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1. Introduction. In the Bayesian approach to inversion, parameters are treated as random variables and
endowed with a prior distribution that encodes one’s knowledge of the parameters before data are collected.
The distribution of the data conditioned on the parameters is specified through the likelihood model. Bayes’
theorem combines prior and likelihood information to yield the posterior distribution, i.e., the distribution of the
parameters conditioned on the data. The posterior distribution reflects our updated knowledge of the parameters
once measurements are collected and gives the Bayesian solution to the inverse problem. Characterizing the
posterior distribution is of primary interest in real-life engineering and science applications (e.g., computerized
tomography, optical imaging, spatial statistics). For instance, we might want to compute posterior marginals,
the posterior probability of some functionals of the parameters, or the probability of rare events under the
posterior measure. In all these cases we need samples1 from the posterior distribution. This task tends to be
extremely challenging in large scale applications, especially when the parameters represent a finite-dimensional
approximation to a distributed stochastic process like a permeability or a temperature field.

We begin by considering a finite-dimensional Bayesian Gaussian linear inverse problem of the form

Y = GX + ε (1.1)

where X ∈ Rn represents the inversion parameters, Y ∈ Rd denotes the noisy observations, G ∈ Rd×n is a linear
forward operator, and ε ∼ N (0,Γobs) is zero-mean additive Gaussian noise, statistically independent of X and
endowed with covariance Γobs � 0. We prescribe a Gaussian prior distribution on the parameters, X ∼ N (0,Γpr),
where we assume, without loss of generality, zero prior mean and Γpr � 0. One is usually concerned with the
posterior distribution of the parameters, X|Y ∼ N (µpos(Y ),Γpos),2 with posterior mean and covariance matrix
given by

µpos(Y ) = ΓposG
>Γ−1

obs Y , Γpos = (H + Γ−1
pr )−1, (1.2)

where H := G>Γ−1
obsG is the Hessian of the negative log-likelihood. In this paper, however, we are not interested

in the parameters X per se, but rather in a quantity of interest (QoI) Z that is a function of the parameters

Z = OX (1.3)

for some linear and, without loss of generality, full row-rank operator O ∈ Rp×n with p < n. Our interests are thus
goal-oriented, as we wish only to characterize Z and not the inversion parameters X. Including such ultimate
goals in the inference formulation is an essential modeling step in virtually every application of Bayesian inverse
problems. The hope underlying this additional step is to reduce the computational complexity of inference by
making the ultimate goals explicit. Nevertheless, it is still not well understood how to leverage ultimate goals in
order to yield more efficient Bayesian inference algorithms (see [18] for computationally efficient approaches to
non-Bayesian regularization techniques in goal-oriented problems). The present paper will precisely address this
issue, filling a gap in the existing literature.

The Bayesian solution to the goal-oriented inverse problem is the posterior distribution of the QoI, i.e., Z|Y .
It is easy to see that Z|Y is once again Gaussian with mean and covariance matrix given by

µZ|Y (Y ) = O µpos(Y ), ΓZ|Y = O ΓposO>. (1.4)

The goal of this paper is to characterize statistically optimal, computationally efficient, and structure-exploiting
approximations of the statistics of Z|Y whenever the use of direct formulas such as (1.4) is challenging or
impractical (perhaps due to the high computational complexity or excessive storage requirements). We will
approximate ΓZ|Y as a low-rank negative update of the prior covariance of the QoI. Optimality will hold with
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respect to the natural geodesic distance on the manifold of symmetric and positive definite matrices [12]. The
posterior mean, µZ|Y (Y ), will be approximated as a low-rank function of the data and optimality will follow from
the minimization of the Bayes risk for squared-error loss weighted by Γ−1

Z|Y . The essence of these approximations
is the restriction of the inference process to directions in the parameter space that are informed by the data
relative to the prior and that are relevant to the QoI, by finding the leading generalized eigenpairs of a suitable
matrix pencil.

This paper is an extension of the work on goal-oriented inference originally presented in [18] in a number of
different ways. First of all, we will introduce the notion of optimal approximation, rather than exact computation,
for both the posterior covariance matrix and the posterior mean of the QoI. We will propose computationally
efficient algorithms to determine these optimal approximations. The complexity of our algorithms will scale with
the intrinsic dimensionality of the goal-oriented problem—which here reflects the dimension of the parameter
subspace that is simultaneously relevant to the QoI and informed by the data, as noted above. In particular,
the full posterior distribution of the parameters need not be computed at any stage of the algorithms. This is
in stark contrast to [18]. Moreover, we introduce the possibility to handle high-dimensional QoIs such as those
arising from the discretization of a distributed stochastic process. This class of problems is extremely relevant in
applications (see, e.g., Section 3).

