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Abstract. We consider an approximate inverse preconditioner for a mixed finite element dis-
cretization of an incompressible magnetohydrodynamics (MHD) problem. The derivation relies on
the nullity of the discrete curl-curl operator in the Maxwell subproblem. We obtain a formula for
the inverse that contains zero blocks, and use discretization considerations to sparsify the formula
to develop a practical preconditioner. We demonstrate the viability of our approach with a set of
preliminary numerical experiments.
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1. Introduction. Given a sufficiently smooth domain Ω, consider the steady-
state incompressible magnetohydrodynamics (MHD) model [1, Ch. 2]:

−ν∆u + (u · ∇)u +∇p− κ (∇× b)× b = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

κνm∇× (∇× b) +∇r − κ∇× (u× b) = g in Ω, (1.1c)

∇ · b = 0 in Ω. (1.1d)

Here u is the velocity, p the hydrodynamic pressure, b is a magnetic field, and the
Lagrange multiplier associated with the divergence constraint on the magnetic field
is denoted by r. The functions f and g represent external forcing terms.

To complete the model, we consider the following homogeneous Dirichlet bound-
ary conditions:

u = 0 on ∂Ω, (1.2a)

n× b = 0 on ∂Ω, (1.2b)

r = 0 on ∂Ω, (1.2c)

with n being the unit outward normal on ∂Ω.
We will consider a finite element discretization of the MHD model (1.1)–(1.2).

Let us denote the L2-inner product on L2(Ω)d by (·, ·)Ω, for d = 2, 3. We introduce
the standard Sobolev spaces as:

V = H1
0 (Ω)d =

{
u ∈ H1(Ω)d : u = 0 on ∂Ω

}
,

Q = L2
0(Ω) = {p ∈ L2(Ω) : (p , 1)Ω = 0},

C = H0(curl; Ω) =
{
b ∈ L2(Ω)d : ∇× b ∈ L2(Ω)d̄, n× b = 0 on ∂Ω

}
,

S = H1
0 (Ω) = {r ∈ H1(Ω) : r = 0 on ∂Ω},

(1.3)
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where d̄ = 2d− 3 for 2D and 3D, which are the cases of interest. Using the weak
formulation in [11] of the incompressible MHD system (1.1)–(1.2), the solution entails
finding (u, p, b, r) ∈ V ×Q×C × S such that

A(u,v) +O(u;u,v) + C(b;v, b) +B(v, p) = (f ,v)Ω, (1.4a)

B(u, q) = 0, (1.4b)

M(b, c)− C(b;u, c) +D(c, r) = (g, c)Ω, (1.4c)

D(b, s) = 0, (1.4d)

for all (v, q, c, s) ∈ V ×Q×C × S. The variational forms are given by

A(u,v) =

∫
Ω

ν∇u : ∇v dx, B(u, q) = −
∫

Ω

(∇ · u) q dx,

M(b, c) =

∫
Ω

κνm(∇× b) · (∇× c) dx, D(b, s) =

∫
Ω

b · ∇s dx,

O(w;u,v) =

∫
Ω

(w · ∇)u · v dx, C(d;v, b) =

∫
Ω

κ (v × d) · (∇× b) dx.

(1.5)
In a standard FEM fashion, we linearize around the current velocity and magnetic

fields and introduce basis functions corresponding to the discrete spaces V h, Qh,Ch

and Sh of (1.3). This yields the following matrix system:
F (u) BT C(b)T 0
B 0 0 0
−C(b) 0 M DT

0 0 D 0




δu
δp
δb
δr

 =


ru
rp
rb
rr

 , (1.6)

with

ru = f − F (u)u− C(b)T b−BT p,
rp = −Bu,
rb = g −Mu+ C(b)b−DT r,
rr = −Db,

where F (u) = A + O(u). The matrices are: F , the discrete convection-diffusion
operator; B, a discrete divergence operator; M , the discrete curl-curl operator; D, a
discrete divergence operator; and C, a discrete coupling term. We define nu, mu, nb
and mb as the dimension of the velocity, pressure, magnetic and multiplier variables,
respectively.

In this paper we introduce an indefinite block preconditioner based on an approx-
imate inverse for the system (1.6). We first derive a new formula for the inverse and
show that the (exact) inverse has in fact a few zero blocks. We then approximate
Schur complements that appear in the formula by sparse operators, and derive a new
inverse formula. Numerical experiments demonstrate the viability and effectiveness
of this preconditioning approach.

