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Abstract. Stochastic collocation methods facilitate the numerical solution of PDEs with random data and
give rise to large sequences of linear systems. For elliptic PDEs, algebraic multigrid (amg) is a robust solver and
considered individually, the systems are trivial to solve. The challenge lies in exploiting the systems’ similarities
to recycle information and minimize the cost of solving the entire sequence. We propose an efficient solver that
is more robust than other solution strategies in the literature. In particular, we show that it is feasible to use a
finely-tuned amg preconditioner for each system if key set-up information is reused. The method is robust with
respect to variations in discretization and statistical parameters for stochastically linear and nonlinear data.

1. Introduction. Our starting point is the stochastic steady-state diffusion problem

−∇ ⋅ (a(x, !)∇p(x, !)) = f(x) in D × Ω, D ⊂ ℝ
2 (1.1)

p(x, !) = 0 on ∂D × Ω,

which arises when only limited information about the diffusion coefficient a is available. Here,
a : D×Ω → ℝ is a random field, D is the physical or spatial domain and Ω is a sample space from
a probability space (Ω,ℱ , P ) with �-algebra ℱ and associated probability measure P . In short,
for each x ∈ D, a is a real-valued random variable and fixing ! ∈ Ω corresponds to choosing a
realization of a, which is a standard deterministic function in x ∈ D. In (1.1) the input a and the
solution p, which is also a random field, are measurable functions on D×Ω with respect to ℓ× P
where ℓ denotes Lebesgue measure on D. For simplicity, the source term f ∈ L2(D) is assumed to
be a deterministic function and the boundary condition is deterministic and homogeneous.

We assume that for each x ∈ D, a ∈ L2(Ω). That is, a has finite variance for each x ∈ D and
a(x, !) is a second-order random field, representing colored noise. Thus, there is an underlying
spatial correlation structure and we assume the mean �(x) = E[a(x, !)] and covariance function

C(x,y) = E
[(

a(x, !)− �(x)
)(

a(y, !)− �(y)
)]

= �2V (x,y) (1.2)

are known. Here, �2 = C(x,x) is the variance of a(x, !), which we will assume, for simplicity, is
constant in D. The correlation function V : D×D → ℝ in (1.2) typically depends on a parameter

 > 0 called the correlation length. Decreasing the correlation length decreases V (x,y), the
correlation between the random variables a(x, !) and a(y, !) and hence the covariance C(x,y).

We follow the now well-established procedure (e.g. see [6, 2]) of assuming that a(x, !) is, or
can be well approximated by, a function of M independent random variables �k(!) ∈ L2(Ω). A
common choice is a (truncated) Karhunen-Loève (KL) expansion [13],

aM (x, �) = �(x) + �

M
∑

k=1

√

�kck(x)�k(!) (1.3)

in terms of M uncorrelated random variables �k, with zero mean and unit variance, where � =
(�1(!), . . . , �M (!)). In (1.3), {�k, ck(x)}Mk=1 are the leading eigenpairs of the integral operator
associated with V (x,y) in (1.2). We note that �k → 0 as k → ∞ at a rate that depends on the
regularity of C(x,y) (see [9] for details). Speaking generally, the smaller the correlation length

, the larger the number of terms M in (1.3) needed to obtain a good approximation aM (x, �)

†School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. (gor-
dona@cs.man.ac.uk, c.powell@manchester.ac.uk)

1



to a(x, !). Alternatively, it is common to assume that log(a(x, !)) has a given mean �(x) and
covariance function C(x,y). In this case, a suitable approximation of a(x, !) is given by

aM (x, �) = exp
(

�(x) + �

M
∑

k=1

√

�kck(x)�k(!)
)

. (1.4)

Let �k(Ω) = Γk ⊆ ℝ and denote the probability density function of �k by �k. For example
if �k(!) is uniformly distributed then Γk = [−

√
3,
√
3] and if �k(!) is Gaussian then Γk = ℝ. If

the random variables are independent (as is the case for uncorrelated Gaussian random variables)

the joint density function of the multivariate random variable � is �(�) =
∏M

k=1 �k(�k) where
� ∈ Γ = Γ1 × ⋅ ⋅ ⋅ × ΓM ⊆ ℝ

M . Replacing a(x, !) by aM (x, �) in (1.1) results in an M + 2
dimensional deterministic boundary-value problem, find p : D × Γ → ℝ such that

