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Krylov subspace methods are widely used in solving partial differential equations
and large sparse linear systems. For symmetric systems, CG [5] and MINRES [6]
are almost always the optimal choices as efficient solvers. However, for nonsym-
metric systems, such as those arising from convection-diffusion equations, the
best choice of solvers is much less clearer. Various methods have been proposed
for nonsymmetric systems over the years. Notable methods include GMRES
[7], QMR [4], TFQMR [3], Bi-CGSTAB [8], QMRCGSTAB [2], etc. Unlike for
symmetric case, there is no overall best method, and there is a need of guidelines
in choosing these different types methods. The purpose of this study is to per-
form a systematic comparison of the various methods for linear systems arising
from PDE discretizations. We focus on two classes of methods that are based
on either nonsymmetric Lanczos iterations or Arnoldi iterations. We analyze
the algorithm complexity and present numerical performances of these methods
with and without preconditioners, for linear systems from finite difference or
finite element discretizations in 2-D and 3-D.

In this study, we first report some theoretical comparisons of the methods
with three-term recurrences, including QMR, TFQMR, Bi-CGSTAB and QMR-
CGSTAB, as well as the methods based on n-term recurrence, such as GMRES.
Table 1 compares the operation counts per iteration and the storage require-
ments for these methods, which augment the comparison in [1] with TFQMR
and QMRCGSTAB. There is a tradeoff depending on the average number of
nonzeros in the matrix versus the number of iterations. We present simple per-
formance models for different classes of linear systems from PDE discretizations
based on finite difference or finite element discretizations in 2-D and 3-D to
provide practical guidelines in choosing these different Krylov subspace solvers.

To compliment the theoretical analysis, we also report some empirical com-
parisons of the different methods in terms of their convergence rates with and
without preconditioners. We evaluate three preconditioners, including incom-
plete LU, Gauss Seidel, and Chebyshev polynomials. From the results, we



Table 1: Comparison of operations per iteration and memory requirements of
various methods. m denotes the number of rows, n denotes the average number
of nonzeros per row, and k denotes the iteration count. The cost for computing

the residual norm is not included.

\ Matrix-vector prods. \ DAXPY \ Inner prods. \ FLOPs \ Storage ‘
QMR 2 12 2 dm(n+7) m(n + 16)
TFQMR 2 10 4 dm(n+7) m(n + 8)
BiCGSTAB 2 6 1 Am(n + 5) m(n + 10)
QMRCGSTAB 2 8 6 dm(n+17) m(n + 13)
GMRES 1 k+1 k+1 2m(n+2k+2) | m(n+k+5)

observe that methods GMRES is more robust, with monotonically decreasing
residuals, QMRCGSTAB, QMR, and TFQMR are less robust with nearly mono-
tonically decreasing residual, and Bi-CGSTAB is the most efficient but also the

least robust, with oscillatory residuals.

For these different methods, we ob-

serve different accelerations with different preconditioners for different classes
of problems. These results help provide some practical guidelines in choosing
different preconditioners for different types of linear systems, and also motivate
the development of hybrid solvers for sparse linear systems arising from PDE

discretizations.
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