2. A new approximate inverse-based preconditioner. Let us denote by K
the coefficient matrix in the MHD model (1.6) and write it as:

K =

(
KNS KT

C

−KC KM

)
,
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where KNS is the Navier-Stokes subproblem, KC is the block for the coupling and KM

is the Maxwell subproblem:

KNS =

(
F BT

B 0

)
, KM =

(
M DT

D 0

)
and KC =

(
C 0
0 0

)
.

Then, by [2, Equation (3.4)], the inverse is given by

K−1 =

(
K−1

NS +K−1
NSKT

CS−1KCKNS
−1 −K−1

NSKT
CS−1

−S−1KCKNS
−1 S−1

)
, (2.1)

where S denotes the Schur complement,

S = KM +KCK−1
NSKT

C. (2.2)

The inverses K−1
NS and S−1 appear multiple times in (2.1), and we now derive

explicit formulas that further reveal their block structure. Notably, using results that
have appeared in [4], we show that S−1 has a zero (2,2) block, and can be expressed
in terms of a free matrix parameter. Let us write

K−1
NS =

(
K1 K2

K3 K4

)
. (2.3)

We then have the following useful result.
Theorem 2.1. Let KNS be written in block form as in (2.3). Then

S−1 =

(
M−1

F (I −DTW−1GT ) GW−1

W−1GT 0

)
, (2.4)

where W is a (free) symmetric positive definite matrix,

MF = M +DTW−1D + CK−1
1 CT and G = M−1

F DT .

Proof. Writing out all the matrices involved in formula (2.2) for S, we have

S =

(
M + CK1C

T DT

D 0

)
. (2.5)

Thanks to the curl appearance in the definition for CT and M , in continuous form
(1.1) and variational form, the null spaces of CT and M are identical and are made
up of discrete gradients. Therefore,

dim(null(M + CK1C
T )) = mb,

where mb was previously defined as the number of rows of the magnetic discrete
divergence matrix D, and is equal to the dimension of the null space of the discrete
curl operator, M . We thus have the exact same structure as in [4, equation (3.6)],
and therefore the inverse of the Schur complement is given by (2.4).

Using the inverse formula (2.1) and (2.4) together gives the exact expression for
the inverse of (1.6) as

K−1 =


K1 −K1ẐK1 K2 −K1ẐK2 −K1C

TM−1
F H 0

K3 −K3ẐK1 K4 −K3ẐK2 −K3C
TM−1

F H 0
M−1

F CK1 M−1
F CK2 M−1

F H GW−1

0 0 W−1GT 0

 . (2.6)

where Ẑ = CTM−1
F C and H = I −DTW−1GT .

The sparsity pattern of K−1, as expressed in (2.6), is illustrated in Figure 2.1.
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Fig. 2.1: Sparsity pattern of K−1.

2.1. A sparse approximation of the Schur complement. The presence of
CK−1

1 CT within MF is one of the bottlenecks in using the Schur complement, S.
Defining

MF = MW + CK−1
1 CT

where MW = M + DTW−1D, then using the Sherman-Morrison-Woodbury formula
we can re-write MF as

M−1
F = M−1

W −M−1
W C(K1 − CTM−1

W C)−1CTM−1
W . (2.7)

Using (2.7) for G in (2.4) we obtain

G = (M−1
W −M−1

W C(K1 − CTM−1
W C)−1CTM−1

W )DT ,

= M−1
W DT −M−1

W C(K1 − CTM−1
W C)−1CTM−1

W DT = M−1
W DT ,

since M−1
W DT (being a definition of the discrete gradients from [4, Proposition 3.6])

is the null space matrix of M and CT .
In order to approximate M−1

F we again use the Sherman-Morrison-Woodbury
formula (2.7). Using this formula we see that

M−1
W C(K1 − CTM−1

W C)−1CTM−1
W ≈ O(h4) and MW ≈ O(h2).

As we increase our problem/system size (small h), the dominant term is the O(h2)
M−1

W term whereas the O(h4) term acts as a small correction. Therefore, we take

M−1
F ≈M−1

W ,

where for small h the approximation gets better.
From [4] we take DG = L, recalling that G is the matrix of null vectors of M .