−∇ ⋅ (aM (x, �)∇p(x, �)) = f(x) in D × Γ, (1.5)

p(x, �) = 0 on ∂D × Γ,

which can now be discretized using standard approximation schemes.
The weak formulation of (1.5)—which has been well studied, (e.g. see [6, 2, 9])—consists in

finding p(x, �) ∈ P = L2
�(Γ, H

1
0 (D)) and E[q(�)] =

∫

Γ
�(�)q(�) d�, such that

E

[
∫

D

aM (x, �)∇p(x, �) ⋅ ∇q(x, �)dx

]

= E

[
∫

D

f(x)q(x, �)dx

]

∀ q ∈ P. (1.6)

If we assume 0 < a1 ≤ aM (x, �) ≤ a2 < ∞, a.e. in D × Γ, then a unique solution can be shown
to exist, in the standard way, using the Lax-Milgram lemma. So-called stochastic finite element
methods proceed by partitioning D in the usual way, leading to the semi-discrete problem: find
pℎ ∈ Pℎ = L2

�(Γ,Φℎ) ⊂ P with Φℎ ⊂ H1
0 (D) and dim(Φℎ) = nℎ such that

E

[
∫

D

aM (x, �)∇pℎ(x, �) ⋅ ∇q(x, �)dx

]

= E

[
∫

D

f(x)q(x, �) dx

]

∀ q ∈ Pℎ. (1.7)

After fixing a spatial discretization, we can tackle (1.6)–(1.7) with Monte Carlo methods
(MCMs), stochastic Galerkin methods (SGMs) [11, 6, 2] or stochastic collocation methods (SCMs)
[22, 1, 14]. Standard MCMs approximate E[pℎ] by the sample average at randomly chosen points
�r ∈ Γ. If arM (x) = aM (x, �r) is strictly positive then each prℎ(x) = pℎ(x, �r) ∈ Φℎ satisfies

∫

D

arM (x)∇prℎ(x) ⋅ ∇v(x)dx =

∫

D

f(x)v(x)dx ∀ v ∈ Φℎ, (1.8)

leading to a sequence of decoupled, symmetric positive definite linear systems

Arpr = b, r = 1, 2, . . . , Ar ∈ ℝ
nℎ×nℎ . (1.9)

The individual systems in (1.9) can be solved using state of the art deterministic solvers, of which
there are many. However, the sample average is slow to converge to the true expected value and
alternative discretization schemes on Γ have gained much attention recently.

SGMs seek pℎd ∈ Φℎ ⊗ Sd with Sd ⊂ L2
�(Γ) and have a superior convergence rate to standard

MCMs for low values of M (see [2]). However, they yield a single linear system of equations
of dimension nℎ × dim(Sd) that often cannot be decoupled and thus require more sophisticated
solvers (e.g. see [7, 17]). If Sd consists of complete polynomials (of total degree d in �) the Galerkin
equations must be solved simultaneously. However, at the expense of the convergence rate, tensor
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product polynomials (polynomials of degree dk in each �k) can also be used. In that case, if aM (x, �)
is linear in the variables �k, as in (1.3), then Sd possesses a basis (of so-called doubly-orthogonal
polynomials) that makes the Galerkin matrix block-diagonal, yielding a set of decoupled problems
of dimension nℎ × nℎ as in (1.9). SCMs provide a happy medium. Like MCMs, they sample the
finite element solution pℎ, and so naturally lead to a sequence of decoupled systems (1.9) for both
the stochastically linear problem with coefficient (1.3) and the stochastically nonlinear problem
with coefficient (1.4). This allows for the re-use of existing deterministic solvers. Unlike MCMs,
however, their convergence rate is comparable to that of SGMs.

The conjugate gradient method (cg) is the most efficient iterative solver for the individual sys-
tems in (1.9) and algebraic multigrid (amg) [18, 20] is a widely-used preconditioner for discretized
elliptic PDEs that is highly robust with respect to variations in the diffusion coefficients. When
the number of systems to be solved in (1.9) is large, however, it may be infeasible to fine-tune an
amg-based preconditioner (or any preconditioner) to the individual matrices. In that case, the
one-preconditioner-fits-all approach has merit. That strategy reduces set-up costs but the chosen
preconditioner can be so weak for some systems that no savings are made overall.

