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Abstract. Tikhonov regularization is a popular method to approximate solutions of linear discrete ill-posed problems when the observed
or measured data is contaminated by noise. Multi-parameter Tikhonov regularization may improve the quality of the computed approximate
solutions. We propose a new iterative method for large-scale multi-parameter Tikhonov regularization with general regularization operators
based on a multidirectional subspace expansion. This expansion may be combined with subspace truncation to avoid excessive growth of
the search space. Furthermore, we introduce a simple and effective parameter selection strategy based on the discrepancy principle and
related to perturbation results.
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1. Introduction. We consider single-parameter and multi-parameter Tikhonov regularization problems of
the form

(1) argmin
x
‖Ax − b‖2 +

∑̀

i=1

µi‖L i x‖2 (`≥ 1),

where ‖ · ‖ denotes the 2-norm and the superscript i is used as an index. We focus on large-scale discrete
ill-posed problems such as the discretization of Fredholm integral equations of the first kind. More precisely,
suppose A is an ill-conditioned or even singular m× n matrix with m≥ n and L i are pi × n matrices such that
the nullspaces of A and L i intersect trivially. Let µi be nonnegative regularization parameters, and assume b is
contaminated by an error e and satisfies b = Ax? + e, where x? is the exact solution. Finally, assume that a
bound ‖e‖ ≤ ε is available, so that the discrepancy principle (see, e.g., [8, Sect. 7.2]) can be used.

In single-parameter Tikhonov regularization (`= 1), the choice of the regularization operator is typically
significant, since frequencies in the nullspace of the operator remain unpenalized. Multi-parameter Tikhonov
can be used when a satisfactory choice of the regularization operator is unknown in advance, or can be seen as
an attempt to combine the strengths of different regularization operators. In some applications, using more
than one regularization operator and parameter allows for more accurate solutions [1, 2, 12, 14].

Solving (1) for large-scale problems may be challenging. In case the µi are fixed a priori, methods such as
LSQR [15] or LSMR [4]may be used. However, the problem becomes more complicated when the regularization
parameters are not fixed in advance [9, 11, 12]. In this paper, we present a new subspace method consisting of
three phases; a new expansion phase, an extraction phase, and a new truncation phase. To be more precise,
let Xk ⊂ Rn be a subspace of dimension k � n with orthonormal basis Xk. Then we can compute matrix
decompositions

(2)
AXk = Uk+1Hk

L iXk = V i
k K i

k (i = 1, 2, . . . , `),

where Uk+1 and V i
k are orthonormal, βu1 = b, β = ‖b‖, Hk is a (k + 1) × k Hessenberg matrix, and K i

k
is upper triangular. Denote µ = (µ1, . . . ,µ`) for convenience. Now restrict the solution space to Xk so that
xk(µ) = Xkck(µ), where

(3) ck(µ) = argmin
c
‖AXkc − b‖2 +

∑̀

i=1

µi‖L iXkc‖2 = argmin
c
‖Hkc − βe1‖2 +

∑̀

i=1

µi‖K i
kc‖2.
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The vector e1 is the first standard basis vector of appropriate length. Our paper has three contributions. First,
a new expansion phase where we add multiple search directions to Xk. Second, a new truncation phase
which removes unwanted new search directions. Third, the selection of the regularization parameters µi

k in
the extraction phase. The three phases work alongside each other: the intermediate solution obtained in the
extraction phase is preserved in the truncation phase, whereas remaining perpendicular from the expansion
phase are removed.

The paper is organized as follows. In Section 2 an existing nonlinear subspace method is discussed,
whereafter we propose the new multidirectional subspace expansion of the expansion phase. Discussion of
the truncation phase follows immediately. Sections 3 and 4 describe the extraction phase. In the former,
a straightforward parameter selection strategy for multi-parameter regularization is given, in the latter, a
justification using perturbation analysis. Numerical experiments are performed in Section 5 and demonstrate
the competitiveness of our new method. We end with concluding remarks in Section 6.

2. Subspace expansion for multi-parameter Tikhonov. Let us first consider single-parameter Tikhonov
regularization with a general regularization operator. Then `= 1 and we write µ= µ1, L = L i , and Kk = K1

k ,
such that (1) simplifies to

argmin
x
‖Ax − b‖2 +µ‖Lx‖2.

