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We investigate how to use an LU factorization with the classical lsqr routine
for solving overdetermined sparse least squares problems. Usually L is much
better conditioned than A. Thus iterating with L instead of A results in faster
convergence. Numerical experiments using Matlab illustrate the good behavior
of our algorithm in terms of storage and convergence. This paper explores a
preliminary shared memory implementation using SuperLU factorization.

We consider the overdetermined full rank LLS problem

min
x∈Rn

Ax− b, (1)

with A ∈ Rm×n,m ≥ n and b ∈ Rm. When A is sparse, direct methods based
on QR factorization or the normal equations are not always suitable because
the R factor or ATA can be dense. A common iterative method to find the least
squares solution x is to solve the normal equations

ATAx = AT b, (2)

by applying the conjugate gradient (CG) algorithm to ATA. In this case the
matrix ATA does not need to be explicitly formed, avoiding possible fill-in in
the formation of ATA.

with other sparse linear systems, preconditoning techniques based on incomplete
factorizations can improve convergence. One method to precondition the normal
equations (2) is to perform an incomplete Cholesky decomposition of ATA (e.g.,
RIF preconditioner, Benzi, 2003).

When ATA and its Cholesky factorization are denser than A, it is natural to
wonder if the LU factorization of A can be used in solving the least squares
problem. In this paper we use an LU factorization of the rectangular matrix

A =

(
A1

A2

)
where L is unit lower trapezoidal and U is upper triangular. For

the nonpivoting case, the normal equations (2) become equation LTLy = c,with
c = LT b, Ux = y, and we can apply CG iterations on ().
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Least squares solution using LU factorization has been explored by several au-
thors. Peters and Wilkinson (1970) and Björck and Duff (1980) give direct
methods. This work follows Björck and Yuan (1999) using conjugate gradient
methods based on LU factorization, an approach worth revisiting because of
the recent progress in sparse LU factorization. The lsqrLU (2015) algorithm
presented here uses a lower trapezoidal L returned from a direct solver pack-
age. Here we use an LU = PAQ factorization from shared memory SuperLU
(X. LI 2005), comparing iteration with L to the U−1A iteration suggested by
Saunders. Because other direct solver packages offer scalable sparse LU factor-
izations, it appears likely that the algorithm used here can also be used to solve
larger problems. The rate of linear convergence for CG iterations on the normal
equations is

K =
κ− 1

κ+ 1
,

where κ =
√

(ATA) = (A) and (A) denotes the 2-norm condition number of
A (ratio of largest and smallest singular values of A). In our experiments, L
is often much better conditioned than A, so convergence of the CG method is
relatively rapid. Moreover, the total number of nonzeros in L and U is usually
less than in the sparse Cholesky factorization of ATA.
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