The remainder of the paper is organized as follows. In Section 2 we introduce the statistically optimal
approximations of the posterior statistics of the QoI. In Section 3 we use an inverse problem in heat transfer to
illustrate the theory. In Section 4 we offer some concluding remarks. Appendix A contains the proofs of the main
results of this paper.

2. Theory. We first focus on the approximation of the posterior covariance of the QoI, Z. The cost of
computing ΓZ|Y according to (1.4) is dominated by the solution of p linear systems with coefficient matrix3 Γ−1

pos
in order to determine ΓposO>. Moreover, the storage requirements for ΓZ|Y scale as O(p2). If the dimension of
the QoI is inherently low, e.g., p = O(1), then the use of direct formulas like (1.4) can be remarkably efficient. For
instance, if we are just interested in the average of X, i.e., Z := 1

n

∑
iXi, then the QoI is only one-dimensional

and computing the posterior covariance of the QoI amounts to solving essentially a single linear system. As the
dimension of the QoI increases, however, direct formulas like (1.4) become increasingly impractical due to high
computational and storage complexities; in many cases of interest the dimension of the QoI can even be arbitrarily
large! Consider the following simple example. If X represents a finite-dimensional approximation of a spatially
distributed stochastic process (e.g., a temperature field), then the QoI could be the restriction of this process to
a domain of interest. In this case, the QoI must be a finite-dimensional approximation to a spatially distributed
process and thus, it can be arbitrarily high-dimensional depending on the chosen level of discretization of the
process (we will revisit this example in Section 3). Thus, there is a clear need for new inference algorithms that
can efficiently tackle these challenging problems.

Even though direct formulas like (1.4) can be intractable owing to the high-dimensional QoI, essential features
of large-scale Bayesian inverse problems bring additional structure to the Bayesian update: The prior distribution
often encodes some kind of smoothness or correlation among the inversion parameters. Observations are typically
finite, scarce, indirect, corrupted by noise, and related to the inversion parameters by the action of a forward
operator that filters out some information [24, 8]. As a result, data are usually informative, relative to the prior,
only about a low-dimensional subspace of the parameter space. That is, the relevant difference between prior and
posterior distribution is confined to a low-dimensional subspace. This source of low-dimensional structure is key
to the development of efficient Bayesian inference algorithms [11, 8] and plays a crucial role also when dealing with
goal-oriented problems. In [24] we studied optimal approximations of the posterior covariance of the parameters
as a fixed negative definite low-rank update of the prior covariance matrix with respect to the Förstner–Moonen
metric4: the geodesic distance on the manifold of symmetric and positive definite matrices [12]. In particular, we

3 In large-scale inverse problems only the action of the precision matrix Γ−1
pos on a vector is usually available and it is not reasonable

to expect direct factorizations of Γ−1
pos such as, for instance, a Cholesky decomposition. Thus, the solution of linear systems with

coefficient matrix Γ−1
pos is often times necessarily iterative (e.g., Lanczos iteration [17]).

4 For a pair of symmetric and positive definite matrices A,B, the Förstner metric, dF (A,B), is defined in terms of the generalized
eigenvalues, (σi), of the matrix pencil (A,B) as d2

F (A,B) =
∑

i
log2(σi). The Förstner metric leverages the geometry of the manifold

of positive definite matrices and it satisfies important invariance properties:

dF (A,B) = dF (A−1, B−1) and dF (A,B) = dF (MAM>,MBM>), (2.1)

for any nonsingular matrix M , making it an ideal metric to compare covariance matrices [12]. Moreover, optimality of the covariance
approximation in the Förstner metric leads to optimality of the approximation in distribution with respect to familiar measures of
similarities between probability distributions like the Kullback–Leibler divergence and the Hellinger distance [24, 20]. Notice, in
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focused on the approximation class

Mr = {Γpr −KK> � 0 : rank(K) ≤ r} (2.2)

of positive definite matrices that can be written as a low-rank update of the prior covariance matrix in order to
leverage the low-dimensional structure of the prior-to-posterior update5. The following theorem characterizes the
optimal approximation of Γpos (see [24] for a proof).

