Steffen Muenzenmaier A Comparison of Finite Element Spaces for H(div)-Conforming First-Order System Least Squares

1ECOT
Engineering Office Tower
1111 Engineering Drive
Boulder CO 80309
steffen.muenzenmaier@colorado.edu
Christopher Leibs
Thomas Manteuffel

First-order system least squares (FOSLS) is a commonly used technique in a wide range of physical applications. FOSLS discretizations are straightforward to implement and offer many advantages over traditional Galerkin or saddle point formulations. Often these problems are formulated in H(div) spaces and H(div)-conforming elements are used. These elements have lesser regularity assumptions than the commonly used H^1 -conforming elements and are therefore believed to be more suited for singular problems arising in many applications. This talk will compare the approximation properties of the H(div)-conforming Raviart-Thomas and Brezzi-Douglas-Marini elements to H^1 -conforming piecewise polynomials in a H(div)-setting. Furthermore a H^1 -formulation for these problems will be used and compared to the H(div)-formulation. For the comparison typical Poisson/Stokes problems are examined and singular solutions will be addressed by adaptive refinement strategies.