Panayot S. Vassilevski
 Nullspace preserving multigrid for saddle-point problems

Center for Applied Scientific Computing
UC Lawrence Livermore National Laboratory
7000 East Avenue
Mail stop L-560
Livermore
CA 94550
U.S.A
panayot@llnl.gov

Consider the saddle point problem

$$
A\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{x}
\end{array}\right] \equiv\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B}^{T} \\
\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
0
\end{array}\right]
$$

Assuming that \mathcal{A} is s.p.d., this problem is transformed, by a (computable) projection $\pi\left(\pi^{2}=\pi\right)$ such that $\mathcal{B} \pi=\mathcal{B}$, to an equivalent s.p.d. problem for \mathbf{u},

$$
\left[\left(I-\pi^{T}\right) \mathcal{A}(I-\pi)+\pi^{T} \mathcal{A} \pi\right] \mathbf{u}=\left(I-\pi^{T}\right) \mathbf{f}
$$

We present a set of conditions for a smoother \mathcal{M}^{-1} and an interpolation matrix Π, such that if a current iterate in the resulting two-grid method belongs to the subspace $\operatorname{Null}(\mathcal{B})$, then after smoothing the iterate stays in $\operatorname{Null}(\mathcal{B})$, and finally, the (interpolated) coarse-grid correction also stays in the subspace $\operatorname{Null}(\mathcal{B})$. Thus a multigrid method can be devised without explicit knowledge of a computable basis of $\operatorname{Null}(\mathcal{B})$. The tools needed are: computable projections π_{k}, such that π_{k}^{T} are also computable, interpolation matrices \mathcal{P}_{k} for the \mathbf{u}-variable and interpolation matrices \mathcal{Q}_{k} for the second unknown \mathbf{x}, at all levels $k \geq 0$. Let $\mathcal{B}_{0}=\mathcal{B}$ and $\mathcal{A}_{0}=\mathcal{A}$ (i.e., $k=0$ stands for the finest level). The projections π_{k} have the form $\mathcal{R}_{k} \mathcal{B}_{k}$ and satisfy $\mathcal{B}_{k} \pi_{k}=\mathcal{B}_{k}$. There is a common "null-space preserving" assumption on $\mathcal{Q}_{k}, \mathcal{P}_{k}$, and $\mathcal{B}_{k+1} \equiv \mathcal{Q}_{k}^{T} \mathcal{B}_{k} \mathcal{P}_{k}, \mathcal{B}_{k+1} \mathbf{v}_{c}=0$ implies $\mathcal{B}_{k} \mathcal{P}_{k} \mathbf{v}_{c}=0$.

Define a standard multigrid method based on the s.p.d. matrices

$$
\left(I-\pi_{k}^{T}\right) \mathcal{A}_{k}\left(I-\pi_{k}\right)+\pi_{k}^{T} \mathcal{A}_{k} \pi_{k}, \quad \mathcal{A}_{k}=\mathcal{P}_{k-1}^{T} \mathcal{A}_{k-1} \mathcal{P}_{k-1}, \mathcal{A}_{0}=\mathcal{A}
$$

smoothers (for given s.p.d. matrices $\left.\overline{\mathcal{M}}_{k}^{-1}\right), \mathcal{M}_{k}^{-1}=\left(I-\pi_{k}\right) \overline{\mathcal{M}}_{k}^{-1}\left(I-\pi_{k}^{T}\right)+$ $\pi_{k} \overline{\mathcal{M}}_{k}^{-1} \pi_{k}^{T}$, and (modified) interpolation matrices $\Pi_{k}=\mathcal{P}_{k}\left(I-\pi_{k+1}\right)$. The resulting multigrid method (with zero initial iterate) keeps all iterates in $\operatorname{Null}(\mathcal{B})$ since the initial residual is $\left(I-\pi^{T}\right) \mathbf{f}$ and all successive residuals also have the form $\left(I-\pi^{T}\right) \mathbf{r}$.

We provide a specific construction of the (computable) projections π as well as alternative choices of the null-space preserving smoothers \mathcal{M}^{-1} for some mixed finite element saddle-point matrices A.

This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