Theorem 2.1 (Optimal posterior covariance approximation). Let (δ2
i , wi) be the generalized eigenvalues–

eigenvector pairs of the matrix pencil (H,Γ−1
pr ) with the ordering δ2

i ≥ δ2
i+1 and H := G>Γ−1

obsG as in (1.2). Then,
a minimizer, Γ̂pos, of the Förstner metric between Γpos and an element ofMr is given by

Γ̂pos = Γpr −KK>, KK> =
r∑
i=1

δ2
i (1 + δ2

i )−1 wi w
>
i , (2.3)

where the distance between Γpos and the optimal approximation is

dF (Γpos, Γ̂pos) =
√∑

i>r

log2(1 + δ2
i ). (2.4)

Theorem 2.1 tells us that the optimal way to update the prior covariance matrix to yield an approximation of Γpos
is along the generalized eigenvectors of the matrix pencil (H,Γ−1

pr )6. These eigenvectors are the directions that are
most informed by the data and are obtained from a precise balance between forward model, measurement noise
and prior information. This update is typically low-rank for precisely the same reasons discussed above: the data
are informative relative to the prior only about a low-dimensional subspace of the parameter space [5]. Notice
that (2.3) is not only an optimal and structure-exploiting approximation of Γpos, but it is also computationally
efficient as the generalized eigenpairs of (H,Γ−1

pr ) can be easily computed using a matrix-free algorithm like a
Lanczos iteration (including its block version) [17, 9] or a randomized SVD [15]. This approximation of Γpos,
originally introduced in [11] for computational convenience and justified by intuitive arguments, has been deployed
successfully in a number of extremely large-scale applications in Bayesian inversion [4]. It is our starting point
for the analysis of goal-oriented linear inverse problems.

The combination of Theorem 2.1 with the direct formulas (1.4) suggests a first approximation strategy for
the posterior covariance of the QoI: we just replace Γpos in (1.4) with the optimal approximation described by
Theorem 2.1

ΓZ|Y ≈ Γ̂Z|Y := O Γ̂posO> = O ΓprO> −OKK>O>, (2.5)

where the low-rank update KK> is given by (2.3). Approximation (2.5) is already a big computational improve-
ment over the direct formulas (1.4): there is no need to compute p linear systems, we just need to compute the
leading eigenpairs of (H,Γ−1

pr ) with a matrix-free algorithm. The rank of the update depends on the dimension
of the subspace of the parameter space that is informed the most by the data and thus, whenever the parameters
represent a finite-dimensional approximation of a distributed stochastic process, the dimension of this subspace
is eventually independent of the chosen level of discretization of the process (at least below a critical level of
resolution). This feature of the approximation is essential if we want to deal with truly large-scale inverse prob-
lems. Notice that ΓZ|Y in (2.5) need not be formed explicitly but can be easily stored in terms of the prior
covariance matrix, the goal-oriented operator, and the low-rank update KK>. Moreover, it follows from results
in [24] that we can easily obtain an expression for a square root of Γ̂Z|Y . This allows efficient sampling from
N (µZ|Y (Y ), Γ̂Z|Y ) in high-dimensional problems.

Despite these favorable computational properties, the approximation (2.5) is still not satisfactory as it does
not account explicitly for the goal-oriented feature of the problem. Γ̂pos in (2.5) is the optimal approximation of
the posterior covariance of the parameters but is by no means tailored to the QoI. The pencil (H,Γ−1

pr ) used to

particular, that the distance induced by the Frobenius norm does not satisfy any of the aforementioned properties.
5 Many approximate inference algorithms, especially in the context of Kalman filtering, exploit the class (2.2) to deliver an

approximation of Γpos (e.g., [2]). These algorithms, however, are suboptimal in the sense defined by the forthcoming Theorem 2.1
(see [24] for further details and numerical examples).