When L = I we use the Golub–Kahan–Lanczos bidiagonalization procedure (see, e.g., [6, Sect. 9.3.3]) to
generate the Krylov subspace

Xk =Kk(A
∗A, A∗b) = span{A∗b, (A∗A)A∗b, . . . , (A∗A)k−1A∗b}.

In this case Hk is lower bidiagonal and Kk is the identity and

xk+1 =
(I − XkX ∗k)A

∗uk+1

‖(I − XkX ∗k)A
∗uk+1‖

However, if L 6= I it may be more natural to consider a shift-independent generalized Krylov subspace of the
form

Xk =Kk(A
∗A, L∗L, A∗b),

spanned by the first k vectors in

Group 0 A∗b

Group 1 (A∗A)A∗b, (L∗L)A∗b

Group 2 (A∗A)2A∗b, (A∗A)(L∗L)A∗b, (L∗L)(A∗A)A∗b, (L∗L)2A∗b

. . .

This has been studied studied by Li and Ye [13] and later by Reichel, Sgallari, and Ye [17]. An orthonormal
basis can be created with a generalization of Golub–Kahan–Lanczos bidiagonalization [10]. However, while
the search space grows linearly as a function of the number of matrix-vector products, the dimension of
the generalized Krylov subspace grows exponentially as a function of the total degree of a bivariate matrix
polynomial. As a result, if we take any vector x ∈Kk(A∗A, L∗L, A∗b) and write it as p(A∗A, L∗L)A∗b, where p is
a bivariate polynomial, then p has at most degree blog2 kc. This low degree may be undesirable especially for
small regularization parameters µ.

An alternative approach is a greedy nonlinear method described by Lampe, Reichel, and Voss [12]. We
briefly review their method and state a straightforward extension to multi-parameter Tikhonov regularization.
Subsequently we present our new multidirectional approach.

Consider again the single-parameter case, then the low dimensional minimization (3) simplifies to

ck(µ) = argmin
c
‖Hkc − βe1‖2 +µ‖Kkc‖2.

Next, choose a fixed value µ= µk using, e.g., the discrepancy principle. It is easy to verify that

A∗b− (A∗A+µk L∗L)xk(µk) = A∗Uk+1(βe1 −Hkck(µk)) +µk L∗VkKkck(µk)
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is perpendicular to Xk; this vector expands the search space. As usual, expansion and extraction repeat until
suitable stopping criteria are met. Remark that the vector above is the gradient of the cost function

x 7→
1
2
(‖Ax − b‖2 +µ‖Lx‖2)

in the point xk(µk).
As previously stated, Lampe, Reichel, and Voss [12] consider only single-parameter Tikhonov regularization,

however, their method readily extends to multi-parameter Tikhonov regularization. Again, the first step is to
decide on regularization parameters µk. Next, use the residual of the normal equations

A∗b−
�

A∗A+
∑̀

i=1

µi
k L i∗L i

�

xk(µk) = A∗Uk+1(βe1 −Hkck(µk))−
∑̀

i=1

µi
k L i∗V i

k K i
kck(µk),

to expand the search space. Note that the residual is again orthogonal to Xk as well as the gradient of the cost
function

x 7→
1
2
(‖Ax − b‖2 +

∑̀

i=1

µi‖L i x‖2).

We summarize the method in Algorithm 1. In practice we initially use Golub–Kahan–Lanczos bidiagonalization
and expand the search space with A∗uk until a µk can be found which satisfies the discrepancy principle.

Algorithm 1 (Generalized Krylov Subspace Tikhonov Regularization extension of [12]).
Input: Measurement matrix A, regularization operators L1, . . . , L`, and data b.
Output: Approximate solution xk ≈ x?.
1. Initialize β = ‖b‖, U1 = b/β , X0 = [], x0 = 0, and µ0 = 0.

for k = 1,2, . . . do
2. Expand Xk−1 with A∗b− (A∗A+

∑`

i=1µ
i
k−1 L i∗L i)xk−1.

3. Update AXk = Uk+1Hk and L iXk = V i
k K i

k.
4. Select µk; see for example Section 3.

5. ck = argminc







�

Hk;
p

µ1
kK1

k ; . . . ;
p

µ`kK`k
�

c − βe1





.
6. xk = Xkck.

