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We focus on applications arising in inverse problems in which the measurement
model has the form

y = F (θ) + ε,

where y is the measurement vector; F is the forward model function with un-
known parameters θ; and ε is independent and identically distributed Gaussian,
i.e., ε ∼ N(0, σ2I). Then the probability density function for the measurements
y given the unknown parameters θ is given by

p(y|θ) ∝ exp

(
− 1

2σ2
‖y − F (θ)‖22

)
,

where ‘∝’ denotes proportionality. In Bayesian inverse problems, one also as-
sumes a prior probability density function p(θ), which incorporates both the
prior knowledge and uncertainty about the unknown parameters θ. In this talk,
we focus on the case in which the prior p(θ) is of L1-type, i.e.,

p(θ) ∝ exp (−λ‖Dθ‖1) ,

where D is an invertible matrix. Such priors include the total variation prior
and the Besov Bs

1,1 space priors. With these two probability models (p(y|θ)
and p(θ)) in hand, by Bayes’ Law, the posterior density function has the form

p(θ|y) ∝ p(y|θ)p(θ)

∝ exp

(
− 1

2σ2
‖y − F (θ)‖22 − λ‖Dθ‖1

)
.

Regardless of the form of F , p(θ|y) is non-Gaussian. Moreover, in inverse prob-
lems θ is high-dimensional. Taken together, these challenges make the problem
of sampling from p(θ|y) – which is a requirement if one wants to quantify uncer-
tainty – difficult. To overcome this, we extend the Randomize-then-Optimize
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(RTO) method, which was recently developed for posterior sampling when F
above is nonlinear and p(θ) is Gaussian. The extension of RTO to the L1-type
prior case requires a variable transformation, which turns p(θ) into a Gaussian
probability density in the transformed variables and allowing the application
of RTO. In this talk, we will begin by presenting the RTO method, and then
its extension to the L1-type prior case via the variable transformation. Several
numerical experiments will also be presented to illustrate the approach and the
resulting Markov Chain Monte Carlo method.

2