6 The properties of the pencil (H,Γ−1
pr ) have been studied extensively in the literature on classical regularization techniques for

linear inverse problems (e.g., [16, 10, 6]). These papers, however, do not adopt a statistical approach to inversion and thus have not
considered the optimal approximation of the posterior covariance matrix.
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compute the approximation Γ̂pos according to Theorem 2.1 does not contain the goal-oriented operator. That is,
the directions, (wi), that define the optimal prior-to-posterior update in (2.3) are certainly the most informed by
the data relative to the prior but need not be relevant at all to the QoI. For instance, some of the (wi) could lie in
the nullspace of the goal-oriented operator. Computing such eigenvectors would be a clear waste of computational
resources and should be avoided. Of course, as the rank of the optimal prior-to-posterior update increases, the
corresponding approximation, Γ̂Z|Y , will continue to improve until eventually ΓZ|Y = Γ̂Z|Y . However, in the
worst case scenario, Γ̂Z|Y will be a good approximation of ΓZ|Y only as we start computing eigenpairs of (H,Γ−1

pr )
associated with the smallest nonzero generalized eigenvalues. This is clearly unacceptable as the overall complexity
of the approximation algorithm would not depend on the nature of the goal-oriented operator. Therefore, the
approximation (2.5) cannot possibly satisfy any reasonable optimality statement in the spirit of Theorem 2.1 and
thus it calls for a proper modification.

The form of Γ̂Z|Y in (2.5) clearly shows that the posterior covariance of the QoI can be written as a low-
rank update of the prior on Z whose marginal distribution is Gaussian and simply given by N (0,ΓZ) with
ΓZ := O ΓprO>. This is perfectly consistent with our intuition of the Bayesian update: the data will update
the prior distribution on the QoI only along certain directions. Thus, a structure-exploiting and computationally
efficient approximation class for ΓZ|Y is given by the set of positive definite matrices that can be written as a
fixed maximum rank negative definite update of ΓZ :

MZ
r = {ΓZ −KK> � 0 : rank(K) ≤ r}. (2.6)

Notice that the definition ofMZ
r is analogous to that ofMr in (2.2).

We are now in a position to introduce one of the main results of this paper. The following theorem defines
the optimal approximation of ΓZ|Y and its proof can be found in Appendix A.

Theorem 2.2 (Optimal approximation of the posterior covariance of the QoI). Let (λi, qi) be the generalized
eigenpairs of the pencil:

(GΓprO> Γ−1
Z O ΓprG

> , ΓY ) (2.7)

with the ordering λi ≥ λi+1 > 0 and normalization q>i GΓprO> Γ−1
Z O ΓprG

> qi = 1, where ΓY := Γobs+GΓprG
>

is the covariance matrix of the marginal distribution of Y . Then, a minimizer, Γ̃Z|Y , of the Förstner metric
between ΓZ|Y and an element ofMZ

r is given by:

Γ̃Z|Y = ΓZ −KK>, KK> =
r∑
i=1

λi q̂iq̂
>
i , q̂i := O ΓprG

>qi, (2.8)

where the corresponding minimum distance is:

d2
F (ΓZ|Y , Γ̃Z|Y ) =

∑
i>r

ln2( 1− λi ). (2.9)

The optimal approximation in Theorem 2.2 yields the best possible accuracy for any given rank of the prior-
to-posterior update and, most importantly, never requires the full posterior covariance of the parameters. (This
should be contrasted with [18].) The directions (qi) that define the optimal update are just the leading eigenvectors
of the matrix pencil (GΓprO> Γ−1

Z O ΓprG
>,ΓY ) and stem from a careful balance of all the ingredients of the goal-

oriented inverse problem: forward model, measurement noise, prior information, and ultimate goals. Incorporating
ultimate goals reduces the intrinsic dimensionality of the inverse problem: the rank of the optimal update (2.8)
can only be lower than that of the suboptimal approximation introduced in (2.5) for any fixed approximation
error. The quality of the optimal approximation as a function of the rank of the update can be monitored using
the formula for the minimum distance given in (2.9).

Finding the leading generalized eigenpairs of (2.7) requires the solution of a Hermitian generalized eigenvalue
problem [3]. Unfortunately, it is not easy to reduce (2.7) to a standard eigenvalue problem7 since that would
require the action of a square root of the matrix ΓY := Γobs +GΓprG

> or of its inverse. Nevertheless, there exist
a plethora of matrix-free algorithms to deal with possibly large-scale generalized eigenvalue problems: generalized
Lanczos iteration [3, Section 5.5], randomized SVD type methods [22], manifold optimization algorithms [1], the

7 Notice that this is often possible in the non goal-oriented case when dealing with the pencil (H,Γ−1
pr ) as the action of a square

root of Γ−1
pr , or of its inverse, is available in many cases of interest (e.g., [19]).