Suitable regularization operators often depend on the problem and its solution. Multi-parameter regu-
larization may be used when a priori information is lacking. In this case, it is not obvious that the residual
vector above is a “good” expansion vector. In particular if the intermediate regularization parameters µk are not
necessarily accurate. Inspired by the generalized Krylov subspace approach, we can remove the dependence on
the parameters to some extend by expanding the search space with the vectors

(4) A∗Axk(µk), L1∗L1xk(µk), . . . , L`
∗
L`xk(µk),

separately. Here, we omit A∗b as it is contained in Xk. Since we expand the search space in multiple directions, we
refer to this expansion as a “multidirectional” subspace expansion. Remark that the multidirectional expansion
contains the previous residual expansion.

It is unappealing for the search space to grow with `+ 1 basis vectors per iteration, because the cost of
orthogonalization and the cost of solving the projected problems depend on the dimension of the search space.
So, we wish to condense the best portions of the multiple directions in a single vector. We now give a more
detailed description. Suppose we expand Xk with the vectors in (4) and obtain eXk+`+1. Then we compute the
decompositions

AeXk+`+1 = eUk+`+2 eHk+`+1

L i
eXk+`+1 = eV

i
k+`+1

eK i
k+`+1 (i = 1, 2, . . . , `),

analogous to (2) and determine parameters µk+1 and the approximate solution eck+`+1. Next, we compute

(5)
A(eXk+`+1Z∗) = (eUk+`+2P∗)(P eHk+`+1Z∗)

L i(eXk+`+1Z∗) = (eV i
k+`+1Qi∗)(Qi

eK i
k+`+1Z∗) (i = 1, 2, . . . , `),

where Z , P, and Qi orthonormal matrices of the form

Z =

�

Ik

Z`+1

�

, P =

�

Ik+1

P`+1

�

, Qi =

�

Ik

Qi
`+1

�

.
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Here Ik is the k × k identity matrix and Z`+1 is an orthonormal matrix so that Z`+1ck+1:k+`+1 = γe1. The
matrices P`+1 and Qi

`+1 are computed to make eHk+`+1Z∗ and eK i
k+`+1Z∗ respectively upper-Hessenberg and

upper-triangular again. At this point we can truncate (5) to obtain

AXk+1 = Uk+2Hk+1

L iXk+1 = V i
k+1K i

k+1 (i = 1, 2, . . . , `),

so that eXk+`+1eck+`+1 ⊂ span Xk+1 = Xk+1.
To illustrate our approach, let us consider an example where `= 1. Suppose we expand X1 with vectors

A∗AX1 and L∗LX1. Let AX1+2 = U2+2H1+2 and LX1+2 = V1+2K1+2. Compute Z . Now H1+2Z∗, and K1+2Z∗ are no
longer upper-Hessenberg and upper-triangular respectively. Therefore we compute P and Q such that PH1+2Z∗

is again upper-Hessenberg and QK1+2Z∗ is upper-triangular. Schematically we have

H1+2−−→











× × ×
× × ×
0 × ×
0 0 ×











H1+2 Z∗

−−−−→











× × ×
× × ×
0 × ×
0 × ×











PH1+2 Z∗

−−−−→











× × ×
× × ×
0 × ×
0 0 ×











K1+2−−→







× × ×
0 × ×
0 0 ×







K1+2 Z∗
−−−→







× × ×
0 × ×
0 × ×







QK1+2 Z∗
−−−−→







× × ×
0 × ×
0 0 ×







accompanied by the decompositions

A(X1+2Z∗) = (U2+2P∗)(PH1+2Z∗)
L(X1+2Z∗) = (V1+2Q∗)(QK1+2Z∗).

At this point we can truncate the subspaces by removing the last columns from (X1+2Z∗), (U2+2P∗), (PH1+2Z∗),
(X1+2Z∗), (V1+2Q∗), and (QK1+2Z∗), as well as the bottom rows of (PH1+2Z∗) and (QK1+2Z∗).

Below we summarize the steps of the new algorithm for solving problem (1). In our implementation we
take care to use full reorthogonalization and avoid extending Xk−1, Uk+1, and V i

k with numerically linearly
dependent vectors. We omit these steps from the pseudocode for brevity. In addition, we initially expand the
search space solely with A∗uk+1 until the discrepancy principle can be satisfied.

Algorithm 2 (Multidirectional Tikhonov regularization).
Input: Measurement matrix A, regularization operators. L1, . . . , L`, and data b.
Output: Approximate solution xk ≈ x?.
1. Initialize β = ‖b‖, U1 = b/β , X0 = [], x0 = 0, and µ0 = 0.

for k = 0, 1, . . . , do
2. Expand Xk with A∗Axk, L1∗L1xk, . . . , L`

∗
L`xk.