Since G is made up of discrete gradients then from [6, Proposition 2.2], L is defined
to be the scalar Laplacian on Sh. Also, shown in [6] the vector mass matrix, X on
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Ch, is spectrally equivalent to DTL−1D. Using these two results and the observation
that a multiplication of either the inverse or block triangular preconditioner involves
multiplications of the leading block with M (GTM = 0), then the simplified inverse
Schur complement becomes:

S−1 ≈ S−1
approx =

(
M−1

X GL−1

L−1GT 0

)
, (2.8)

where MX = M +X and G = M−1
X DT .

2.2. A practical preconditioner. In a similar fashion to (2.8), we can reduce
H to the identity (due to the multiplication of GTM = 0). Also, we note that

KiẐKj & O(h3)

for any i, j = 1, 2, 3, 4. Hence, removing these terms we form the first step for the
approximation of (2.6) as:

K̂−1 =


K1 K2 −K1C

TM−1
X 0

K3 K4 −K3C
TM−1

X 0
M−1

X CK1 M−1
X CK2 M−1

X GL−1

0 0 L−1GT 0

 . (2.9)

The final step to approximate (2.9), is to consider the inverse of the Navier-Stokes
system KNS. For this we return to the exact inverse formula of a block matrix in (2.1).
Applying this to the Navier-Stokes system gives the precise expression for the inverse

K−1
NS =

(
F−1 − F−1BTS−1

NSBF
−1 F−1BTS−1

NS

S−1
NSBF

−1 −S−1
NS

)
. (2.10)

Practically, we use the PCD approximation for SNS given in (3.12) below. Substituting
(2.10) into the expression for K̂−1 in (2.9) gives

K̂−1 =


N F−1BTS−1

NS −NCTM−1
X 0

S−1
NSBF

−1 −S−1
NS −S−1

NSBF
−1CTM−1

X 0
M−1

X CN M−1
X CF−1BTS−1

NS M−1
X GL−1

0 0 L−1GT 0

 , (2.11)

where

N = F−1 − F−1BTS−1
NSBF

−1.

As with the approximation of M−1
F in Section 2.1, we consider the approximate orders

of the individual blocks of (2.11). Removing the O(h3) terms in the (1,3) and (3,1)
blocks of (2.11) yields the approximation:

P−1
1 =


F−1 −N F−1BTS−1

NS 0 0
S−1

NSBF
−1 −S−1

NS −S−1
NSBF

−1CTM−1
X 0

0 M−1
X CF−1BTS−1

NS M−1
X GL−1

0 0 L−1GT 0

 . (2.12)

Using P−1
1 as the preconditioner, we obtain the eigenvalue plot given in Fig-

ure 2.2(a). From the figure, we note that the red curve (the imaginary parts) are
close to zero and hence we have very strong clustering of eigenvalues around one.

5



(a) Real (blue) and imaginary (red) part
of eigenvalues of preconditioned matrix
P−1

1 K.

(b) Eigenvalues of preconditioned matrix
P−1

2 K.

Fig. 2.2: Preconditioned eigenvalue plots for approximate inverse (a) and block tri-
angular (b) preconditioners

3. A block triangular preconditioner. As well as the approximate inverse
preconditioner, we introduce a class of Schur complement based preconditioners for
(1.6). We follow the well known setting of [8, 10] for experimental comparison. Let
us define PBlock as:

PBlock =

(
KNS KC

0 −S

)
. (3.1)

From [8, 10] the preconditioned matrix, P−1
BlockK, has precisely two eigenvalues ±1 and

is diagonalizable. We would therefore expect an appropriate Krylov subspace solver
to converge within two iterations in exact precision. To use PBlock as a preconditioner,
we require a direct Navier-Stokes solve and a Schur complement solve.

The direct solve for the Navier-Stokes system is too costly, so we approximate
KNS with the Schur complement system:

PNS =

(
F BT

0 −SNS

)
, (3.2)

where SNS = BF−1BT is the fluid Schur complement. Using (3.2), obtains the more
practical preconditioner

P̂Block =

(
PNS KC

0 −S

)
. (3.3)

Theorem 3.1. The matrix P̂−1
BlockK has an eigenvalue λ = 1 of algebraic multi-

plicity at least nu, and an eigenvalue λ = −1 of algebraic multiplicity at least nb. The
corresponding (known) eigenvectors are given as follows:
λ = 1: with eigenvectors {vi}nb−mb

i=1 and {vj}nu
j=nb−mb+1, as follows:

vi = (ui,−S−1Bui, bi, 0) and vj = (uj ,−S−1Buj , 0, 0),

where bi ∈ null(D) 6= 0, Cui = (2M + CK1C
T )bi and uj ∈ null(C).
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λ = −1: with eigenvectors {vi}nb−mb
i=1 and {vj}nb

j=nb−mb+1, as follows:

vi = (ui, 0, bi, ri) and vj = (0, 0, bj , rj), (3.4)

where ui ∈ null(B) 6= 0, Fui + CT bi = 0, bj ∈ null(M), ri and rj free.
Proof. The corresponding eigenvalue problem is

