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3.2 An important equivalence. Consider a stationary, linear method of the form
v ← v + B−1(f − Av) applied to the problem Au = f . Use the following steps to
show the relaxation on Au = f with an arbitrary initial guess is equivalent to relax-
ation on Ae = r with the zero initial guess:

(a) First consider the problem Au = f with arbitrary initial guess v = v0. What
are the error and residual associated with v0?

The associated error is u− v0 and associated residual is f − Av0. An iteration
of the stationary, linear method is of the form v1 ← v0 + B−1r0.

(b) Now consider the associated residual equation Ae = r0 = f − Av0. What are
the error and residual in the initial guess e0 = 0?

The solution to the equation Ae = f −Av0 is u− v0, so the associated error is
(u− v0) − e0 = u− v0, and the associated residual is r0 −Ae0 = r0. Here, an
iteration of the stationary, linear method is of the form e1 ← e0+B−1(r0−Ae0).
Because e0 = 0, the iteration is actually e1 ← e0 + B−1r0.

(c) Conclude that problems (a) and (b) are equivalent.

The probelms are equivalent in the sense that the associated error and residual
equations are equivalent. The solution of the second system has just been shifted

by the vector v0. Also, the itteration method would move both intial guesses
by the same vector B−1r0.

3.3 Properties of Interpolation. Show that Ih
2h based on linear interpolation is a

linear operator with full rank in one and two dimensions.

Throughout this assignment, assume that the number of domain intervals in any
axial direction is n = 2m, where m is some integer. This sets the problem size per
dimension at (n−1), and grid spacing h = 1/n. This convention is not necessary but
can avoid some painful book-keeping issues. In one dimension, linear interpolation is
given on page 34 as

vh
2i = v2h

i

vh
2i−1 = 1

2 (v2h
i−1 + v2h

i )
(1)
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This can be written as the following (n− 1)× (n
2 − 1) matrix:
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Note that the matrix B was defined so that this structured can be reused in the 2D
case. Full rank can be shown by looking at the (n

2 − 1) even-numbered row vectors
and showing that they are linearly independent. Each of these row vectors is an
elementary basis vector that is trivially independent from the other elementary basis
vectors. The rank is thus at least (n

2 −1), but it is also at most (n
2 −1) because this is

the minimal dimension of the matrix. Therefore, the 1D linear interpolation matrix
has full rank.

As for the two-dimensional linear interpolation operator, the definition of bilinear
interpolation is given on page 35 as

vh
2i,2j = v2h

ij

vh
2i−1,2j = 1

2(v2h
i−1,j + v2h

i j)
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(3)

We use blocks with the structure of the 1D interpolation matrix arrange to create
the (n− 1)2 × (n

2 − 1)2 two-dimensional linear interpolation matrix:
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which is a constant multiple of the tensor product of B and itself. Regarding the
rank, a similar argument can be made as the one made in the one-dimensional case.
The (n

2 −1) even-numbered block-rows each contain only a 2B block and within each
of these blocks are (n

2 −1) elementary basis row vectors and are linearly independent.

These can be imbedded in and span R
(n

2
−1)2 . Therefore, the interpolation matrix has

full rank. Following is some MATLAB code to create these interpolation matrices.

% number of intervals

n = 32;

% initialize empty matrix to store structure of 1D interpolation matrix

B = sparse(n-1,n/2-1);

% loop that creates the 1D structure

for j = 1:(n/2 -1)

B(2*j-1,j) = 1;

B(2*j, j) = 2;

B(2*j+1,j) = 1;

end

% 1D interpolation matrix

P1 = (1/2)*B;

% 2D interpolation matrix

P2 = (1/4)*kron(B, B);

3.4 Properties of Restriction. What is the rank of I2h
h based on (a) full weighting

and (b) injection in one and two dimensions?

In one dimension, the full weighting restriction operator is the following (n
2 − 1) ×

(n− 1) matrix:

I2h
h =
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Note that this matrix is a constant multiple of the transpose of the linear interpolation
matrix. To show that this matrix is full rank, we can use the same tactic as the
previous problem. The only variation here is that we will look for linearly independent
column vectors, instead of row vectors. The (n

2 − 1) even-numbered column vectors

are a constant times elementary basis vectors that span R
(n

2
−1) and are trivially

linearly independent.

Again, in one dimension, the injection restriction operator is the following (n
2 − 1)×

(n− 1) matrix:

I2h
h = CT :=
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
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Note that we defined CT to be the one-dimensional injection matrix, as we will use
it later in the two-dimensional case. Again, full rank is shown by noticing that the
(n

2 −1) even-numbered column vectors are elementary basis vectors that span R
(n

2
−1)

and are trivially linearly independent.

For linear interpolation in two dimensions, we use the structure of the 1D interpo-
lation given in B from the previous problem and form the two-dimensional linear
restriction matrix:

I2h
h =

1
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

. (7)

For injection, replace each block that has 2BT in it with the matrix CT from the one-
dimensional injection restriction and replace each BT block with the (n

2 −1)× (n−1)
matrix of all zeros.

To show that either of these matrices are full rank, use the same argument for the
previous problem with column vectors instead of row vectors.

3.5 Null space of full weighting. Show that the null space of the full weighting
operator, N(I2h

h ), has a basis consisting of vectors of the form

(0, 0, ...,−1, 2,−1, ..., 0, 0)T . (8)
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By counting these vectors, show that the dimension of N(I2h
h ) is n

2 .

Recall that we have required n = 2m to avoid book-keeping problems. The 1D full-
weighting restriction operator I2h

h is given in problem 3.4. The following vectors can
all be easily verified to be in the null space of full-weighting restriction N (I2h

h ):

I2h
h ( 2 −1 0 ... 0 )T = 0, and

I2h
h ( 0 ... 0 −1 2 )T = 0.

(9)

Also, vectors of the following form are also easily seen to be in N (I2h
h ):

I2h
h ( 0 ... −1 2 −1 ... 0 )T = 0, (10)

with the 2 centered at any odd interior point. Counting the two vectors at the end
point plus the n

2 − 2 vectors at odd interior points, we see that we have found n
2

vectors in N (I2h
h ). The rank deficiency of I2h

h is its largest dimension (n− 1) minus
the rank (n

2 −1), which is equal to n
2 . The rank deficiency is the dimension of the null

space. Because each of the n
2 null space vectors we found form a linearly independent

set, we have a spanning basis of N (I2h
h ).

3.6 Variational property.

(a) Let Ih
2h and I2h

h be defined as in the text. Show that the linear interpolation
operator and full weighting satisfy the variational property Ih

2h = c(I2h
h )T by

computing c ∈ R for both one and two dimensions.

From problems 3.3 and 3.4, it can be easily seen what the constants are for the
respective dimensions. For 1D, c = 2 and, for 2D, c = 4.

(b) The choice c 6= 1 found in part (a) is used because full weighting essentially
preserves constants. Show that, except at the boundary, I2h

h (1h) = 12h (where
1h and 12h are the vectors with entries 1 on their respective grids.)

The ith component of the vector I2h
h 1h is the row sum of the matrix I2h

h . In-
spection of the one- and two-dimensional matrices in problem 3.4 reveals that
row sum is equal to 1 for any point away from the boundary, or (I2h

h 1h)i = 1
for any coarse-grid point i that isn’t restricting information from the boundary.
Thus, I2h

h (1h) = 12h. Note that under the given problem and mesh spacing,
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we are never restricting information from the boundary. However, in general,
boundary restriction does occur–for example, for odd interval number n or a
problem with Neumann boundary conditions.


