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A useful statistical measure is the diagonal or the trace of the inverse of a matrix.
This has myriad applications from quantum mechanics and Lattice QCD to
uncertainty quantification and data mining. Most commonly the matrix A or
its Hermitian part A+AT would be Hermitian positive definite and very large
and sparse (large dimension N). We are interested in cases where a direct
factorization of the matrix is not possible.

For such large matrices, the current state-of-the-practice is to use a Monte
Carlo method known as Hutchinson’s which is based on the fact that the trace
can be obtained as the expected value of tr(A−1) = E(xTA−1x). Therefore,
a simple averaging algorithm can be implemented where random vectors are
chosen and linear systems A−1x are solved with an iterative method. The
method converges as O(Var/

√
n), where the variance of the estimator, Var, is

known to be minimized by choosing x with random Rademacher entries {−1, 1}
(in the real case). This variance is given by

1

2
Var(tr(A)−1) = ‖A−1‖2F −

N∑
i=1

(A−1
ii )2.

The two computational bottlenecks are (a) for ill conditioned systems iterative
methods may take many steps and (b) thousands of linear systems are needed
just to get two digits of accuracy in the trace. In earlier work, we showed how
approximate eigenvectors and eigenvalues can be used to deflate, and thus re-
move the ill conditioning in linear systems with multiple right hand sides. We
also developed Hierarchical Probing, a method to systematically produce the
vectors x in Hutchinsons’s method so that variance is reduced significantly. In
this talk we focus on the effect of deflation on reducing the variance, and how
it can complement Hierarchical Probing to achieve substantial further improve-
ments.
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Assume for simplicity that we want to find tr(A) (not tr(A−1)). Consider its
singular value decomposition, A = AD + AR = U1Σ1V

T
1 + U2Σ2V

T
2 where

AD = U1Σ1V
T
1 corresponds to the largest k singular triplets of A. Clearly, the

trace of AD is trivial to compute direclty. Thus, using the appropriate projector,
we can apply Hutchinson’s method on the deflated AR = U2Σ2V

T
2 , hoping this

has lower variance. We prove that

1

2
Var(tr(AR)) =

N∑
m=k+1

σ2
m −

N∑
m=k+1

N∑
l=k+1

σmσl∆ml,

where ∆ml =
∑N

i=1 ūimvimuilv̄il, m, l = 1, . . . , N. To achieve variance reduc-
tion we need Var(tr(AR)) < Var(tr(A)). Contrary to low rank matrix approx-
imations, the term subtracting the double sum implies that deflation may not
achieve this. In fact, it is easy to come up with such examples. The presence
of ∆ml in the formula complicates a precise characterization of when we can
expect variance reduction. A crude analysis shows that reduction is guaranteed
if the singular spectrum decreases geometrically as σi+1 = 2−iσ1. However, this
is pessimistic.

To bypass the complications caused by ∆ml, we assume that U and V are
standard random unitary matrices, i.e., distributed with the Haar probability
measure. For large size matrices this is a reasonable assumption, and it is also
theoretically supported for matrices in Lattice QCD. Based on an analysis of
the moments of the elements of these matrices, we have derived an expression
for the expected variance of the deflated estimator. Define the mean and the
variance of the N − k singular values of AR, µk = 1

N−k

∑N
m=k+1 σm, and Vk =

1
N−k

∑N
m=k+1(σm − µk)2, respectively. Then, for non-Hermitian matrices it

holds
1

2
E(Var(t(AR))) = (N − k)(1− 1

N
)(Vk + µ2

k)

and for Hermitian matrices,

1

2
E(Var(t(AR))) = (N − k)

(
Vk

N

N + 1
+ µ2

k

k

N + 1

)
.

This theory facilitates an accurate prediction of the outcome of deflation based
solely on the variance and the expectation of the undeflated singular values.
For example, we can numerically confirm that it is sufficient that the singular
values decrease at a rate faster than linear. In practice, the singular spectrum in
Lattice QCD matrices decreases geometrically so deflation is expected to help.
Surprisingly, non-Hermitian matrices benefit more than Hermitian matrices with
the same singular value distribution. We have also observed that our model is
extremely robust on general, non-random matrices.

The second contribution of the paper is that we observed a synergistic action be-
tween deflation and hierarchical probing. Specifically, we analyzed the geometric
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effect of the two methods and observed that while hierarchical probing removes,
by design, the error in neighboring lattice nodes at increasing distances, defla-
tion is not good at that but excels in removing error in long lattice distances.
In our experiments on a very large Lattice QCD problem, while deflation alone
gave a small improvement, Hierarchical Probing reduced variance by an order
of magnitude, and combining the two methods gave us an additional order of
magnitude; an overall speedup of more than 200.
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