next up previous
Next: Bibliography

Marko Huhtanen
APPROXIMATE FACTORS FOR THE INVERSE

Institute of Mathematics
Helsinki University of Technology
Box 1100
FIN-02015
Finland
marko.huhtanen@tkk.fi

Let $ \mathcal{W}$ and $ \mathcal{V}_1$ be sparse matrix subspaces of $ \mathbb{C}^{n \times n}$ containing invertible elements such that those of $ \mathcal{V}_1$ are readily invertible. To precondition a large linear system involving a sparse nonsingular matrix $ A\in \mathbb{C}^{n \times n}$, in this talk we consider

$\displaystyle AW\approx V_1$ (1)

with non-zero matrices $ W \in \mathcal{W}$ and $ V_1 \in \mathcal{V}_1$ both regarded as variables. The attainability of the possible equality can be verified by inspecting the nullspace of

$\displaystyle W\longmapsto (I-P_1)AW,\,$    with $\displaystyle \, W\in \mathcal{W},$ (2)

where $ P_1$ is the orthogonal projection onto $ \mathcal{V}_1$ [1].

Corresponding to the smallest singular values of ([*]), we have $ (I-P_1)AW \approx 0$ if and only if $ AW\approx V_1=P_1AW$. This gives rise to the criterion

$\displaystyle \min_{W\in \mathcal{W}, \left\vert\left\vert W\right\vert\right\vert _F=1}
\left\vert\left\vert(I-P_1) AW\right\vert\right\vert _F
$

for a starting point to generate approximate factors $ W$ and $ V_1=P_1AW$. Then

$\displaystyle \frac{\left\vert \left\vert AWV_1^{-1} -I\right\vert\right\vert }...
...{-1} -I\right\vert\right\vert
\left\vert \left\vert V_1 \right\vert\right\vert
$

in the 2-norm, whenever $ V_1$ is invertible. Consequently, the maximum gap between these two approximation problems is determined the condition number of $ V_1$. In the special case $ \mathcal{V}_1=\mathbb{C}I$ the equalities hold in general. This corresponds to the criterion

$\displaystyle \min_{W\in \mathcal{W}}\left\vert\left\vert AW-I\right\vert\right\vert _F$

which constitutes a starting point for constructing sparse approximate inverses.




next up previous
Next: Bibliography
Marian 2008-02-26