Jin et al. [12] and Ullmann [21] study the sequences of positive definite systems that arise when
(1.6) is discretized with a certain SGM based on doubly-orthogonal polynomials and apply Krylov
subspace recycling techniques [16]. However, only stochastically linear diffusion coefficients (1.3)
are considered, which always lead to fairly well-conditioned, and highly similar matrices Ar. As we
will see, the stochastically nonlinear case (1.4) is far more challenging. Most recycled Krylov sub-
space solvers are suboptimal (compared to cg) for individual symmetric positive definite systems,
but have benefits when applied to a long similar sequence if a weak (but cheap) preconditioner is
selected. The domain decomposition preconditioner in [12] is optimal for most systems but weak
for a certain subset of them. In [21], one V-cycle of amg applied to the ‘mean’ stiffness matrix
(with diffusion coefficient a(x) = �(x)) is used to precondition all systems. The efficiency of that
preconditioner deteriorates significantly when the standard deviation � in (1.2) is large relative to
the mean �(x).

Here, we focus on SCMs and investigate the extent to which computational savings can be
made by recycling preconditioner information. Our emphasis is on strong, cheap, preconditioners
and the re-use of preconditioner information. Specifically, we propose an efficient way to solve
the entire sequence (1.9) with cg using amg-based preconditioners. Unlike previous works that
implement SGMs, our method handles (1.3) and (1.4) equally well and is robust with respect to
variations in all the discretization and statistical parameters.

2. Stochastic Collocation Methods. SCMs collocate the semi-discrete problem on a set
of points �1, . . . , �nc

in the hypercube Γ. A global approximation is then obtained by performing
Lagrange interpolation. For (1.7) we obtain

pℎd(x, �) =

nc
∑

r=1

prℎ(x)Lr(�), (2.1)

where each prℎ(x) = pℎ(x, �r) ∈ Φℎ satisfies (1.8) at �r ∈ Γ and Lr(�) is a multivariate La-
grange polynomial satisfying Lr(�s) = �rs. By construction, pℎd(x, �) ∈ Φℎ ⊗ Sd where Sd =
span{L1(�), . . . , Lnc

(�)} ⊂ L2
�(Γ) and dim(Sd) = nc.

In the stochastic collocation approach, the error incurred by approximating the finite element
solution pℎ(x, �) by pℎd(x, �) is due to interpolation. Unlike standard MCMs, which choose points
�r randomly in Γ, good SCMs choose as few points as possible, in a structured way, to minimize the
interpolation error. If M is large then this is challenging. Full tensor SCMs (e.g. see [22, 1]) use, as
collocation points, the Cartesian product of M sets of interpolation points on the one-dimensional
intervals Γk. Let Yk denote the set of interpolation points chosen on Γk for k = 1, . . . ,M , then the
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full tensor collocation grid is simply the set Y1 × ⋅ ⋅ ⋅ × YM . Possibilities for Yk include Clenshaw-
Curtis (CC) points [5] (see Figure 2.1) and Gauss points. For the latter, this means the points
are roots of the univariate polynomials that are orthogonal with respect to the density function
�k(�k). That is, roots of Legendre polynomials for Uniform random variables and roots of Hermite
polynomials for Gaussian variables. If dk + 1 points are selected on each interval Γk, however, the
total number of collocation points is nc =

∏M

k=1(dk + 1) and this quickly becomes intractable as
M increases.
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Fig. 2.1. Full tensor CC collocation points on [−
√
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3]2 with d1 = d2 = 4, nc = 25 (left), d1 = d2 = 8,
nc = 81 (center), d1 = d2 = 16, nc = 289 (right).
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Fig. 2.2. Sparse grid CC collocation points on [−
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3]2 with l = 3, nc = 13 (left), l = 4, nc = 29 (center),
l = 5, nc = 65 (right).

Sparse grid SCMs [22, 14] are based on interpolation and cubature rules for high-dimensional
problems [15, 10, 3] derived from the work of Smolyak [19]. To define a sparse grid on Γ, let Zi be
a given set of one-dimensional interpolation points on Γk of size mi + 1 where for i ∈ ℕ,

mi =

{

0 if i = 1,
2i−1 if i > 1.

