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2.1 Residual vs. error. Consider the two systems of linear equations given in the box
on residuals and errors in this chapter (pg 8). Make a sketch showing the pair of lines
represented by each system. Mark the exact solution u and the approximation v.
Explain why, even thought the error is the same in both cases, the residual is small
in one case and large in the other.
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Figure 1: The appropriate sketches and their respective systems. On the left, we have the
lines from the equations in system 1, A1u = f1. On the right, we have the lines from the
equations in system 2, A2u = f2.

As stated in the box on pg 8, both these systems have exact solution u = (1, 2)T . For
the same approximation v = (1.95, 3)T , both systems have the same error e = u−v =
(−.95,−1)T and the Euclidean norm of the error for both systems is ‖e‖2 = 1.379.
However, the size of residuals is different for system 1 than it is for system 2. The
residual for system 1 is r1 = f1 − A1v = (.05, .05)T with norm ‖r1‖2 = 0.071, while
the residual for system 2 is r2 = f2 −A2v = (.05,−1.85)T with norm ‖r2‖2 = 1.851.

The reason for this discrepancy can be seen in the sketches in figure 1. The
approximation v is very close to both lines in system 1 on the left side of the figure.
Another way of thinking about this is that both equations are individually almost
satisfied. This gives small residual components and, hence, a small residual vector.
For system 2, approximation v is only close to one line and fairly far from the other
one. This means one small residual component and one large one, and a fairly large
residual norm. The lesson here is that the residual does provide an error estimation,
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but the quality of the estimation is highly dependent on the system.

Note that this is analagous to root finding in scalar equations y(x) = 0 and asking
how close x is to a root (actual error) or how close y is to zero (residual error). The
actual error is a measure of how close we actually are to what we are looking for and
is not computable in practice. The residual error is easy to compute but only gives
a rough estimation of how close we are to the solution.

2.2 Residual Equation. Use the definition of the algebraic error and the residual to
derive the residual equation Ae = r.

The algebraic error for a current approximation v is defined as e := u− v, where u
is the actual solution to Au = f . Also, the residual for a current approximation is
defined as r := f −Av. Using these two definitions and the fact that u is the actual
solution, we can derive the desired equation:

Ae = A(u− v) = Au−Av = f −Av =: r (2)

2.3 Weighted Jacobi Iteration.

Throughout this problem, recall the matrix splitting A = D−L−U , where D is the
diagonal part of A, and −L and −U are the strictly lower and strictly upper parts
of A, respectively.

(a) Starting with the component form of the weighted Jacobi method, show that it
can be written in matrix form as v(1) = [(1− ω)I + ωRJ ]v(0) + ωD−1f .

The component form of weighted Jacobi update is the weighted average between
a Jacobi update and the old iterate (from pg. 9):

v
(1)
j = (1− ω)v(0)

j + ωv∗j , (3)

where v∗ is the Jacobi update given in the component form,

v∗j =
bj −

∑n
i 6=j ajiv

(0)
i

ajj
, (4)

or equivalently in vector-matrix form,
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v∗ = D−1(L+ U)v(0) +D−1f =: RJv(0) +D−1f . (5)

Now, we can rewrite the weighted Jacobi update in vector-matrix form,

v(1) = (1− ω)v(0) + ωv∗

= (1− ω)Iv(0) + ω(RJv(0) +D−1f)
= [(1− ω)I + ωRJ ]v(0) + ωD−1f .

(6)

(b) Show that the weighted Jacobi method may also be written in the form:

v(1) = Rωv(0) + ωD−1f .

Starting from where we were on part (a), and using the definiton on pg. 9
Rω := (1− ω)I + ωRJ , we simply have to do a substitution:

v(1) = [(1− ω)I + ωRJ ]v(0) + ωD−1f = Rωv(0) + ωD−1f . (7)

(c) Show that the weighted Jacobi method may also be written in the form:

v(1) = v(0) + ωD−1r(0).

Starting from where we were on part (a) with the definitions RJ := D−1(L+U)
and r(0) := f − (D − L− U)v(0), and the fact that I = D−1D, we derive:

v(1) = [(1− ω)I + ωD−1(L+ U)]v(0) + ωD−1f
= (1− ω)v(0) + ωD−1(L+ U)v(0) + ωD−1f
= v(0) − ωD−1Dv(0) + ωD−1(L+ U)v(0) + ωD−1f
= v(0) + ωD−1(f − (D − L− U)v(0))
= v(0) + ωD−1r(0).

(8)

(d) Assume that A is the matrix from the (1D) model problem (with the h2 on the
right hand side with f). Show that the weighted Jacobi iteration matrix can be
expressed as Rω = I − ω

2A.
First for general A, we have

Rω = (1− ω)I + ωD−1(L+ U)
= I − ωD−1D + ωD−1(L+ U)
= I − ωD−1(D − L− U)
= I − ωD−1A.

