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ABSTRACT. A fast structured algorithm for Jacobi-Jacobi transforms is developed in this paper.
The algorithm is based on two main ingredients. (i) Derive explicit formulas for connection matrices
of two Jacobi expansions with arbitrary indices. (ii) Explore analytically or numerically a low-rank
property hidden in the connection matrices, and construct rank structured approximations for
them. Combining these two ingredients, we develop a fast structured Jacobi-Jacobi transform with
nearly linear complexity (after a one-time precomputation step) between coefficients of two Jacobi
expansions with arbitrary indices. An important byproduct of the fast Jacobi-Jacobi transform is
the fast Jacobi transform between the function values at a set of Chebyshev-Gauss type points and
coefficients of the Jacobi expansion with arbitrary indices. Ample numerical results are presented
to illustrate the computational efficiency and accuracy of our algorithm.
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1. INTRODUCTION

Jacobi polynomials have found applications in many areas of mathematics and applied sciences,
notably the approximation theory [6,7], the resolution of Gibbs’ phenomenon [5], electrocardiogram
data compression [18], and spectral methods for numerical partial differential equations [3,4,14,15].
See also [10,19] which include extended lists of related work. Many applications require transforms
between coefficients of Jacobi expansions and values at Jacobi-Gauss type points, and/or between
coefficients of Jacobi expansions with different indices. Hence, it is highly desirable to develop
algorithms which can perform these transforms as quickly and accurately as possible.

Given f(x) € Py = {polynomials with degree equal or less than N}, the Jacobi expansion is of

the form
N

fl)=>_ [P I @), = el-1,1], (1.1)

n=0
where {Jﬁ”g}g:o are the Jacobi polynomials with indices o, > —1. Let {z; € [-1,1]}o<j<n be a
set of collocation points. One often needs to determine the expansion coefficients (fy' B )7]:[:0 from
function values (f ($j))§-\7:0 or vice versa, i.e., we need to perform the forward and backward Jacobi

transforms f*° = T'(f, £ = T},£*P, respectively, where f = (f(:cj))évzo and f*9 = (fﬁ"ﬁ)gzo.

Chebyshev polynomials, as a special case of Jacobi polynomials with o = = —%, are often
used because of their near optimal approximation properties and availability of fast transforms
thanks to their close relations to Fourier series [2,9,13]. More precisely, if {xj}é-vzo are a set of
Chebyshev-Gauss-type points, then the transform between the function values {f(z;)} and the
expansion coefficients { £} in terms of Chebyshev polynomials f(z) = Zivzo I, (x),z € [-1,1],
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can be done by the fast Fourier transform (FFT) in O(Nlog N) operations. Unfortunately, such
fast algorithms are not available for transforms related to Jacobi polynomials with arbitrary indices.
However, if we fix {x; };-V:O to be a set of Chebyshev-Gauss-type points, then to obtain the coefficients

of the Jacobi expansion (fy P ),]:7,0, we can proceed in two steps:

e First, we obtain coefficients of the Chebyshev expansion (f,I)N_,, which can be obtained in
O(N log N) operations by FFT;

e Second, we determine (£ )N, from ( fT)n o through the identity
N

fl@)=> fITu(x Z e (x), xel-1,1]. (1.2)
n=0
Using the orthogonal properties of Chebyshev and Jacobi polynomials, one can easily determine
connection matrices KT8 and K(@8)=T guch that

foB — KT @A)l §T _ flap)=Tgab (1.3)

However, K778 and K(@#)=T are full (upper triangular) matrices so that a direct Chebyshev-
Jacobi transform will cost O(N?). The main question we want to address in this paper is how
to quickly and accurately compute Chebyshev-Jacobi transforms and more general Jacobi-Jacobi
transforms.

The main goal of this paper is to develop fast algorithms, with nearly linear complexity af-
ter a one-time precomputation step, for the Chebyshev-Jacobi and Jacobi-Jacobi transforms with
arbitrary Jacobi indices. Our method is based on exploring a so-called low-rank property of the
connection matrices, i.e., their appropriate off-diagonal blocks have small and nearly bounded (nu-
merical) ranks. A useful feature for matrices with the low-rank property is that they can be
approximated by rank structured matrices in hierarchically semiseparable (HSS) forms [22,23]. We
can use existing algorithms in [21,23] to quickly construct such HSS forms in a precomputation.
For a pre-specified accuracy, such a construction takes O(rN?) flops based on the explicit matrix
form, where r is the maximum off-diagonal numerical rank. The construction may also be done
via randomization and takes O(r2N) flops together with O(r) matrix-vector multiplications. After
this precomputation, it only costs O(rN) flops to perform the desired transforms.