Writing i = (i1, . . . , iM ) ∈ ℕ
M , and given an approximation level l, the points are defined via

H(l,M) =
∪

l≤∣∣i∣∣1<l+M

Zi1 × . . .× ZiM . (2.2)

The convergence rate of multivariate interpolation rules depends on the largest value d for
which the rule is exact for all polynomials of total degree d. For sparse grid SCMs, we achieve
total degree accuracy with l = d+ 1 [3, Theorem 4] using far fewer points than full tensor SCMs
(see Table 2.1). For detailed analysis and discussion of the convergence rates of full tensor SCMs
see Babuška et al. [1] and for sparse grid SCMs, see Nobile et al. [14].

We now focus on linear algebra issues associated with computing (2.1).
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Table 2.1
Dimension of Sd (or nc) for varying M and d, using Clenshaw-Curtis points

M 5 10 20
d 1 2 3 1 2 3 1 2 3

Sparse grid SCM 11 61 241 21 221 1581 41 841 11561
Full tensor SCM 32 243 1024 1024 59049 106 106 109 1012

3. Linear systems. Each sample of the finite element solution prℎ(x) in (2.1) solves (1.8)
where arM (x) is (1.3) or (1.4) sampled at �r. If Φℎ = span{�1(x), . . . , �nℎ

(x)} consists of piecewise
polynomials then we have to solve nc sparse linear systems (1.9) where

[Ar]ij =

∫

D

arM (x)∇�i(x) ⋅ ∇�j(x)dx, [b]i =

∫

D

f(x)�i(x)dx, i, j = 1, . . . , nℎ. (3.1)

We assume for each r that the sample arM (x) is strictly positive and bounded, i.e

0 < a1,r ≤ arM (x) ≤ a2,r < ∞ a.e. in D (3.2)

and so we immediately obtain a bound for the condition number of each stiffness matrix Ar. That
is, �(Ar) ≲ a2,ra

−1
1,rℎ

−2, where ℎ denotes the largest edge length in the finite element mesh. Note
that arM (x) is not strictly positive for (1.3) if unbounded (e.g. Gaussian) random variables are
used. If piecewise linear polynomials are used for Φℎ and (3.2) holds, then each Ar is an M-matrix
in the sense of Definition 3.1.

Definition 3.1 (M-matrix). An M-matrix is a symmetric positive definite matrix with positive

diagonal entries and non-positive off-diagonal entries.

Theorem 3.2 gives insight into how ill-conditioned each matrix Ar is with respect to the
discretization and statistical parameters. For simplicity, we assume �(x) = � > 0 is spatially
constant and that the finite element meshes used to construct Φℎ are shape regular and quasi-
uniform.

Theorem 3.2. The eigenvalues of the stiffness matrix Ar in (3.1) are contained in the interval
[

cℎ2(�− Tr), C(�+ Tr)
]

or
[

cℎ2e�−Tr , Ce�+Tr

]

if aM (x, �) is given by (1.3) or (1.4) respectively, where c, C > 0 are independent of ℎ and arM (x),
and

Tr = � SM ∣∣�r∣∣∞, SM =
M
∑

k=1

√

�k ∣∣ck∣∣L∞(D). (3.3)

Proof. Let u ∈ ℝ
nℎ ∖ {0} and set v(x) =

∑nℎ

j=1 uj�j(x) ∈ Φℎ. Define the matrix A0 via

[A0]ij =

∫

D

∇�i(x) ⋅ ∇�j(x)dx, i, j = 1, . . . nℎ,

and recall the standard result

cℎ2 ≤ uTA0u

uTu
≤ C (3.4)

(e.g. see [8]) for constants c, C independent of ℎ. If aM (x, �) is defined as in (1.3),

∣uTAru− �uTA0u∣ =
∣

∣

∣

∣

∣

∫

D

(

�
M
∑

k=1

√

�k ck(x) [�r]k

)

∇v(x)∇v(x)dx

∣

∣

∣

∣

∣

≤ Tru
TA0u.
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Hence (� − Tr)u
TA0u ≤ uTAru ≤ (� + Tr)u

TA0u. Combining with (3.4) gives the first result.
The bound for (1.4) is similarly obtained.

As M → ∞, SM (defined in Theorem 3.2) converges at a rate that depends on C(x,y) (see [9]).
Note that the spectral inclusion bounds in Theorem 3.2 are different for each stiffness matrix Ar

since each one corresponds to a different collocation point and Tr depends on

∣∣�r∣∣∞ = max
k∈{1,...,M}

∣[�r]k∣.

In addition, Tr depends on � and ∣∣�r∣∣∞ depends on d if unbounded random variables are used.

