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5.1 Energy norm. Assume A is symmetric positive definite. As defined in this chapter,
the A-energy inner product and the A-energy norm are given by

(u,v)A = (Au,v) and ‖u‖2
A = (u,u)A. (1)

(a) Show that these are acceptable definitions for an inner product and a norm.

We will first show that (., .)A satisfies the requirements for an inner product:

i. Symmetry. (u,v)A = (Au,v) = (u, AT v) = (u, Av) = (Av,u) = (v,u)A,
by the symmetry of A and the symmetry of the l2 inner product.

ii. Multiplicative Linear. (αu,v)A = (Aαu,v) = (αAu,v) = α(Au,v), by the
multiplicative linearity of A.

iii. Additive Linear. (u, v+w)A = (Au,v+w) = (Au,v)+(Au,w) = (u,v)A+
(u,w)A, by the additive linearity of the l2 inner product.

iv. Positive. (u,u)A = (Au,u) ≥ 0, with equality only occurring for u = 0,
due to A being symmetric positive definite.

This inner product (., .)A, as does any inner product, induces a norm ‖u‖A =
√

(u,u)A that satisfies all norm requirements.

(b) Show that ‖r‖2 = ‖e‖A2 .

Using the definition of the norm squared, the residual equation Ae = r, and the
symmetry of A, we have

‖r‖2
2 = (r, r) = (Ae, Ae) = (AT Ae, e) = (A2e, e) = ‖e‖2

A2 . (2)

The desired result holds because both ‖r‖2 and ‖e‖A2 are positive.

(c) The error norm ‖e‖2 is generally not computable. Is ‖e‖A computable? Is ‖e‖A2

computable?

The value is ‖e‖2 is not reasonably computable because the error would have to
be available to compute this norm. If the error was available, we would be done
solving the problem and not discussing what the error is anymore! The residual
r = f − Av is always available. For the A-energy norm of the error ‖e‖A, we
have

‖e‖A =
√

(Ae, e) =
√

(r, e), (3)
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which again is not reasonably computable because the error is not available. The
A2 norm, however, is computable because it can be written entirely dependent
on the residual, ‖e‖A2 = ‖r‖2.

5.2 FMG error analysis. A key step in the FMG error analysis is showing that

‖Ih
2hu

2h − Ih
2hv

2h‖Ah = c‖u2h − v2h‖A2h (4)

(For some constant c). Use the Galerkin property and the property of inner products
that

(Bu,v) = (u, BTv) (5)

to prove this equality for any two coarse-grid vectors.

After some algebra, we have the result,

‖Ih
2hu

2h − Ih
2hv

2h‖2
Ah = (Ah(Ih

2hu
2h − Ih

2hv
2h), Ih

2hu
2h − Ih

2hv
2h)

= (AhIh
2h(u2h − v2h), Ih

2h(u2h − v2h))

= ((Ih
2h)T AhIh

2h(u2h − v2h),u2h − v2h)

= (cI2h
h AhIh

2h(u2h − v2h),u2h − v2h)

= (cA2h(u2h − v2h),u2h − v2h)

= c‖u2h − v2h‖2
A2h .

(6)

5.3 Discretization error

(a) Taylor expand u(x) about xi to approximate u(xi−1) and u(xi+1)

u(xi−1) = u(xi) − u′(xi)h + u′′(xi)
h2

2 − u′′′(xi)
h3

6 + u(iv)(ξ−)h4

24

u(xi+1) = u(xi) + u′(xi)h + u′′(xi)
h2

2 + u′′′(xi)
h3

6 + u(iv)(ξ+)h4

24

(7)

For xi−1 < ξ− < xi and xi < ξ+ < xi+1. Adding these two equations and
solving for −u′′(xi) gives

−u′′(xi) =
−u(xi−1) + 2u(xi) − u(xi+1)

h2
+

h4

24
(u(iv)(ξ−) + u(iv)(ξ+)). (8)
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Rearranging and writing in terms of (Ahu)i, we have

(Ahu)i = −u′′(xi) −
h2

24
(u(iv)(ξ−) + u(iv)(ξ+)). (9)

(b) If u(iv) is continuous, then by the Intermediate Value Theorem there must exist a ξi

in [ξ−, ξ+] such that

u(iv)(ξi) =
1

2
(u(iv)(ξ−) + u(iv)(ξ+)). (10)

Substituting this into the result from part (a) we have the truncation error at location
xi

τh
i ≡ f(xi) − (Ahu)i =

h4

24
(u(iv)(ξ−) + u(iv)(ξ+)) =

h2

12
f ′′(ξi) (11)

(c) First note that for any matrix B, the matrix h-norm is equivalent to the matrix
l2-norm. This is due to

‖B‖h = max
x 6=0

‖Bx‖h

‖x‖h

= max
x 6=0

√
h‖Bx‖2√
h‖x‖2

= max
x 6=0

‖Bx‖2

‖x‖2
= ‖B‖2. (12)

Also, because (Ah)−1 is symmetric,

‖(Ah)−1‖h = max
i

|λi[(A
h)−1]| =

1

mini |λi[Ah]| =
h2

4 sin2(hπ/2)
(13)

As h decreases monotonically from 1 to 0 this fraction decreases monotonically from
1/4 to 1/π2 . Therefore

1

π2
< ‖(Ah)−1‖h <

1

4
for h ∈ (0, 1). (14)

Note that the second edition of the book has the bound stated differently, but I
believe this is correct.