OPTIMAL LOW-RANK APPROXIMATIONS 5

trace minimization algorithm [23] and the inverse free preconditioned Krylov subspace method [13] just to name
a few. These algorithms require the iterative solution of linear systems associated with ΓY (in some cases to low
accuracy [23, 13]). However, applying ΓY to a vector entails the evaluation of the possibly expensive forward
model. Thus, these algorithms can lead to more expensive computations than in the non goal-oriented case (for a
fixed dimension of the desired eigenspace). Nevertheless, the optimal approximation in Theorem 2.2 guarantees
the minimum prior-to-posterior rank update for each given accuracy of the approximation and for each possible
configuration of the inverse problem.

Another important consequence of the optimal approximation of ΓZ|Y with respect to the Förstner metric
is optimality in distribution whenever we assume exact knowledge of the posterior mean of the QoI. It follows
from [24, Lemma 2.2] that the minimizer of the Hellinger distance (or the Kullback–Leibler divergence) between
the posterior distribution of the QoI, N (µZ|Y (Y ),ΓZ|Y ), and the approximation N (µZ|Y (Y ),Γ) for a matrix
Γ ∈MZ

r is given by the optimal approximation (2.8) defined in Theorem 2.2.
We conclude this theory section with an analysis of the optimal approximation of the posterior mean of the

QoI. The cost of computing

µZ|Y (Y ) := O µpos(Y ) = O ΓposG
>Γ−1

obs Y (2.10)

for a single realization of the data is usually dominated by the solution of a single linear system associated
with Γ−1

pos, to determine µpos(Y ). This task can be efficiently tackled with state-of-the-art matrix-free iterative
solvers for symmetric linear systems (e.g., [3]) even for million-dimensional parameter spaces [4]. However, if
one is interested in the fast computation of µZ|Y (Y ) for multiple realizations of the data that are not known a
priori, e.g., in the context of online inference, then the situation is quite different [7]. Solving a linear system to
compute µZ|Y (Y ) each time a new measurement is available might just be infeasible in practical applications.
If the dimension of the QoI is small, say p = O(1), then there is an easy solution to this problem. One can just
precompute the matrix M := O ΓposG

>Γ−1
obs in an offline stage and then compute the posterior mean of the QoI

as µZ|Y (Y ) = M Y each time a new realization of the data becomes available. The computational efficiency of
this procedure breaks down as the dimension of the QoI increases. For instance, this is the case when the QoI
is a finite-dimensional approximation to a distributed stochastic process. In this case, the matrix M would be
large and dense. Storing such a matrix could be quite inefficient. Moreover, performing a dense matrix-vector
product to compute µZ|Y (Y ) = M Y might be more expensive than solving a single linear system associated
with Γ−1

pos. Thus, our goal is to characterize computationally efficient and statistically optimal approximations of
µZ|Y (Y ). In particular, we seek an approximation of µZ|Y (Y ) as a low-rank linear function of the data8, i.e.,
µZ|Y (Y ) ≈ AY for some low-rank matrix A. Thus, computing µZ|Y (Y ) ≈ AY for each new realization of the
data is fast and computationally efficient. We define optimality of the approximation with respect to the Bayes
risk for squared-error loss weighted by the posterior precision matrix of the QoI, i.e.,

B(A) := E[ ‖AY −Z ‖2Γ−1
Z|Y

], (2.11)

where B(A) denotes the Bayes risk associated with the matrix A, ‖v ‖2Γ−1
Z|Y

:= v> Γ−1
Z|Y v for all vectors v and

where the expectation is taken over the joint distribution of Z and Y . The weighted Frobenius norm in (2.11)
penalizes errors in the approximation of µZ|Y (Y ) more strongly in directions of lower posterior variance. The
result is that the approximation of µZ|Y (Y ) is more likely to fall within the bulk of the posterior density of the
QoI. The following theorem characterizes the optimal approximation of µZ|Y (Y ) and is proved in Appendix A.

