A PRECONDITIONER ON HIGH-ORDER FINITE ELEMENT METHODS*

SANG DONG KIM^{\dagger} AND THOMAS A. MANTEUFFEL \ddagger

Even if the high-order finite element method has many advantages for solving a uniformly self adjoint elliptic operator such as

$$
L u:=-\nabla \cdot \mathbf{A} \nabla u+c_{0} u \quad \text { in } \quad \Omega=[-1,1] \times[-1,1]
$$

with boundary conditions $\left(\Gamma_{L}=\Gamma_{D}(L) \cup \Gamma_{N}(L)\right)$

$$
u=0 \quad \text { on } \quad \Gamma_{D}(L), \quad \mathbf{n} \cdot \mathbf{A} \nabla u=0 \quad \text { on } \quad \Gamma_{N}(L),
$$

one may have a difficulty controlling condition numbers occurred from spectral element discretizations which makes it uneasy to use iterative methods. In order to alleviate such a situation, we take a lower order finite element preconditioner operator corresponding to

$$
B v:=-\nabla \cdot \nabla u+b_{0} u \quad \text { in } \quad \Omega
$$

with boundary conditions $\left(\Gamma_{B}=\Gamma_{D}(B) \cup \Gamma_{N}(B)\right)$

$$
v=0 \quad \text { on } \quad \Gamma_{D}(B), \quad \mathbf{n} \cdot \nabla v=0 \quad \text { on } \quad \Gamma_{N}(B) .
$$

Let $\left\{\eta_{k}\right\}_{k=0}^{N}$ be the standard Legendre-Gauss-Lobatto (=:LGL) points in [$\left.-1,1\right]$. By translations from I to a $j^{t h}$ subinterval $I_{j}:=\left[x_{j-1}, x_{j}\right]$ we denote $\left\{\xi_{k}^{j}\right\}_{k=0}^{N}$ as the $k^{t h}-$ LGL points in each subinterval I_{j} for $j=1,2, \cdots, M$. Let \mathcal{P}_{N}^{h} be the subspace of $C[-1,1]$ which consists of piecewise polynomials with support $I_{j}=\left[x_{j-1}, x_{j}\right]$ whose degree is less than or equal to N. For the space \mathcal{P}_{N}^{h}, we choose a piecewise Lagrange polynomial basis functions denoted as $\left\{\phi_{k}^{j}(x)\right\}$ supported in I_{j} for $j=1, \cdots, M$. Let \mathcal{V}_{N}^{h} be the space of all piecewise Lagrange linear functions $\psi_{k}^{i}(x)$. Define an interpolation operator $\mathcal{I}_{N}^{h}: C[-1,1] \rightarrow \mathcal{P}_{N}^{h}(I)$ such that

$$
\left(\mathcal{I}_{N}^{h} v\right)\left(\xi_{\mu}\right)=v\left(\xi_{\mu}\right), \quad v \in C[-1,1] .
$$

First, we set up the following relations for $v \in \mathcal{V}_{N}^{h}$

$$
c\|v\| \leq\left\|\mathcal{I}_{N}^{h} v\right\| \leq C\|v\|, \quad c\|v\|_{1} \leq\left\|\mathcal{I}_{N}^{h} v\right\|_{1} \leq C\|v\|_{1}
$$

where two positive constants c and C do not independent of the mesh size $h_{j}=$ $x_{j}-x_{j-1}$ and the degree N of piecewise polynomial. Let $\left(\hat{\mathrm{E}}_{N}^{h}\right)$ and $\hat{\mathbf{B}}_{N}^{h}$ be finite element stiffness matrices corresponding to L and B respectively. Then we will show the preconditioned system

$$
\left(\hat{\mathbf{B}}_{N}^{h}\right)^{-1} \hat{L}_{N}^{h}
$$

has positive eigenvalues which are independent of the mesh size $h_{j}=x_{j}-x_{j-1}$ and the degree N of piecewise polynomial.

[^0]
[^0]: *This work was supported by KOSEF R02-2004-000-10109-0
 ${ }^{\dagger}$ Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Korea (skim@knu.ac.kr)
 ${ }^{\ddagger}$ Department of Applied Mathematics, University of Colorado-Boulder (tmanteuf@colorado.edu).