The remaining sections are organized as follows. In Section 2, we derive explicit recurrence
formulae of the connection matrices for Jacobi-Jacobi transforms with arbitrary indices. In Section
3, we explore the low-rank property of Jacobi-Jacobi connection matrices, and briefly mention the
HSS construction. Several numerical experiments of the proposed fast structured Jacobi transforms
are shown in Section 4.

2. CONNECTION COEFFICIENTS FOR JACOBI-JACOBI TRANSFORMS

We consider the transform between the coefficients of two Jacobi expansions with different indices,
which is the generalization of the forward and backward Chebyshev-Jacobi transforms (FCJT and
BCJT) shown in (1.3).

Let us consider the following two Jacobi expansions:

Zf JorP1 (g Zf Jo2P2 () e [—1,1], (2.1)
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where the indices (a1, 1) and (ag, S2) can be any real number bigger than —1. The connection
coefficients between the above two Jacobi polynomials satisfy the following relations:

fl — K2_)1f2, f2 — Kl—)2fl, (22)

About the entries of the above two connection coefficients, we have the following theorem, the proof
of which is omitted here for shortness.

Theorem 2.1 (Recurrence formula for Jacobi-Jacobi transform). The nonzero entries of K>~ =

(HZ%?l)Z]Yj:O and K172 = (E,}?Q)é\;:o defined in (2.2) can be generated recursively as follows:

2—1 2—1 2—>1 2—1 2—>1 2—1 2—>1
’{z]—l-l_el ’Lj— 11+ €3 Zl]+€

1—2 1—2 1—>2 1—2 1—>2 1—2 1—>2
Kijt1 = €1 k01t & TR 1 €3

+ei Ry, > (2.3)

1—2 1—>2 . .
teéy Kit1 0 J > Z,

where the coefficients {6m_>5(m }2”:11’5273,4 (with 6(1) = 2 and 6(2) = 1) are given by

5m~>5(m) — _m gmHJ(m) _ 0, =0,
1 . ’ ey, i1,
m—4(m 6(m) .\ m m m—d(m S(m) /. m
E3_)( ):7"3( )(Z)pj —4q;, 54—>( ) = 7l )(z)pj,
with the parameters
0p_ Cnta+B+1D)(2n+a+B+2) wh (82— a®)(2n+a+B+1)
b (n+a)(n+B)2n+a+ B +2) k) = 2k(k + i + Bm)

" (nt D+t S+ 1)(2n+a+p)

52 _a2
mk — m m m
3 () (2k 4 am + Bi) (2k + iy + B + 2)

form=1,2and k=0,1,2,....

Moreover, the starting points of the above recurrence formula are

(2k + i + B — 1) (2k + am + Bim)’
B 2(k + am + 1)(k + B + 1)
2k + am + B +2)(2k + i + B + 3)

_ 941 Qo+ fa+2

= — , =0, k = ,
0.1 2(a1 + Br +2) 2 10 T a4 B 42
152 _ 1 152 (1 +B1+2)(f2—2) Pri—a 12 _ 152 Q1+ P +2

= , K = K = .
0.1 2(az + B2+ 2) 2 10 BT ag 4 B 42

— 2 —
5331 —1, 22l (B1—a1)(aa+ B2 +2) fo—an (21

Now let us consider the most useful case of Chebyshev-Jacobi transforms, i.e., the connection
problem between the Chebyshev expansion and the Jacobi expansion, shown in (1.2). Note that

the Chebyshev polynomials and Jacobi polynomials with indices a« = f = —1/2 are proportional
to each other, i.e. T,(x) = %Jn 1/2.= 1/2($), Vn = 0,1,.... It implies that we cannot

simply take ay = 1 = % and as = «a, f1 = B to get the recurrence relation for the entries of the

connection matrices K778 and K(®#=T defined in (1.3). Instead, we can prove the following
theorem.