3. Update AXk+`+1 = Uk+`+2Hk+`+1 and L iXk+`+1 = V i
k+`+1K i

k+`+1.
4. Select µk; see for example Section 3.

5. ck+`+1 = argminc







�

Hk;
p

µ1
kK1

k+`+1; . . . ;
p

µ`kK`k+`+1

�

c − βe1





.
6. Compute P, Q, and Z (see text).
7. Truncate A(Xk+`+1Z∗) = (Uk+`+2P∗)(PHk+`+1Z∗) to AXk+1 = Uk+2Hk+1.

Truncate L i(Xk+`+1Z∗) = (V i
k+`+1Qi∗)(QiK i

k+`+1Z∗) to L iXk+1 = V i
k+1K i

k+1.
8. xk+1 = Xk+1ck+1.

We have completed our discussion of the expansion and truncation phase of our algorithm. In the following
section we discuss the extraction phase.

3. A multi-parameter selection strategy. Parameter selection for single-parameter Tikhonov has been
studied extensively. Hence, when `= 1, one may apply methods such as the discrepancy princple, the L-curve
criterion, generalized cross validation, etc. to select the parameter µ1

k. See, for example, Hansen [8, Sect. 7] for
more information. Unfortunately, choosing satisfactory µi

k in multi-parameter Tikhonov regularization is more
difficult than the corresponding single-parameter problem. See for example [1, 2, 5, 14].

In this section we focus on the discrepancy principle, which states that µk must satisfy

(6) ‖Axk(µk)− b‖= ηε,
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where ‖e‖ ≤ ε and η > 1 is a user supplied constant independent of ε. In single-parameter Tikhonov regular-
ization where `= 1, root finding methods can be applied to the function ϕ(µ1) = ‖Axk(µ1)− b‖2 −η2ε2 in
order to find a nonnegative solution µ1

k. A solution exists and is unique under mild conditions, see, for example,
[3]. In multi-parameter Tikhonov regularization where ` > 1, solutions are no longer unique and it is not
obvious how to choose “good” parameters. Below we will discuss three different approaches.

Brezinski et al. [2] had some success with operators splitting. Substituting µi =ωi
keµ

i
k in (3) with nonnegative

ωi
k and

∑`

i=1ω
i
k = 1 leads to

argmin
c

∑̀

i=1

ωi
k(‖Hkc − βe1‖2 + eµi

k‖K
i
kc‖2).

This form of the minimization problem suggests the approximation of X ∗k x? by a linear combination of c i
k(eµ

i
k),

where

(7) c i
k(µ) = argmin

c
‖Hkc − βe1‖2 +µ‖Kkc‖2 (i = 1, 2, . . . , `),

and eµi
k is such that ‖Hkc i

k(eµ
i
k)− βe1‖= ηε. Alternatively, Brezinski et al. [2] consider solving

ck = argmin
c







�

Hk;
p

eµ1
kK1

k ; . . . ;
p

eµ`kK`k
�

c − βe1





,

where eµi are fixed and obtained from (7). The latter approach provides better results in exchange for an
additional QR decomposition. In either case, operator splitting is a straightforward approach, but does not
necessarily satisfy the discrepancy principle.

Lu et al. [14] rewrite the constrained minimization problem as a differential equation and approximate

F(µ) = ‖Hkck(µ)− βe1‖2 +
∑̀

i=1

µi‖K i
kck(µ)‖2

by a model function m(µ) which admits a straightforward solution to the constructed differential equation.
However, it is unclear which µ the method finds and its solution may depend on the initial guess. On the other
hand, it is possible to keep all but one parameter fixed and compute a value for the free parameter such that
the discrepancy principle is satisfied. This allows one to trace discrepancy hypersurfaces to some extent.

Gazzola and Novati [5] describe an interesting method. They start with a single-parameter problem and
successively add parameters in a novel way until each parameter of the full multi-parameter problem has
a value assigned. Especially in early iterations the discrepancy principle is not satisfied, but the parameters
are updated in each iteration so that the norm of the residual is expected to approach ηε. Unfortunately, we
observed some issues in our implementation. For example, the quality of the result depends on initial values,
as well as the order in which the considers the operators are added (that is, the indexing of the operators).