F BT CT 0
B 0 0 0
−C 0 M DT

0 0 D 0




u
p
b
r

 = λ


F BT CT 0
0 −SNS 0 0
0 0 −(M +KC) −DT

0 0 −D 0




u
p
b
r

 ,

where KC = CK1C
T . The four block rows of the generalized eigenvalue problem can

be written as

(1− λ)(Fu+BT p+ CT b) = 0, (3.5)

Bu = −λSNS p, (3.6)

(1 + λ)(Mb+DT r) + λCK1C
T b− Cu = 0, (3.7)

(1 + λ)Db = 0. (3.8)

If λ = 1, (3.5) is automatically satisfied. Equation (3.6) simplifies to:

p = −S−1
NSBu.

From (3.8) we have Db = 0, hence, b ∈ null(D). Let us take r = 0, then (3.7) yields

Cu = (2M + CK1C
T )b. (3.9)

Case 1: Consider b ∈ null(D) and b 6= 0, then Cu = (2M + CK1C
T )b. Since, rank

of C and (2M + CK1C
T ) is nb −mb, then the condition (3.9) has at least

nb −mb linearly independent eigenvectors.
Case 2: Consider b = 0, then we have that Cu = 0. Hence, u must be in the null

space of C. Since

dim(null(C)) = nu − nb +mb,

this accounts for nu − nb +mb such eigenvectors.
Therefore λ = 1 is an eigenvalue with algebraic multiplicity at least nu.

If λ = −1, (3.8) is satisfied, hence, r is free. Simplifying (3.7) obtains

CK1C
T b+ Cu = 0. (3.10)

Let us take u ∈ null(B), then p = 0 and the condition for b is

Fu+ CT b = 0. (3.11)

Under the condition that u ∈ null(B), (3.11) satisfies the equality (3.10).
Case 1: Consider u ∈ null(B) and u 6= 0, then from (3.11) we have u = −F−1CT b.

Since the rank of CT is nb−mb and F is full rank, then there are only nb−mb

such linearly independent b’s that determine u. Hence, for this case we obtain
at least nb −mb such eigenvectors.
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Case 2: Consider u = 0, then for (3.11) to hold CT b = 0. Therefore, we take
b ∈ null(CT ). Since, the null space of CT is made up of discrete gradients
then

dim(null(CT )) = mb.

This accounts for mb such eigenvectors.
Therefore λ = −1 is an eigenvalue with algebraic multiplicity at least nb.

Remark 3.2. Note that in (3.4), {ui} is a subset of the null vectors of B.
An approximation of the fluid Schur complement, SNS, is needed to create a

practical preconditioner. For SNS we will use the pressure-convection diffusion (PCD)
preconditioner developed in [3]. The approximation is based on

SNS = BF−1BT ≈ Ap F
−1
p Qp, (3.12)

where the matrix Ap is the pressure Laplacian, Fp is the pressure convection-diffusion
operator and Qp is the pressure mass matrix.

The application of the preconditioner involves solving systems that require matrix
vector products with:(

M−1
X GL−1

L−1GT 0

)
and

(
F BT

0 Ap F
−1
p Qp

)−1

. (3.13)

We call this preconditioner P2. Then the preconditioned matrix yields the eigen-
value plot given in Figure 2.2(b). In practice, a combination of multigrid cycles for the
elliptic/parabolic type operators and an the axillary space preconditioner developed
in [7] for the curl-curl operators would be desirable to yield a scalable application of
the preconditioner.

4. Numerical experiments. In this section, we present preliminary numeri-
cal results to illustrate the performance of our preconditioning approaches. We use
FEniCS [9], a finite element software package, to create the matrix system and MATLAB

to carry out the numerical solves.
We use the notation: ` is the mesh level, DoF is the total degrees of freedom,

timeP1 is the solve time with the approximate inverse preconditioner P1, itP1 is the
number of GMRES iterations using P1, timeP2

is the solve time with the block tri-
angular preconditioner P2, itP2

is the number of GMRES iterations using P2 and -
when we stopped program due to time and memory constraints.