(9)
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And, for the 1D model problem’s A, with the h2 on the right-hand-side, every
diagonal element of A is 2, so D = 2I. Therefore, D−1 = 1

2I. Thus, we have:

Rω = I − ωD−1A = I − ω

2
IA = I − ω

2
A. (10)

2.8 Eigenvalues of the (1D) model problem. Compute the eigenvalues of the ma-
trix equation A of the one-dimensional model problem. (Hint: Write out a typical
equation of the system Aw = λw with w0 = wn = 0. Notice that the vectors form
wkj = sin ( jkπn ), 1 ≤ k ≤ n − 1, 0 ≤ j ≤ n, satisfy the boundary conditions.) How
many distinct eigenvalues are there? Compute λ1, λ2, λn−2, λn−1, when n = 32.

Assuming that wk is an eigenvector, it must satisfy the eigenproblem Awk = λkw
which is equivalent to the n− 1 equations

−wkj−1 + 2wkj − wkj+1

h2
= λkw

k
j . (11)

The hint implies that we should try sine vectors, wkj = sin ( jkπn ), 1 ≤ k ≤ n − 1, as
eigenvectors. Plugging the sine vectors into the left-hand-side of equation (11) and
simplifying the equation to match the form of the right-hand-side will give us the
eigenvalues λk:

− sin
(

(j − 1)kπ
n

)
+ 2 sin

(
jkπ

n

)
− sin

(
(j + 1)kπ

n

)
. (12)

Using the trig identities sin(a± b) = sin(a) cos(b)± cos(a) sin(b), we have

sin
(

(j − 1)kπ
n

)
= sin

(
jkπ

n

)
cos
(
kπ

n

)
− cos

(
jkπ

n

)
sin
(
kπ

n

)
, (13)

and

sin
(

(j + 1)kπ
n

)
= sin

(
jkπ

n

)
cos
(
kπ

n

)
+ cos

(
jkπ

n

)
sin
(
kπ

n

)
. (14)

So the left-hand-side of (11) can be simplified to[
2− 2 cos

(
hπ

n

)]
sin
(
jkπ

n

)
. (15)

This means that λk = 2 − 2 cos
(
kπ
n

)
; using the trig identity sin2 a = 1−cos(2a)

2 , we

get

λk = 4 sin2

(
kπ

2n

)
. (16)
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This is an increasing sequence of eigenvalues in the range 1 ≤ k ≤ n− 1, so we have
n−1 distinct eigenvalues. For n = 32, λ1 = .00963, λ2 = .03843, λ30 = 3.96157, λ31 =
3.99037.

2.10 Jacobi eigenvalues and eigenvectors. Find the eigenvalues of the weighted Jacobi
iteration matrix when it is applied to the one-dimensional model problem matrix A,
(with σ = 0). Verify that the eigenvectors of Rω are the same as the eigenvectors of A.

Recall that the eigenvectors of A satisfy Awk = λkwk (problem 2.8) and that for our
model problem Rω = I − ω

2A (problem 2.3d). These facts can be used to show that

Rωwk = (I − ω

2
A)wk = wk − ω

2
Awk = wk − ω

2
λkwk = (1− ω

2
λk)wk. (17)

So wk is indeed an eigenvector of Rω, with corresponding eigenvalue

µk = 1− ω

2
λk = 1− 2ω sin2

(
kπ

2n

)
. (18)

2.13 Optimal Jacobi. Show that when the weighted Jacobi method is used with ω = 2
3 ,

the smothing factor is 1
3 . Show that if ω is chosen to damp the smooth modes effec-

tively, then the oscillatory modes are actually amplified.

The sequence of eigenvalues of Rω found in problem 2.10 could be modeled with a
continuous function of wave number µ(k) = 1− 2ω sin2 (kπ2n ). If we want to maximize
the absolute value of this function over the oscillatory wave numbers n

2 ≤ k < n, we
get a good estimate of the smoothing factor. To maximize, we set the derivative to
zero:

µ′(k) = −4ω sin
(
kπ

2n

)
cos
(
kπ

2n

)
= 0, (19)

which implies that kπ
2n = 0 or kπ

2n = π
2 . Since k ≈ 0 ≤ n

2 is a smooth wavenumber and
outside of our range of minimization, we look at k ≈ n. We also look at the other
endpoint: k ≈ n

2 . When ω = 2
3 ,

|µ(n)| =
∣∣∣∣1− 4

3
sin2 π

2

∣∣∣∣ =
∣∣∣∣− 1

3

∣∣∣∣ =
1
3
, (20)

and ∣∣∣∣µ(n2
)∣∣∣∣ =

∣∣∣∣1− 4
3

sin2 π

4

∣∣∣∣ =
∣∣∣∣13
∣∣∣∣ =

1
3
. (21)
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So the smoothing factor is 1
3 .