The methods discussed above compute parameters which approximately satisfy the discrepancy principle.
However, the computed µ are not unique, and which conditions are necessary to obtain a “good” set of
parameters is an open question. We suggest a new method where we attempt to nudge the parameters in the
right direction. We achieve this with new weights for the operator splitting approach.

Suppose we take µi = µkω
i
k, where ωi

k are nonnegative, but do not necessarily sum to one, and µk is such
that the discrepancy principle is satisfied. Then we obtain

(8) argmin
c
‖Hkc − βe1‖2 +µk

∑̀

i=1

ωi
k‖K

i
kc‖2.

Since the goal of regularization is to reduce sensitivity of the solution to noise, we use the weights

(9) ωi
k =

‖c i
k(eµ

i
k)‖

‖Dµc i
k(eµ

i
k)‖

,

which bias the regularization parameters in the direction of lower sensitivity. If for some index ‖Dµc i
k(eµ

i
k)‖ = 0,

then we take c i
k(eµ

i
k) as the solution, or add a small positive constant. With this parameter choice, the solution

is independent of the indexing of the operators, nor, up to a constant, on the scaling of A, b, or any of the L i .
The former is easy to see; for the latter, consider the scaled problem

argmin
x̂
‖βb−αAx̂‖2 +µ

∑̀

i=1

ω̂i‖λi L i x̂‖2
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The noisy component of βb is βe and ‖βe‖ ≤ βε, hence the new discrepancy bound becomes

‖αAx̂ − βb‖= βηε,

which is satisfied only for x̂ = β/αx when ω̂i = α2/(λi)2 ωi is non-zero for at least one index. In this case we
obtain

min
x̂
‖βb−αAx̂‖2 +µ

∑̀

i=1

ω̂i‖λi L i x̂‖2 = β2

�

min
x
‖Ax − b‖2 +µ

∑̀

i=1

ωi‖L i x‖2

�

.

It may be verified that the weights in (9) are indeed proportional to α2/(λi)2. There are additional viable
choices for ωi , including two smoothed versions of the above:

ωi
k =

‖Hkc i
k(eµ

i
k)‖

‖Hk Dµc i
k(eµ

i
k)‖

and ωi
k =

‖Kkc i
k(eµ

i
k)‖

‖Kk Dµc i
k(eµ

i
k)‖

We summarize the new parameter selection in Algorithm 3 below.

Algorithm 3 (Multi-parameter selection).
Input: Projected matrices Hk, K1

k , . . . , K`k , β = ‖b‖, noise estimate ε, uncertainty parameter η.
Output: Regularization parameters µ1

k, . . . , µ`k.
1. Use (7) to compute c i and eµi

k.
if ‖Dµc i

k(eµ
i
k)‖= 0 for some i then

2. Replace ‖Dµc i
k(eµ

i
k)‖ by a small positive constant,

or set µi
k = eµ

i
k and µ j

k = 0 for j 6= i.
else

3. Let ωi
k = ‖c

i
k(eµ

i
k)‖/‖Dµc i

k(eµ
i
k)‖.

4. Compute µk in (8) s.t. the discrepancy principle is satisfied.
5. Set µi

k = µkω
i
k.

In the next section we discuss perturbation theory and show how it relates to the weights ωi
k in (9).

4. Perturbation analysis. The goal of regularization is to make reconstruction robust with respect to noise.
By extension, a high sensitivity to the regularization parameters is undesirable. Consider a set of perturbed
parameters µ? +∆µ; if ‖∆µ‖ is sufficiently small

c(µ? +∆µ) = c(µ?) + Dc(µ?)∆µ+O(‖∆µ‖2)

= c(µ?)−M−1∆Mc(µ?) +O(‖∆µ‖2),

where M and ∆M are defined as

(10) M = H∗kHk +
∑̀

i=1

µi
?K

i
k
∗
K i

k, ∆M =
∑̀

i=1

∆µi
kK i

k
∗
K i

k.

Therefore, one might choose µ? to minimize the sensitivity measure ‖M−1∆Mc(µ?)‖. We can solidify this
statement by connecting it to the forward error in Proposition 1 and the backward error in Proposition 2.

Proposition 1. Given regularization parameters µi
? and perturbations µi

k = µ
i
?+∆µ

i
k, let c? = ck(µ?), ck = ck(µk),

x? = Xkc?, and xk = Xkck. Assume Hk and all K i
k are of full rank and define matrices M and ∆M as in (10). If M

and M +∆M are nonsingular and the ∆µi
k are sufficiently small so that ‖M−1∆M‖< 1, then

‖x? − xk‖
‖x?‖

≤
‖M−1∆M‖

1− ‖M−1∆M‖
.