We will consider 2-dimensional test problems: a smooth solution on a convex
domain (described in [12, Section 4.5]) and a singular solution on a non-convex domain
(described in [5, Section 5.2]). The results are shown in Table 4.1 and 4.2 for the
smooth and singular solutions, respectively.

The results in Table 4.1 and 4.2 show very good scalability with respect to the
mesh size when we consider SNS to be the exact fluid Schur complement. However,
when we introduce the PCD approximation for SNS we start to see a deterioration in
scalability. For the smooth solution case, Table 4.1, the iterations are only increasing
by one per mesh level (for ` > 6). However, with the singular solution, Table 4.2, there
is an increase of between 2 and 3 iterations for the higher levels. We speculate that
this behavior appears to be linked to the approximation to the fluid Schur complement
and not necessarily to the quality of our formula. This is manifested in particular with
the more challenging singular problem.
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SNS = BF−1BT SNS = APF
−1
P QP

` DoF timeP1 itP1 timeP2 itP2 timeP1 itP1 timeP2 itP2

4 3,108 1.59e-02 3 2.62e-02 6 4.73e-02 11 4.41e-02 13
5 12,868 8.19e-02 3 6.76e-02 6 1.96e-01 13 1.52e-01 15
6 52,356 7.55e-01 2 4.85e-01 5 1.88e+00 14 1.13e+00 17
7 211,204 1.15e+01 2 6.37e+00 5 2.39e+01 16 1.25e+01 19
8 848,388 - - - - 1.47e+02 17 9.90e+01 20
9 3,400,708 - - - - 1.16e+03 18 6.64e+02 21

Table 4.1: Smooth solution: time and iteration results using the exact Schur comple-
ment and the PCD Schur complement approximation for the Navier-Stokes subprob-
lem.

SNS = BF−1BT SNS = APF
−1
P QP

` DoF timeP1 itP1 timeP2 itP2 timeP1 itP1 timeP2 itP2

4 2,276 1.90e-02 9 1.53e-02 12 6.11e-02 19 3.65e-02 19
5 9,540 1.24e-01 8 1.24e-01 12 2.37e-01 21 1.91e-01 24
6 39,044 9.77e-01 7 5.75e-01 11 1.51e+00 24 7.58e-01 26
7 157,956 9.50e+00 6 7.56e+00 11 1.54e+01 25 8.50e+00 28
8 635,396 - - - - 1.12e+02 27 5.65e+01 29
9 2,548,740 - - - - 7.68e+02 29 4.84e+02 32

Table 4.2: Singular solution: time and iteration results using the exact Schur comple-
ment and the PCD Schur complement approximation for the Navier-Stokes subprob-
lem.

Since we see very strong clustering of the eigenvalues around 1 for the approximate
inverse preconditioner (Figure 2.2a) and ±1 for the block triangular preconditioner
(Figure 2.2b), we would expect to see approximately a factor of 2 difference between
the iteration counts. This is what we observe for the exact Schur complement case.
However, when we use the PCD approximation the iteration numbers seem to be
roughly the same.

Finally, we look at the timings. Due to the more complex nature of the approxi-
mate inverse preconditioner P1, we see that the timing results are higher than for P2.
However, there only seems to be a maximum of a factor of two difference between the
two preconditioners. This factor seems to decrease when the solution requires more
iterations to converge, as in Table 4.2.

5. Conclusion. We have introduced new block preconditioning techniques for
the MHD model (1.1)–(1.2). Our aim was to develop indefinite preconditioning ap-
proaches that utilizes the Maxwell maximal nullity result in [4] and adapt it to the
MHD model.

Using the results in [4], we are able to find exact expressions for both a block
Schur complement of the MHD model and its inverse. Using this Schur complement
we presented a block triangular preconditioner as well as an approximate inverse
preconditioner.

The preliminary numerical experiments demonstrate the viability and effective-
ness of our approach. Plans for future work include further optimizing our code,
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utilizing inexact solves to reduce the overall computational work, and applying our
preconditioners to three-dimensional problems.

For the class of approximate inverse preconditioners, it is possible to obtain the
nice property that the real part of the eigenvalues for the preconditioned matrix are all
positive, in contrast to the case of typical block diagonal/triangular preconditioners.
If the preconditioned matrix were symmetrizable by a similarity transformation, then
this positivity property may be exploitable by using variations of positive definite
solvers. This is left as an area for future work.
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