�1 �1 �1

�

�
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Outline

√• Model Problems

• Basic Iterative Methods

– Convergence tests

– Analysis

• Elements of Multigrid

– Relaxation

– Coarsening

• Implementation

– Complexity

– Diagnostics

• Some Theory

– Spectral vs. algebraic

• Nonlinear Problems
– Full approximation scheme

• Selected Applications
– Neumann boundaries
– Anisotropic problems
– Variable meshes
– Variable coefficients 

• Algebraic Multigrid (AMG)
– Matrix coarsening

• Multilevel Adaptive Methods
– FAC

• Finite Elements
– Variational methodology

√

√

√

√

√

√

√

√

√

Homework Due !
Presentations Next Week   !

394

Chapters 1-5:                                Chapters 6-10:
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Multigrid rules!

 We conclude with a few observations:

o We have barely scratched the surface of the myriad ways 
that multigrid has been, & can be, employed.

o With diligence & care, multigrid can be made to handle many 
types of complications in a robust, efficient manner.

o Further extensions to multigrid methodology are being sought 
by many people working on many different problems.
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Multigrid/multilevel/multiscale
an important methodology

• Multigrid has proved successful on a wide variety of 
problems, especially elliptic PDEs, but has also found 
application in parabolic & hyperbolic PDEs, integral 
equations, evolution problems, geodesic problems, …

• It can be optimal, often O(# points).

• It can be robust in a practical sense.

• It is of great interest because it is one of the very 
few scalable algorithms, & it can be parallelized 
readily & efficiently!

• But multigrid can also be a real pain!!!

396