Proof. Observe that c? = M−1H∗kβe1 and ck = (M +∆M)−1H∗kβe1. With a little manipulation we obtain

ck = (M +∆M)−1Mc? = (I +M−1∆M)−1c? =
∞
∑

j=0

(−M−1∆M) jc?.

Now, using basic inequalities and the geometric series, we find

‖ck − c?‖
‖c?‖

≤
‖M−1∆M‖

1− ‖M−1∆M‖
.

Since Xk has orthonormal columns, the result of the proposition follows.
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Proposition 1 relates to the weights from (9) in the following way. Let µ? = [0; eµi
k; 0], and suppose we

have a perturbation∆µk, such that all elements of µ?+∆µk are nonnegative. Then, if ‖M−1∆M‖ is sufficiently
small, the weight ωi

k approximately satisfies the bound

ωi
k =

‖ck(µ?)‖
‖Dµck(µ?‖

≥
‖ck(µ?)‖

‖M−1∆Mck(µ?)‖
=

1
‖M−1∆M‖

¦
‖ck(µ?)‖

‖ck(µ?)− ck(µ? +∆µ)‖

Hence, the less sensitive ck(µ?) is to perturbations in the parameters, the higher the weight ωi
k.

Instead of studying the sensitivity of the approximate solution, one may wonder if it is possible to pick
a vector f close to βe1 such that c? = (M +∆M)−1H∗k f . Or in other words, given perturbed regularization
parameters, is there a perturbation of βe1 such that the optimal approximation to the exact solution is obtained?
The following proposition provides a positive answer.

Proposition 2. Under the assumptions of Proposition 1, there exist vectors f and g such that c? = (M+∆M)−1H∗k f
and ck = M−1H∗kg . Furthermore, f and g satisfy

‖βe1 − g‖
‖βe1‖

≤ κ(Hk)‖M
−1∆M‖ and

‖βe1 − f ‖
‖βe1‖

≤ κ(Hk)
‖M−1∆M‖

1− ‖M−1∆M‖
,

where κ(Hk) is the condition number of Hk.

Proof. The vector f is easy to derive using the ansatz

(M +∆M)−1H∗k f = M−1H∗kβe1.

Let Hk =QR denote the QR-decomposition of Hk, then

R∗Q∗ f = (M +∆M)M−1R∗Q∗βe1,

and

f =QR−∗(M +∆M)M−1R∗Q∗βe1 + (I −QQ∗)v

for arbitrary v . Indeed, it is easy to verify that the above vector satisfies

c? = (M +∆M)−1H∗k f .

If we choose v = βe1, then

f =QR−∗∆M M−1R∗Q∗βe1 + βe1

so that
‖βe1 − f ‖
‖βe1‖

= ‖QR−∗∆M M−1R∗Q∗e1‖ ≤ ‖R−∗‖ ‖R∗‖ ‖∆M M−1‖.

Here ‖R−∗‖ ‖R∗‖ is the condition number κ(Hk) and ‖∆M M−1‖ = ‖M−1∆M‖, since both M and ∆M are
symmetric. This proves the first part of the proposition.

The second part is analogous. In particular, we use the ansatz

M−1H∗kg = (M +∆M)−1H∗kβe1

and derive

g = R−∗QM(M +∆M)−1R∗Q∗βe1 + (I −QQ∗)βe1.

Again it is easy to verify that ck = M−1H∗kg . Observe that g can be rewritten as

g = R−∗Q((I +∆M M−1)−1 − I)R∗Q∗βe1 + βe1

such that
‖βe1 − f ‖
‖βe1‖

= ‖R−∗((I +∆M M−1)−1 − I)R∗Q∗e1‖ ≤ ‖R−∗‖ ‖R∗‖ ‖(I +∆M M−1)−1 − I‖.

Since ‖∆M M−1‖= ‖M−1∆M‖< 1, it follows that

‖(I +∆M M−1)−1 − I‖ ≤
∞
∑

j=1

‖ −∆M M−1‖ j =
‖M−1∆M‖

1− ‖M−1∆M‖
,

which concludes the proof.