(d) Assume that f ′′(x) < M for all x ∈ [0, 1].

‖vi‖h =

√

√

√

√h
n−1
∑

i=1

v2
i =

√

√

√

√h
n−1
∑

i=1

[f ′′(ξi)]2 ≤

√

√

√

√h
n−1
∑

i=1

M2 <
√

hnM2 = M. (15)



APPM 6640 Homework Solutions, Chapter 5 4

This shows that ‖vi‖h is bounded independent of problem size. We do not have the
same result for the unscaled Euclidean norm

‖vi‖2 =

√

√

√

√

n−1
∑

i=1

v2
i =

√

√

√

√

n−1
∑

i=1

[f ′′(ξi)]2 ≤

√

√

√

√

n−1
∑

i=1

M2 = M
√

n − 1. (16)

As the problem size grows, so does the bound for ‖vi‖2.

(d) Under the many given assumptions, the discretization error can now be seen to be
O(h2)

‖Eh‖h = ‖uh − u‖h

= ‖(Ah)−1Ah(uh − u)‖h

≤ ‖(Ah)−1‖h‖Ah(uh − u)‖h

≤
(

1
4

)(

h2

12f ′′(ξi)

)

< M
48h2

(17)

5.12 Two-dimensional five-point stencil. When the two-dimensional model problem
is discretized on a uniform grid with hx = hy = h, the coefficients at each grid point
are given by the five-point stencil

Ah =
1

h2





−1
−1 4 −1

−1



 . (18)

What does the stencil for A2h = I2h
h AhIh

2h look like if Ih
2h is based on bilinear inter-

polation and I2h
h is based on (a) full weighting? (b) injection?

The stencil (of influence) of A2h stands for a column of the coarse grid matrix.
Therefore, consider applying A2h = I2h

h AhIh
2h to the jth elementary basis vector êj

in the coarse space given by a one at unknown i and zeros everywhere else. We will
apply A2h piece by piece. The stencil form for êj , centered at point j and pictured
only on local coarse gridpoints, is
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êj =





















0 0 0

0 1 0

0 0 0





















. (19)

Interpolating with bilinear intepolation êj gives a stencil for local fine grid points

Ih
2hêj =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1

4
1
2

1
4 0 0

0 0 1
2 1 1

2 0 0
0 0 1

4
1
2

1
4 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0





















. (20)

Applying Ah to the interpolated stencil gives

AhIh
2hêj =

1

h2





















0 0 0 0 0 0 0
0 0 −1

4 −1
2 −1

4 0 0
0 −1

4 0 1
2 0 −1

4 0
0 −1

2
1
2 2 1

2 −1
2 0

0 −1
4 0 1

2 0 −1
4 0

0 0 −1
4 −1

2 −1
4 0 0

0 0 0 0 0 0 0





















. (21)

applying the full-weighting stencil to AhIh
2hêj and factoring out 1

4 gives the answer
to part (a)

Ah = I2h
h AhIh

2hêj =
1

(2h)2





−1
4 −1

2 −1
4

−1
2 3 −1

2
−1

4 −1
2 −1

4



 . (22)

applying the injection stencil to AhIh
2hêj and factoring out 1

4 gives the answer to part
(b)

Ah = I2h
h AhIh

2hêj =
1

(2h)2





0 −2 0
−2 8 −2

0 −2 0



 . (23)
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It can be seen here that using injection for restriction will give us a coarse-grid
operator of similar form to that of the fine grid.

5.13 Two-dimensional nine-point stencil. Repeat the previous problem with the
nine-point stencil

Ah =
1

h2





−1 −1 −1
−1 8 −1
−1 −1 −1



 . (24)

Again, the stencil (of influence) of A2h stands for a column of the coarse grid matrix.
Therefore, as in the previous problem, consider applying A2h = I2h

h AhIh
2h to the jth

elementary basis vector êj in the coarse space given by a one at unknown i and zeros
everywhere else. We will apply A2h piece by piece. The stencil form for êj , centered
at point j and pictured only on local coarse gridpoints, is

êj =





















0 0 0

0 1 0

0 0 0





















. (25)

Interpolating with bilinear intepolation êj gives a stencil for local fine grid points

Ih
2hêj =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1

4
1
2

1
4 0 0

0 0 1
2 1 1

2 0 0
0 0 1

4
1
2

1
4 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0





















. (26)

Applying Ah to the interpolated stencil gives
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AhIh
2hêj =

1

h2





















0 0 0 0 0 0 0
0 −1

4 −3
4 −1 −3

4 −1
4 0

0 −3
4 0 3

2 0 −3
4 0

0 −1 3
2 5 3

2 −1 0
0 −3

4 0 3
2 0 −3

4 0
0 −1

4 −3
4 −1 −3

4 −1
4 0

0 0 0 0 0 0 0





















. (27)

applying the full-weighting stencil to AhIh
2hêj and factoring out 1

4 gives the answer
to part (a)

Ah = I2h
h AhIh

2hêj =
1

(2h)2





−1 −1 −1
−1 8 −1
−1 −1 −1



 . (28)

applying the injection stencil to AhIh
2hêj and factoring out 1

4 gives the answer to part
(b)

Ah = I2h
h AhIh

2hêj =
1

(2h)2





−1 −4 −1
−4 20 −4
−1 −4 −1



 . (29)

It can be seen here that using full-weighting for restriction will give us a coarse-grid
operator of similar form to that of the fine grid.


