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Inverse problems arise in various scientific applications, and Bayesian approaches
are often used for solving statistical inverse problems, where unknowns are mod-
eled as random fields and Bayes’ rule is used to infer unknown parameters by
conditioning on measurements. In this work, we develop iterative methods for
solving the following least squares problem, which is equivalent to computing
the maximum a posteriori (MAP) estimator

x̂MAP ≡ arg min
x
− log p(x|d) = arg min

x
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2
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2
‖x− µ‖2Q−1 . (1)

We model the prior covariance matrix Q to have entries of the form κ(~xi, ~xj),
where κ(·, ·) is a covariance kernel, and {~xi}ni=1 are spatial points representing
the discrete image. We choose κ from the Matérn class of covariance kernels,
which not only represent a rich class of priors but also are convenient from a
theoretical and modeling point of view. However, one of the main challenges
of using the Matérn kernels is that Q−1 is difficult to obtain and work with,
whereas matrix-vector products (matvecs) with Q can be handled efficiently in
O(n log n) using FFT methods (on regular grids) and using H-matrices (on ir-
regular grids). In our approach, we make an appropriate change of variables
and consider a hybrid Golub-Kahan bidiagonalization iterative process with
weighted inner products 〈·, ·〉R−1 and 〈·, ·〉Q. Our approach avoids forming (ei-
ther explicitly, or matvecs with) the square root or inverse of the prior covariance
matrix Q. The resulting algorithms are efficient and scalable to large problem
sizes.

Our proposed hybrid approach can automatically determine regularization pa-
rameter λ, which controls the relative importance between the prior and the
data-misfit part of the likelihood. Hybrid methods project the original least
squares problem onto a smaller dimensional problem, using orthonormal bases
for the Krylov subspaces generated during the iterative process, and regular-
ization parameters are sought by optimizing an appropriate functional on the
projected problem. In this talk, we show how several commonly used function-
als can be appropriately modified to handle weighted norms, as in Equation (1).
Since the regularization parameters are determined on-the-fly during the itera-
tive process, this approach is attractive for large-scale inverse problems.
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In order to characterize the uncertainty in parameter reconstruction, we must
fully specify the posterior distribution characterized by the MAP estimator and
the posterior covariance matrix. However, the posterior covariance matrix is
dense, and therefore, storing and computing it is infeasible for large-scale prob-
lems. Using the bidiagonalization process, we describe an efficient approach
to generate approximations to useful uncertainty measures based on the pos-
terior covariance matrix. In particular, we estimate the variance, which are
the diagonals of the posterior covariance, and show how to generate conditional
realizations, which are samples from the posterior distribution.

We will demonstrate the benefits of our proposed algorithms on challenging 1D
and 2D image reconstruction problems.
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