We have discussed forward and backward error bounds which help motivate our parameter choice. Now
that we have investigated each of the three phases of our method, we are ready to show numerical results.
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5. Numerical experiments. We benchmark our algorithm with problems from Regularization Tools by
Hansen [7]. Each problem provides an ill-conditioned n× n matrix A, a solution vector x? of length n and a
corresponding measured vector b. We let n= 1024 and add a noise vector e to b. The entries of e are drawn
independently from the standard normal distribution. The noise vector is then scaled such that ε = ‖e‖ equals
0.01‖b‖. We use η = 1.01 for the discrepancy bound in (6). We test the algorithms with one thousand different
noise vectors for every triplet A, x?, and b and report the median results.

The algorithms terminate when the relative difference between two subsequent approximations is less then
0.01, when xk+1 is (numerically) linear dependent in Xk, when both Uk+1 and none of the V i

k can be expanded,
or when a maximum number of iterations is reached. For Algorithm 2 we use a maximum of 20 iterations and
for Algorithm 1 a maximum of (`+ 1)× 20 iterations. For the sake of a fair comparison, the algorithms return
the best obtained approximations and their iteration numbers.

We used the following regularization operators to obtain the single-parameter Tikhonov regularization
results. The first derivative operator L1 with stencil [1,−1] for Gravity-3, Heat-5, Heat, and Phillips. The
second derivative operator L2 with stencil [1,−2, 1] for Deriv2-1, Deriv2-2, Foxgood, Gravity-1, and Gravity-2.
The third derivative operator L3 with stencil [−1,3− 3,1] for Baart. The fifth derivative operator L5 with
stencil [−1, 5,−10, 10,−5, 1] and Deriv2-3. The derivative operators Ld are of size (n− d)× n. In addition to
a derivative operator Ld , we applied multi-parameter Tikhonov regularization with the identity operator I
and the orthogonal projection (I − Nd N ∗d ). Here, the columns of Nd are an orthonormal basis for the nullspace
N (Ld).

The results are listed in Table 1. For each test problem, the table lists the relative error obtained with
Algorithm 1, abbreviated by Esd, and Algorithm 2, abbreviated by Emd. Also listed are the ratio ρE of Emd to Esd
and the ratio ρmv of the number of matrix-vector products. That is,

ρE =
Emd

Esd
and ρmv =

# MVs Algorithm 2
# MVs Algorithm 1

.

Only matrix-vector multiplications with A, A∗, L i , and L i∗ count towards the total number of MVs used by each
algorithm. Finally, we use the multidirectional subspace expansion in conjunction with truncation throughout
this section, since the results did not appear to suffer in quality from truncation.

Table 1: Benchmark results for problems from Regularization Tools.

Single-parameter Multi-parameter

Problem Esd Emd ρE ρmv Esd Emd ρE ρmv

Baart 1.73 · 10−1 1.11 · 10−1 0.64 1.93 1.72 · 10−1 5.39 · 10−2 0.31 2.60

Deriv2-1 2.44 · 10−1 2.44 · 10−1 1.00 1.00 2.27 · 10−1 5.82 · 10−3 0.03 1.81

Deriv2-2 2.35 · 10−1 2.35 · 10−1 1.00 0.83 2.29 · 10−1 2.03 · 10−2 0.09 1.55

Deriv2-3 4.35 · 10−2 4.35 · 10−2 1.00 0.92 4.35 · 10−2 4.32 · 10−2 0.99 1.00

Foxgood 3.31 · 10−2 3.30 · 10−2 1.00 0.67 3.29 · 10−2 1.10 · 10−2 0.34 1.35

Gravity-1 3.85 · 10−2 3.41 · 10−2 0.88 1.08 3.69 · 10−2 1.83 · 10−2 0.50 1.18

Gravity-2 5.53 · 10−2 5.26 · 10−2 0.95 1.10 5.52 · 10−2 3.97 · 10−2 0.72 2.04

Gravity-3 1.03 · 10−1 9.21 · 10−2 0.90 1.08 1.02 · 10−1 9.24 · 10−2 0.91 1.89

Heat 9.26 · 10−2 9.12 · 10−2 0.99 1.05 8.79 · 10−2 8.77 · 10−2 1.00 1.19

Phillips 2.50 · 10−2 2.50 · 10−2 1.00 1.00 2.49 · 10−2 2.47 · 10−2 0.99 1.21

The single-parameter results in Table 1 show that multidirectional subspace expansion can obtain small
improvements in the relative error at the cost of a small number of extra matrix-vector products. We stress that
in these cases, Algorithm 1 was allowed to perform additional MVs, but converged with a higher relative error.
If there is no improvement in the relative error, we see that multidirectional subspace expansion can improve
convergence, for two of the Deriv2 problems as well as for Foxgood.