Theorem 2.2 (Recurrence formula for Chebyshev-Jacobi transform). Denote J = («, ). The

nonzero entries of K771 = (HZJ]%T) o and K177 = (KZ;_)J) _o can be generated recursively as
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follows:
W = AR 4 AT 4 TR T, i
KR S N SUR SR SUR RN SO o A SO
where the parameters =T and el =7, for k =1,2,3,4, are
J=T a, J—T 0’04:5 Z : " J—=T a,B J—=T 4p] 767 1 =0,
1 =TT, s =Y i=1 e =g, a T = a8
ép;lug i> 27 Qp] ) i Y}
with the parameters {p?’ﬁ, q}xﬁ,r?"ﬁ} are the same as those in Theorem 2.1 and
0 1=10
el=7) = 1, el=7 = " ti(a+B49) P> 1’
(at+B+2i—1)(a+B+2i)’
_ 2(a—=p) . . .
I { CH_B"E%; . 1=0, I dlat+i+1)(B+i+1)
- 2(B8%—a . = : . .
@Azttt 2 L (a+f+2i+2)(a+F+2i+3)
Moreover, the starting points of the above recurrence relation are
o — a+[+2
weT=1 =200 WpT=0,  fpT=T0E2
2 2
T—J T—J _ a—p T—J T—J _ 2
K =1, K = K =0, K = .
00 01 a+ B2 10 11 atfBt2

Remark 2.1. Thanks to the symmetry property of Jacobi polynomials JS’B(—:J:) = (—1)”Jff’a(x),
the Jacobi polynomial Jy*(z) (up to a constant, referred to as the Gegenbauer or ultra-spherical
polynomial), is an odd function for odd n and an even function for even m. Therefore, we have

Z_U—FaT]_”—OforiJrj odd, if a = .

Remark 2.2. For the problem between Jacobi polynomials with integer differences, i.e., both of
|y — ao| and |1 — Ba| in (2.1) are integers, one can find that the matriz itself can be written as
the product of banded or separable matrices, which means that the Jacobi-Jacobi transform can be
done in linear complezity.

3. LOW-RANK PROPERTY AND HSS STRUCTURES

In this section, we show that the Jacobi-Jacobi connection matrices given in Section 2 enjoy a
so-called low-rank property, which allows us to construct hierarchically semiseparable (HSS) approx-
imations to the matrices [23]. HSS representations provide an efficient and stable way to explore
the rank structures of a matrix A. That is, if the off-diagonal blocks of A have small ranks or
numerical ranks, then we say A has a low-rank property, and can rewrite or approximation A by an
HSS form. Such a form is data-sparse in the sense that those dense off-diagonal blocks are in com-
pressed low-rank format. This helps to significantly reduce the algorithmic complexity and storage
for handling A. In particular, if A is of order N and its largest off-diagonal rank or numerical rank
is 7, then the multiplication of A and a vector costs only O(rN) flops. In the following, we show
that r is very small, so that the HSS Jacobi-Jacobi transformation is very efficient.
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Let us start with the plots of the numerical ranks of HSS block rows of the connection coefficients
K87 @f) and KA~ for (o, B) in different regions with centers (a*, 3*). Each matrix is
hierarchically partitioned into Iy ax levels of HSS blocks, which are block rows or columns excluding
the diagonal subblocks [23]. At level I = 0,1,. .., lnax, the HSS block rows have row sizes N; = n /2!
and maximum numerical rank r;. We will see that when [ decreases, N; doubles, but r; only
increases slightly, which is independent the location of (a*, 5*). We consider (¢, 3) in three regions:
(i) Q7 = [~1,0)? with center (—1/2,—1/2), which corresponds to the Chebyshev-Jacobi case; (ii)
Q7 = [(a*—1/2, 8*—1/2)]? with o* = 3V/3, 8* = 7; (iii) Q77 = [(a*—4, B*—4)]?\[(a* -3, B*—3)]?,
with the same center (a*, 5%).