3.1. AMG Preconditioning. amg [18, 20] is a well-known iterative solver for sparse linear
systems that starts from an initial guess and successively eliminates error via a combination of
smoothing (e.g. Gauss-Seidel iteration) and coarse grid correction. ‘Grids’ in this context are
simply index sets of unknowns and no geometric information is required.

To focus ideas, consider the single linear system A1u = b with u ∈ ℝ
n1 . Before amg iteration

can begin, there is a set-up phase, during which the following information is generated.

1. Sequence of grids: Cl ⊂ Cl−1 ⊂ ⋅ ⋅ ⋅ ⊂ C1 = {1, . . . , n1} with ∣Ck∣ = nk, for k = 2, . . . , l.
2. Prolongation matrices: P k−1

k ∈ ℝ
nk−1×nk for k = 2, . . . , l.

3. Coarse grid matrices: Ak = Rk
k−1A

k−1P k−1
k , Rk

k−1 = (P k−1
k )T for k = 2, . . . , l.

Coarse grids and prolongation matrices are constructed by exploiting algebraic information in the
given matrix A1, resulting in a finely-tuned preconditioner for that matrix. An algorithm for one
step or ‘V-cycle’ of amg applied to the linear system A1u1 = b1 is given below. Here, Ak and uk

denote a matrix and vector corresponding to the grid Ck.

Smooth A1u1 = b1 with initial guess v1 and update v1 with new estimate.
Restrict the residual: r2 = R2

1(A
1v1 − b1).

Smooth A2e2 = r2 with initial guess 0 to obtain v2.
...
Restrict the residual: rl = Rl

l−1(A
l−1vl−1 − bl−1).

Solve Alvl = rl directly.
...

Correct v2 = v2 + P 2
3 v

3.
Smooth A2e2 = r2 with initial guess v2 and update v2 with new estimate

Correct v1 = v1 + P 1
2 v

2.
Smooth A1u1 = b1 with initial guess v1 and update v1 with final estimate.

For each matrix Ar defined in (3.1) we can employ one V-cycle of amg as a preconditioner
for cg. For M-matrices, this is known to be a good strategy (e.g. see [18]). Specifically, if Pr is
the matrix for which P−1

r v denotes the application of one amg V-cycle to Aru = v, with set-up
information (coarse grids, prolongation matrices and coarse grid matrices) generated using Ar,
then Pr is expected to be optimal in the sense of Definition 3.3. We refer to this strategy as
finely-tuned amg preconditioning.

Definition 3.3 (optimal preconditioner). An optimal preconditioner for Ar is a matrix Pr,
for which the action of P−1

r can be computed in O(nℎ) work and the eigenvalues of P−1
r Ar are

contained in the interval [�r,Θr] with constants �r,Θr > 0 independent of ℎ.

Rigorous convergence proofs are lacking for amg but if the M-matrix property is not strongly
violated then we expect �r and Θr to be quite insensitive to ℎ and arM (x). If the sampled diffusion
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coefficient arM (x) is oscillatory, which can occur if C(x,y) has a small correlation length 
, then
we expect some degradation [20]. However, MCMs are more appropriate than SCMs in that case
since the convergence rate of the latter is less favorable for large M.

The only disadvantage of finely-tuned amg preconditioning is that set-up information has to
be generated for nc distinct matrices. Depending on the computing environment available, this
may be costly. Besides, since the matrices are similar, there should be scope for computational
savings. Alternatively, we can employ one generic preconditioner for all systems. To this end, let
A� be the stiffness matrix with coefficient aM (x,0), where

aM (x,0) =

{

�(x) for (1.3),
exp(�(x)) for (1.4),

and let P� be the matrix for which P−1
� v denotes the application of one amg V-cycle to A�u = v,

with set-up information generated using A�. Theorem 3.4 states that the efficiency of P� as a
preconditioner for Ar, varies from system to system.

Theorem 3.4. Let �(x) = � > 0. The eigenvalues of P−1
� Ar lie in the interval

[c ��(1 − Tr�
−1), C Θ�(1 + Tr�

−1)] or [c ��e
−Tr , C Θ�e

Tr ]

if aM (x, �) is given by (1.3) or (1.4) respectively, where c, C > 0 are independent of ℎ and arM (x)
and the eigenvalues of P−1

� A� are contained in [��,Θ�].