Alternatively, if we require ω to damp the smoothest mode, k = 1, by a constant
convergence factor 0 < τ < 1, we ask that

|µ1| =
∣∣∣∣1− 2ω sin2

(
π

2n

)∣∣∣∣ ≤ τ. (22)

Solving for th ω that cause this to happen, we get

1− τ
2 sin2 ( π2n)

≤ ω ≤ 1 + τ

2 sin2 ( π2n)
, (23)

a range of values that grow arbitrarily large as n gets big. If we use any ω in this
range, the absolute value of the eigenvalues of Rω for oscillatory wave numbers, µn

2

through µn−1, also get arbitrarily large. For the best-case example, consider the
lowest oscillatory eigenvalue, µn

2
, with lowest ω, ω = 1−τ

2 sin ( π
2n

) :

|µn
2
| =

∣∣∣∣1− 2(1− τ) sin2 (π4 )
2 sin2 ( π2n)

∣∣∣∣ =
∣∣∣∣1− (1− τ)

2 sin2 ( π2n)

∣∣∣∣. (24)

For τ = .9 and n = 32, and choosing ω as the best case, |µn
2
| = 19.77. This means

that this relaxation would multiply the amplitude of oscillatory modes by about 20
per iteration. Also, note that τ = .9 is a modest convergence factor and n = 32 is a
very small problem. This effect is much more dramatic for larger problems.

2.16 Properties of Gauss-Seidel. Assume A is symmetric, positive definite.

(a) Show that the ith step of a single sweep of the Gauss-Seidel method applied to
Au = f may be expressed as

vi ← vi +
ri
aii
. (25)

First note that i was swapped with j throughout this problem for notational
convenience. The ith step in a single sweep of Gauss-Seidel may be thought
of as solving the ith equation for vi, the ith unknown, using the most current
information for the rest of the components of v. Doing so gives the component
form of the ith step in a single Gauss-Seidel iteration, a common way of stating
the Gauss-Seidel iteration:∑n

j=1 aijvj = fi
aiivi = fi −

∑
j 6=i aijvj

vi ← 1
aii

[fi −
∑

j 6=i aijvj ] for i = 1, ..., n.
(26)
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Now adding and subtracting vi to this iteration allows us to rewrite this in the
desired form:

1
aii

[fi −
∑
j 6=i

aijvj ] + vi − vi =
1
aii

[fi −
n∑
i=1

aijvj ] + vi = vi +
ri
aii
. (27)

(b) Show that the ith step of a single sweep of the Gauss-Seidel method can be
expressed in vector form as

v← v +
(r, êi)

(Aêi, êi)
êi, (28)

where êi is the ith (elementary) unit vector.

First, note that taking an inner product of the elementary unit vector êi with any
vector just yeilds the ith component of that vector. In particular, (r, êi) = ri.
Also, note that the A inner product of a elementary unit vector gives a diagonal
component of A: (Aêi, êi) = aii. Then, using the fact that the ith step is only
changing the ith component of v, we can rewrite the iteration in vector form:

v← v +
ri
aii

êi = v +
(r, êi)

(Aêi, êi)
êi. (29)

(c) Show that each sweep of Gauss-Seidel decreases the quantity (Ae, e) (the A-
norm of the error), where e = u− v.

The error before performing the ith step is u− v and the error afterwards is

u−
(
v +

ri
aii

êi

)
= e− ri

aii
êi. (30)

Looking at the A-norm of the error afterward and simplifying gives

(
A(e− ri

aii
êi), e− ri

aii
êi
)

=
(
Ae− ri

aii
Aêi, e− ri

aii
êi
)

= (Ae, e)− 2 ri
aii

(Ae, êi) +
(
ri
aii

)2
(Aêi, êi)

= (Ae, e)− 2 r2i
aii

+ r2i
aii

= (Ae, e)− r2i
aii
.

(31)
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The quantity r2i
aii

is always positive because both the numerator and denominator
are positive. The numerator is the square of a real number and the denominator
is a diagonal element of a symmetric positive definite matrix. All this shows that
the norm is nonincreasing for each single step of Gauss-Seidel and, therefore, for
the entire sweep. All we need is just one of the ri to be nonzero for it to actually
decrease, which must be true because we assumed that the error is nonzero, so
the residual must be nonzero too.

(d) Show that Gauss-Seidel is optimal in the sense that the quantity ‖e− sêi‖A is
minimized for each 1 ≤ j ≤ n when s = (r, êi)/(Aêi, êi), which is precisely a
Gauss-Seidel step. To show that the s used in the ith step of Gauss-Seidel is

the minimizer for the quantity ‖e−sêi‖A, we instead look at the value of s that
minimizes the square of that quantity:

f(s) = ‖e + sêi‖2A
= (A(e + sêi), e + sêi)

= (Ae, e)− 2s(Ae, êi) + s2(Aêi, êi).

(32)

We minimize f(s) by setting f ′(s) equal to zero:

f ′(s) = −2(Ae, êi) + 2s(Aêi, êi) = 0. (33)

The solution to this equation is s = (r, êi)/(Aêi, êi), which is where our min-
imum is attained. We know this is a minimum because the function f(s) is
concave up due to the fact that A is symmetric positive definite:

f ′′(s) = 2(Aêi, êi) = 2aii > 0. (34)

The minimum of f(s) occurs at the same place that the minimum of
√
f(s) =

‖e − sêi‖A does. Notice that we have shown that each step of Gauss-Seidel
moves the iterate in the êi direction by the amount s that minimizes the new
error in the A-norm.


