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In machine learning and data analysis the singular value decomposition is typi-
cally used for principal component analysis, low-rank approximation, and other
problems where just a few top singular directions are needed. In this regime,
block iterative methods like randomized Simultaneous Iteration have become
standard and are often used as defaults in popular machine learning libraries.

There is good reason for this — such methods are simple to implement, fast
in practice, and come with strong convergence guarantees for data analysis
tasks. Importantly, unlike traditional bounds, these guarantees do not depend
on singular values gaps, which are often helplessly small in high dimensional
data problems.

An analysis by Rokhlin, Szlam, and Tygert of Simultaneous Iteration has been
particularly influential. They demonstrate that, when implemented with ran-
domly chosen start vectors, the algorithm requires just O(1/€) iterations to
return a set of approximate singular vectors that yield a low-rank approxima-
tion within (1 4 €) of optimal for spectral norm error. When requirements on
€ are relatively loose and singular value gaps are small, as is typical in modern
data analysis applications, this iteration bound is much tighter than classical
results.

In this work we extend this gap-independent analysis to a simple randomized
block Krylov method, which is closely related to the classic Block Lanczos algo-
rithm. We show that after just O(1/+/€) iterations, our method recovers a set of
approximate singular vectors that are within (1 +¢€) of the optimal for low-rank
approximation and principal component analysis. To complement this theoret-
ical guarantee, we demonstrate experimentally that our method significantly
outperforms randomized Simultaneous Iteration in many scenarios.

Despite their long history, our analysis is the first of a Krylov subspace method
that gives accuracy bounds that do not depend on singular value gaps. It relies
on framing iterative algorithms as de-noising procedures for coarse randomized
sketching methods for approximate singular value decomposition.



Using this framework, we can argue that the approximate singular vectors re-
turned by our block Krylov algorithm are nearly optimal for low-rank approx-
imation and principal component analysis even if, due to small spectral gaps,
they have not converged to the true top singular vectors of the matrix.

Our Krylov method results rely critically on a new analysis of the standard
Rayleigh-Ritz method — we show that the procedure still works effectively when
convergence to the true top subspace has not occurred. This new analysis also
leads to improved gap-independent bounds for Simultaneous Iteration.

Finally, beyond gap-independent results, we prove extremely simple convergence
bounds that do depend on singular value gaps. We show how to take advantage
of these bounds by using a block size slightly larger than the target rank k,
theoretically justifying a heuristic implemented in several data analysis libraries.