Note that we can expect the multigrid constants ��,Θ� in the spectral inclusion bounds in
Theorem 3.4 to be independent of ℎ and quite insensitive to aM (x,0). We refer to this second
strategy asmean-based amg preconditioning. It was applied in [21] for stochastic Galerkin systems.
Using Theorem 3.4 we can see here that it is adequate for (1.3) as Tr�

−1 must be small for
the problem to be well-posed. In that case, the bounds in Theorem 3.4 are favorable. For the
stochastically nonlinear problem, however, Tr can be arbitrarily large (there are no restrictions on
d and �) and, unfortunately, the bound in Theorem 3.4 deteriorates as Tr increases. A stronger
preconditioner is required.

Definition 3.5 (strong influence/dependence). For an M-matrix A, the jth unknown strongly

influences the ith unknown if, for a given threshold � > 0, ∣Aij ∣ ≥ �maxk ∕=i ∣Aik∣. In this case, the

ith unknown strongly depends on the jth unknown.

Relatively speaking, the most expensive part of amg set-up is the coarse grid selection. Coarse
grids are designed to capture error not eliminated by smoothing. For M-matrices, such error is
known to vary slowly in the direction of strong dependence, in the sense of Definition 3.5. If arM (x)
is spatially isotropic, strongly influencing points for the stiffness matrix A� are likely to be strongly
influencing points for the stiffness matrix Ar, which suggests that coarse grids, and prolongation
matrices can be computed once (using one representative stiffness matrix) and recycled for all
systems. Formally, then, let P�,r be the matrix for which P−1

�,rv denotes the application of one
amg V-cycle to Aru = v, with coarse grids and prolongation matrices generated using A�. The
coarse grid matrices should be computed using Ar and so the preconditioner is distinct for each
system. We refer to this strategy as amg preconditioning with recycled setup. As computing
coarse grid matrices is relatively cheap, this strategy has set-up costs similar to mean-based amg
preconditioning. However, if Ar is an M-matrix we expect spectral inclusion bounds for P−1

�,rAr to
be similar to those of P−1

r Ar. That is, the eigenvalues of P−1
�,rAr lie in [��,r,Θ�,r] with ��,r ≈ �r

and Θ�,r ≈ Θr.

3.2. Numerical Results. We now test the three amg preconditioning strategies on a model
problem. Consider (1.1) on D = (−1, 1) × (−1, 1) with f(x) = 1 and assume a(x, !) has mean
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�(x) = 1 and covariance function

C(x,y) = �2 exp

(

− ∣∣x− y∣∣1



)

. (3.5)

We perform experiments with diffusion coefficients aM (x, �) of the form (1.3) and (1.4) with 
 = 1
and M = 6 random variables. For the spatial discretization, we use piecewise linear polynomials
and the resulting stiffness matrices are M-matrices. An approximation to the mean and variance
of the solution is shown in Figure 3.1. Note that first and second order statistics are available via
a cheap post-processing of the individual solutions of the linear systems.

In the experiments below, we solve the stochastic collocation systems using preconditioned cg
with the zero vector as an initial guess for each individual system. Computations are performed in
MATLAB in serial on a laptop PC with 4GB of RAM using a MATLAB version of the amg code
[4]. The multigrid method is applied as a black-box with one pre and post Gauss-Seidel smoothing
step per V-cycle. The stopping tolerance for the cg iteration is 10−6.
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Fig. 3.1. E[pℎd] (left) and Var[pℎd] (right) for the model problem with aM (x, �) given by (1.4); the variance
of a is �2 = 1 and for the spatial discretization, ℎ = 1/32.

Example 3.1. First, we investigate the robustness of the preconditioning schemes with respect
to the parameters ℎ and �. We use bounded Uniform random variables and apply a sparse grid
SCM with Clenshaw-Curtis (CC) points. Results are presented in Tables 3.1 and 3.2. Table 3.1
shows that both the fine-tuned and recycled setup strategies are optimal, in terms of the number
of preconditioned cg iterations, with respect to variations in ℎ and �, for both (1.3) and (1.4).
By recycling setup information, however, we obtain a finely tuned preconditioner for each system
at a fraction of the cost (see Table 3.2). Note, however, that amg setup can be executed quicker
in programming languages like fortran and so the exact benefits in terms of time depend on
the coding environment. No systems arise which cannot be solved in an acceptably low number
of iterations with the recycled method. In addition, there are considerable computational savings
over mean-based preconditioning, whose performance, as Theorem 3.4 predicts, deteriorates as �2

increases. Note that, for sparse grid SCMs with l = 3, when aM (x, �) has the form (1.3) with

 = 1 and M = 6, �2 = 0.27 is the largest value (to two decimal places) for which all subproblems
are well-posed.