For the multi-parameter results in Table 1, we observe larger improvements in the relative error for
multidirectional subspace expansion, but at the cost of a larger number MVs. We no longer see cases where
multidirectional subspace expansion terminates with fewer MVs. In fact, the relative error is the same for Heat,
even though more MVs are required. Finally, Figure 2 illustrates an example of the improved results which can
be obtained by using multidirectional subspace expansion.

In the next tests we attempt to reconstruct an original image from a blurred and noisy observation. Consider
an n× n grayscale image with pixel values in the interval [0,1]. Then x is a vector of length n2 obtained by
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stacking the columns of the image below each other. The matrix A represents a Gaussian blurring operator,
generated with blur from Regularization Tools. The matrix A is block-Toeplitz with half-bandwidth band=11
and the amount of blurring is given by the variance sigma=5. The entries of the noise vector e are independently
drawn from the standard normal distribution after which the vector is scaled such that ε= E[‖e‖] = 0.05‖b‖.
We take η such that ‖e‖ ≤ ηε in 99.9% of the cases. That is,

η= 1+
3.090232
p

2n2
.

For regularization we choose an approximation to the Perona–Malik [16] operator

L(x ) = div(g(|∇x |2)∇x ),

where g(s) = exp(−s/ρ) and ρ is a small positive constant. Because L is a nonlinear operator, we first perform
a small number of iterations with a finite difference approximation Lb of L(b). The resulting intermediate
solution ex is used for a new approximation L x̃ of L(ex ). Finally, we run the algorithms a second time with L x̃
and more iterations; see Reichel, Sgallari, and Ye [17] for more information regarding the implementation of
the Perona–Malik operator.

Figure 1: Deblurring results for Saturn. The original (left), observed (middle), and reconstructed images (right).
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50 100 150

30.5

30.75

31

31.25

10
Iterations

PS
N

R

Figure 3: Convergence history for Saturn.

The solid line is the exact solution. The dashed line represents the results obtained with multi-parameter regularization
and the residual subspace expansion (Algorithm 1). The dotted line represents the results obtained with multi-parameter
regularization and multidirectional subspace expansion (Algorithm 2).

For our test we use an image of Saturn, see Figure 1, with ρ = 0.03, 25 iterations for the first run, and 150
iterations for the second run. In both cases we stop the iterations around the point where convergence flattens
out, which can be seen for the second run from the convergence history in Figure 3. The figure uses the peak
signal-to-noise ratio (PSNR) given by −20 log10(‖x? − xk‖/n) versus the iteration number k. A higher PSNR
implies a lower error.

We observe that multidirectional subspace expansion may allow convergence to a more accurate solution.
Because multidirectional subspace expansion requires extra matrix-vector products, we investigate the perfor-
mance in Table 2 and when Algorithm 2 achieves parity with Algorithm 1. There is only a small difference in
the total number of matrix-vector products when parity is achieved, but a large improvement in wall clock
time. This improvement is in large part due to the block operations which can only be used Algorithm 2. For
reference, the runtimes were obtained on an Intel Core i7-3770 and with MATLAB R2015b on 64-bit Linux
4.2.5.
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Table 2: The number of matrix-vector products and wall clock time used by the different methods. The results in the upper
rows are for Lizards and the results in the lower rows are for Saturn.

Method Total A A∗ L L∗ Time (s)

Alg 1 599 150 150 150 149 82.3

Alg 2 889 295 150 295 149 98.4

Parity 637 211 108 211 107 62.3

6. Conclusions. We have presented a new method for large-scale Tikhonov regularization problems.
The method combines a new multidirectional subspace expansion with an optional truncation to produce
a higher quality search space. The multidirectional expansion generates a richer search space, whereas the
truncation ensures moderate growth. Truncating the search space did not affect the quality of the results in
our tests. Furthermore, numerical results illustrate that our method can yield more accurate results or faster
convergence. Additionally, we have introduced a straightforward parameter selection for multi-parameter
Tikhonov regularization. The parameters are selected with scale invariant relative weights consisting of the
norm of single-parameter solutions and the norm of efficiently computable derivatives. We connect the weights
to error bounds with perturbation theory.
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