A PRECONDITIONER ON HIGH-ORDER FINITE ELEMENT METHODS*

SANG DONG KIM[†] AND THOMAS A. MANTEUFFEL [‡]

Even if the high-order finite element method has many advantages for solving a uniformly self adjoint elliptic operator such as

$$Lu := -\nabla \cdot \mathbf{A} \nabla u + c_0 u$$
 in $\Omega = [-1, 1] \times [-1, 1]$

with boundary conditions ($\Gamma_L = \Gamma_D(L) \cup \Gamma_N(L)$)

$$u = 0$$
 on $\Gamma_D(L)$, $\mathbf{n} \cdot \mathbf{A} \nabla u = 0$ on $\Gamma_N(L)$,

one may have a difficulty controlling condition numbers occurred from spectral element discretizations which makes it uneasy to use iterative methods. In order to alleviate such a situation, we take a lower order finite element preconditioner operator corresponding to

 $Bv := -\nabla \cdot \nabla u + b_0 u \quad \text{in} \quad \Omega$

with boundary conditions $(\Gamma_B = \Gamma_D(B) \cup \Gamma_N(B))$

$$v = 0$$
 on $\Gamma_D(B)$, $\mathbf{n} \cdot \nabla v = 0$ on $\Gamma_N(B)$

Let $\{\eta_k\}_{k=0}^N$ be the standard Legendre-Gauss-Lobatto (=:LGL) points in [-1,1]. By translations from I to a j^{th} subinterval $I_j := [x_{j-1}, x_j]$ we denote $\{\xi_k^j\}_{k=0}^N$ as the k^{th} -LGL points in each subinterval I_j for $j = 1, 2, \cdots, M$. Let \mathcal{P}_N^h be the subspace of C[-1,1] which consists of piecewise polynomials with support $I_j = [x_{j-1}, x_j]$ whose degree is less than or equal to N. For the space \mathcal{P}_N^h , we choose a piecewise Lagrange polynomial basis functions denoted as $\{\phi_k^j(x)\}$ supported in I_j for $j = 1, \cdots, M$. Let \mathcal{V}_N^h be the space of all piecewise Lagrange linear functions $\psi_k^i(x)$. Define an interpolation operator $\mathcal{I}_N^h : C[-1,1] \to \mathcal{P}_N^h(I)$ such that

$$(\mathcal{I}_N^h v)(\xi_\mu) = v(\xi_\mu), \quad v \in C[-1,1].$$

First, we set up the following relations for $v \in \mathcal{V}_N^h$

$$c\|v\| \le \|\mathcal{I}_N^h v\| \le C\|v\|, \quad c\|v\|_1 \le \|\mathcal{I}_N^h v\|_1 \le C\|v\|_1,$$

where two positive constants c and C do not independent of the mesh size $h_j = x_j - x_{j-1}$ and the degree N of piecewise polynomial. Let $(\hat{\mathbf{L}}_N^h)$ and $\hat{\mathbf{B}}_N^h$ be finite element stiffness matrices corresponding to L and B respectively. Then we will show the preconditioned system

$$(\hat{\mathbf{B}}_N^h)^{-1}\hat{L}_N^h$$

has positive eigenvalues which are independent of the mesh size $h_j = x_j - x_{j-1}$ and the degree N of piecewise polynomial.

^{*}This work was supported by KOSEF R02-2004-000-10109-0

[†]Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Korea (skim@knu.ac.kr)

[‡]Department of Applied Mathematics, University of Colorado-Boulder (tmanteuf@colorado.edu).