When Uniform random variables are used, as in Example 3.1, the collocation points always lie
in the bounded hypercube Γ = [−

√
3,
√
3]M (for both full tensor and sparse grid SCMs). Using

Gaussian variables, which is permitted when aM (x, �) has the form (1.4), is more difficult. For
example, for full tensor SCMs using d Gauss points in each dimension, the collocation points are
contained in Γ = [−Cd, Cd]

M with Cd = O(
√
d). The hypercube grows as d increases. The impact

of this, in terms of the bounds in Theorems 3.4 and 3.2, is an increase in Tr, for some systems.

Example 3.2. We now investigate the robustness of the preconditioning schemes with respect
to d and � when unbounded random variables are used. This time, we apply full tensor SCMs with
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Table 3.1
Average cg iterations for Example 3.1, l = 3 and nc = 85.

Preconditioning Linear problem (1.3) Nonlinear problem (1.4)
strategy ℎ �2 = 0.1 0.2 0.27 �2 = 1 5 10
None 1/32 177 188 195 228 348 500

1/128 748 799 828 972 1493 2170
Finely-tuned 1/32 6.00 6.00 6.00 6.00 6.13 6.25

1/128 6.01 6.15 6.32 6.60 6.91 7.01
Mean-based 1/32 8.16 9.38 10.44 13.96 32.64 61.14

1/128 8.46 9.91 11.01 14.69 34.92 66.61
Recycled setup 1/32 6.00 6.00 6.00 6.02 6.42 6.69

1/128 6.02 6.14 6.16 6.41 6.87 7.45

Table 3.2
Total amg setup times in seconds, maximum cg iterations and total iteration times in seconds (in parentheses)

for Example 3.1 with ℎ = 1/128, l = 3 and nc = 85 fixed.

Preconditioning Linear problem (1.3) Nonlinear problem (1.4)
strategy Setup �2 = 0.1 �2 = 0.27 �2 = 1 �2 = 10

Finely-tuned 3212 7 (67) 7 (73) 7 (79) 8 (80)
Mean-based 41 12 (94) 25 (121) 23 (168) 224 (740)

Recycled setup 48 7 (67) 7 (68) 8 (76) 12 (84)

appropriate Gauss points. Sparse grid methods can also be used; they simply result in a subset
of the systems solved here (compare Figs 2.1 and 2.2). Our spectral inclusion bounds tell us that
the full tensor SCM yields more very badly ill-conditioned systems than the sparse grid SCM, and
so, is more challenging from a linear algebra point of view. The results in Table 3.3 reveal how
inefficient mean-based amg preconditioning becomes with increasing d (and �) using Gaussian
random variables. However, amg with recycled setup performs, as predicted, like finely-tuned
amg and is almost insensitive to d.

Table 3.3
Average cg iterations for (1.4) for Example 3.2 with ℎ = 1/32.

Uniform variables Gaussian variables
Preconditioning d = 2 3 4 d = 2 3 4

strategy �2 nc = 729 4096 15625 nc = 729 4096 15625
Finely-tuned 1 6.00 6.01 6.01 6.04 6.12 6.17

10 6.41 6.40 6.44 6.53 6.61 6.68
Mean-based 1 17.33 17.99 18.27 22.48 29.12 35.97

10 116.35 130.89 137.89 276.89 738.70 1777.32
Recycled setup 1 6.05 6.07 6.08 6.16 6.30 6.41

10 7.04 7.10 7.13 7.38 7.65 7.83

4. Conclusions. In conclusion, we have demonstrated that is it feasible to use amg precon-
ditioning to solve the sequences of linear systems that arise from the numerical solution of elliptic
PDEs with random data via SCMs. Substantial computational savings are achieved over the one-
preconditioner-fits-all approach for the stochastically nonlinear problem, if set-up information is
recycled. The scheme is applicable for any sampling method, including MCMs and SGMs based on
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doubly-orthogonal polynomials. In addition amg preconditioning with recycled setup can be used
to develop preconditioners for the saddle point systems that arise when SCMs are applied to mixed
formulations of the model problem. Once again, this strategy leads to significant computational
savings compared to mean-based preconditioning.
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