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We investigate how to use an LU factorization with the classical 1sqr routine
for solving overdetermined sparse least squares problems. Usually L is much
better conditioned than A. Thus iterating with L instead of A results in faster
convergence. Numerical experiments using Matlab illustrate the good behavior
of our algorithm in terms of storage and convergence. This paper explores a
preliminary shared memory implementation using SuperLLU factorization.

As with other sparse linear systems, preconditioning techniques based on in-
complete factorizations can improve convergence. One method to precondition
the normal equations (??) is to perform an incomplete Cholesky decomposition
of AT A (e.g., RIF preconditioner [?]).

When AT A and its Cholesky factorization are denser than A, it is natural to
wonder if the LU factorization of A can be used in solving the least squares
problem. In this paper we use an LU factorization of the rectangular matrix

A= ( il ) where L is unit lower trapezoidal and U is upper triangular. For
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the nonpivoting case, the normal equations (??) become equation LT Ly = ¢, (0)
with ¢ = LTh,Ux = y, and we can apply CG iterations on ().

Least squares solution using LU factorization has been explored by several au-
thors. Peters and Wilkinson and Bjorck and Duff give direct methods. This
work follows Bjorck and Yuan using conjugate gradient methods based on LU
factorization, an approach worth revisiting because of the recent progress in
sparse LU factorization. The lsqrLU algorithm presented here uses a lower
trapezoidal L returned from a direct solver package. Here we use an LU = PAQ
factorization from shared memory SuperLU, comparing iteration with L to the
U~! A iteration suggested by Saunders. Because several other direct solver pack-
ages offer scalable sparse LU factorizations, it appears likely that the algorithm
used here can also be used to solve larger problems. The rate of linear conver-



gence for CG iterations on the normal equations is

k—1
k+1’

where k = /(AT A) = (A) and (A) denotes the 2-norm condition number of
A (ratio of largest and smallest singular values of A). In our experiments, L
is often much better conditioned than A, so convergence of the CG method is
relatively rapid. Moreover, the total number of nonzeros in L and U is usually
less than in the sparse Cholesky factorization of AT A.