In practice, we randomly choose 40 points in the square regions ;7 and ;7 and 100 points in
the square-ring region Q7. In particular, we add one more point (¢, 5) = (0,0) in region €y,
which corresponds to the Chebyshev-Legendre case. See Figure 3.1 for a graphical representation
of these regions. In Figure 3.2, we show r; (versus N;) for the HSS block rows at level [ of the HSS
partition, where the relative tolerance for computing the numerical ranks is 7 = 1078, the bottom
level HSS block row size is N;_,. = 20. For comparison purposes, we also plot shifted log(N;) and
loglog(N;) curves. We can observe that the following.

(1) In all of the three cases, the numerical HSS ranks r; increases very slowly, in fact, much
slower than O(log NV;). Instead, it roughly follows the pattern of O(log log N;) in our compu-
tation, although not yet analytically justified. This observation is useful for the derivation
of the nearly linear complexity of our HSS construction.

(2) The numerical HSS ranks between two sets of indices (o, ) and (o, 5*) appear to depend
only on the distance between («, 8) and (a*, 5*), and are nearly independent of their relative
locations, by the comparison of the results from Q; and ;7 shown in the first four parts
of Figure 3.2.

(3) As the distance between («, ) and (a*, ") increases, the HSS ranks decrease, which is
shown in the last two parts of Figure 3.2.

Figure 3.1: Jacobi indices («a, B) tested later in Figures 3.2, where the left square (1) is centered at
(—=1/2,—1/2), and the right squares (inner square Qr; and outer banded region Qrrr) are centered

at (3v/3, ).
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Figure 3.2: Numerical HSS ranks of Chebyshev-Jacobi transforms.

4. FAST STRUCTURED JACOBI-JACOBI TRANSFORMS

We now present some numerical experiments to illustrate the efficiency and accuracy of our fast
structured transforms. All the tests are carried out on a Thinkpad T430s laptop with 4GB RAM

and an Intel i7 core at 2.9GHz. We first mention some remarks about the experiments: (i) N means
the size of the matrices; (ii) t. is the CPU time of HSS construction, e, = % is the relative

error of the HSS approximation to matrix A; (iii) The tolerance in the HSS construction is chosen
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as 7 = 10712 and the row sizes of the finest level HSS block rows are about 40. Here, 7 is a relative
tolerance which is different from that used in the theorems above.

4.1. Jacobi-Jacobi transforms. Let us start with the Cheyshev-Legendre transform, which is the
most useful case among Jacobi-Jacobi transforms. Hale and Townsend [8] proposed a fast algorithm
for Cheyshev-Legendre transforms using an asymptotic formula (CLTAF), with computational com-
plexity O(N log? N/loglog N). We will compare our proposed fast structured Chebyshev-Legendre
transform (FSCLT) with CLTAF as well as the direct Chebyshev-Legendre transforms (DCLT).

(1) HSS construction. The computational cost and approximation errors of the HSS construc-
tion for forward and backward Chebyshev-Legendre connection matrices are shown in Table
1. We observe that the complexity of the HSS construction scales roughly as O(N?).

(2) Chebyshev-Legendre transform. We randomly choose a vector v of length N, and then
perform the forward and backward Chebyshev-Legendre transform on v for 100 times. The
CPU times of DCLT, CLTAF and FSCLT, as well as O(N) and O(N?) reference lines are
shown in Figure 4.1. For the case with small N, there is no significant difference between
these three methods. As N increases, the cost of DCLT grows like O(N?), and the growth
rate of CLTAF is between O(N?) and O(N) (likely O(N (log N)?/loglog N) as claimed
in [8]), while our FSCLT is of nearly linear complexity, more precisely, O(rN), where r is
abound O(loglog V).

Now let us consider the Jacobi-Jacobi transform between (a*, 3*) and (¢, 8’). On one hand, we
choose o* = 34/3, B* = 7, because we want to verify that our algorithms work for any real number
bigger than —1. On the other hand, we consider two cases for (o/, 5'): (i) non-integer differences,
oy = 2,B) = 1; (ii) integer differences oy = 3v/3 + 2,8, = m + 1. For the case (i), we compare
the results between direct Jacobi-Jacobi transform (DJJT) and our fast structured Jacobi-Jacobi
transform (F'SJJT). For the case (ii), we show the results for the Jacobi-Jacobi promotion transform
(JJPT) and the Jacobi-Jacobi demotion transform (JJDT). The computational time is shown in
Figure 4.2. We can observe that

(1) The Jacobi-Jacobi transforms for indices with integer differences are very fast with almost
linear complexity, for both promotion and demotion.

(2) The cost of our proposed FSJJT is almost linear in N, while the direct transform is qua-
dratic.

Table 1: HSS construction cost and accuracy for Chebyshev-Legendre transforms.

KT—)L KL—)T

N
te €. te €.
160 0.080  2.2984e-13 | 0.005  2.4553e-13
320 0.016  1.1482e-12 | 0.018  3.2789¢-13
640 0.067  1.3069e-12 | 0.060  3.6378e-13
1280 | 0.266  1.5614e-12 | 0.243  1.0479e-12
2560 | 1.230  2.3320e-12 | 1.048  1.8469e-12
5120 | 4.828  1.0110e-11 | 5.344  2.3042e-12
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Table 2: Errors for Chebyshev-Legendre transforms.

KT*)L KL*)T

FSCLT  CLTAT [§] | FSCLT  CLTAT [§]
160 | 6.1466e-14  1.5815e-14 | 4.3208e-14  2.1671e-14
320 | 2.7861e-13  3.1610e-14 | 3.0375¢-13  1.5178¢-13
640 | 2.2266e-13  2.7652e-14 | 3.0139¢-13  8.5224e-13
1280 | 1.7845e-13  5.3438¢-14 | 5.7378¢-13  7.1993e-13
2560 | 2.2830e-13  9.9047e-14 | 1.5104e-12  1.3362e-11
5120 | 4.1844e-13  1.1875e-13 | 1.2649e-12  1.3817e-11
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Figure 4.1: CPU time of forward and backward Chebyshev-Legendre transforms.
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Figure 4.2: CPU time of Jacobi-Jacobi connection problems

4.2. Jacobi transforms. We then consider the functions fx(¢) defined by
fe(t) = [t —sin(k)|, k=1,2,3,..., (4.1)

where the function fi(¢) is only continuous but not differentiable at the points ¢; = sink. This
choice is made to ensure that we do not compute expansion coefficients that essentially vanish at
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moderate degrees. For both functions, we repeat the forward Jacobi transforms from k£ = 1 to
k = 10, for different degrees N. Besides, the errors shown in the following tables are the average
of the 10 computations.

We compare the results of our fast structured Jacobi transform (FSJT) with direct Jacobi trans-
form (DJT) for any indices. The computational time for the cases with a = 8 =0, « = —@, =7
and a = 10v/3, 3 = 107 are shown Figure 4.3. These results again demonstrate that our prosed
FSJT has almost linear complexity, for arbitrary indices «, 3.

10 10 10
10' 10' 10'
100t 210 240
£ £ £
2107} Z 10 z 107
o o o
107 107 107"
_3 -3 -3
10 10 10
10° 10° 10* 10° 10° 10* 10° 10° 10
N N N
Na=8=0 ija=-¥2 3=" i) @ = 10v/3, 8 = 107
2 4

Figure 4.3: CPU time of Jacobi transforms with different indices for function set {fk}iil

5. CONCLUDING REMARKS

In this paper, we developed efficient and robust algorithms for Jacobi-Jacobi transforms with
arbitrary indices. To achieve this, we derived explicit formulae for the connection between two
Jacobi polynomials with different indices, and then showed that these matrices have the low-rank
property. The key to the success of our method lies at the HSS approximation of the connection
matrices. After a one-time HSS construction cost, the Jacobi-Jacobi transforms can be accom-
plished in nearly linear complexity. To the authors’ best knowledge, this is the first algorithm
which can perform the Jacobi-Jacobi transforms between two sets of arbitrary indices with nearly
linear complexity O(rN) with r behaving like O(log N) or even better.

The main techniques and strategies developed in this paper can be applied to many other situ-
ations. For example, a more difficult problem is to construct a fast spherical harmonic transform.
Many attempts have been made in this regard [11,16,17,20], but they are still not fully satisfactory.
The main difficulty, as compared with the Jacobi case, is that the spherical harmonic expansion
involves associate Legendre polynomials with a full range of indices, rather than a fixed index. It
is hopeful that, by exploring the relations between associate Legendre polynomials and Chebyshev
polynomials, one can construct a robust and fast spherical harmonic transform.
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