Theorem 2.3 (Optimal approximation of the posterior mean of the QoI). Let (λi, qi, q̂i) be defined as in
Theorem 2.2, X ∈ Rn, and consider the minimization of the following Bayes risk over the set of low-rank matrices:

min E[ ‖AY −Z ‖2Γ−1
Z|Y

], s.t. rank(A) ≤ r (2.12)

Then a minimizer of (2.12) is given by:

A∗ =
r∑
i=1

λi q̂i q
>
i , (2.13)

8Under the assumption of zero prior mean, µZ|Y (Y ) is just a linear function of Y . There is no loss of generality in assuming
zero prior mean.
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where the minimum Bayes risk is:

B(A∗) = E[ ‖A∗ Y −Z ‖2Γ−1
Z|Y

] =
∑
i>r

λi
1− λi

+ n . (2.14)

Notice that the optimal approximation of µZ|Y (Y ) shown in (2.13) can be computed from the optimal ap-
proximation of ΓZ|Y introduced in Theorem 2.2 for free. In particular, both the optimal approximations of the
posterior mean and covariance of the QoI are quite accurate whenever we include generalized eigenvalues λ� 1
in the corresponding form of the approximations (cf. minimum loss (2.9) and Bayes risk (2.14)).

3. Numerical examples: CPU cooling. We consider a goal-oriented inference problem in heat transfer.
We study the cooling of a CPU by means of a heat sink. The goal is to infer the temperature field over the
CPU from local noisy temperature measurements over the heat sink. Figure 3.1 shows the problem set up: the
three layers of different materials correspond, respectively, to the CPU (D1), a thin silicon layer that connects
the CPU to the heat sink (D2), and an aluminum fin (D3). We denote by D the union of these domains. Each Di
represents a two-dimensional cross section of the material of constant width W along the horizontal direction and
height Li. We assume that no heat transfer happens along the third dimension. This is a common engineering
approximation. Each material has a constant density ρi, a constant specific heat ci, and a constant thermal
conductivity ki shown in the table at the right of Figure 3.1. We want to describe the evolution over time
t ∈ (0, tend] of the temperature fields Θ(i) : Di → R for i = 1, 2, 3.

3.1. Forward, observational and prior models. The time evolution of the temperature field Θ(i), in the
interior of the domain Di, is described by a linear time dependent PDE of the form

ρi ci ∂t Θ(i) = div(ki∇Θ(i)) (i = 1, . . . , 3), (3.1)

where ∂t denotes partial integration with respect to time and where we assume no volumetric heat production and
the Fourier’s law for the heat flux [14]. Equations 3.1 should be complemented with appropriate boundary and
initial conditions to have a well-posed problem. We use the independent variables s1 and s2 to denote, respectively,
the horizontal and vertical directions and let s = (s1, s2). The point s = (0, 0) corresponds to the lower left
corner of D. At the lower interface of D1 we impose a space-time dependent heat flux: k1 ∂~n Θ(1) = q(s, t) for
s ∈ D1,bottom, where ~n refers always to the outward pointing normal and q is a given scalar function nonconstant
in s. At the interface between domains Di and Di+1 we assume heat transfer by conduction with no thermal
contact resistance: ki ∂~n Θ(i) = ki+1 ∂~n Θ(i+1) and Θ(i) = Θ(i+1) for s ∈ interface(Di,Di+1) and i = 1, 2. At the
top, left and right boundaries of D3, we assume heat transfer by convection with a fluid at constant temperature
Θ∞: −k3 ∂~n Θ(3) = hc(Θ(3) −Θ∞) for s ∈ D3,top ∪D3,left ∪D3,right, where hc is a constant convection coefficient.
Finally, we impose adiabatic conditions (no heat exchange) on the left and right boundaries of D1 and D2:
∂~n Θ(i) = 0 for s ∈ Di,left ∪ Di,right and i = 1, 2. We do not specify here the initial conditions as they will be the
subject of the forthcoming inference problem.

We consider a finite element spatial approximation of the weak form of (3.1) by means of linear elements on
simplices [21]. We denote by Θh(t) ∈ Rn the collection of temperature values at the finite element nodes on D
at time t ∈ (0, tend). Notice that Θh satisfies a system of ODEs of the form M ∂tΘh(t) + AΘh(t) = f(t), with
t ∈ (0, tend), for a suitable mass matrix M , stiffness matrix A, known time dependent forcing term f and initial
conditions Θ0h := Θh(0).

The initial conditions Θ0h for t = 0 are unknown and must be estimated from local measurements of the
temperature field Θ at few locations in space and time. The locations of the sensors s1, . . . , sN are shown in
Figure 3.1 (black dots). Observations are collected every ∆t time units for t ∈ (0, tend). The first observation
happens at time t = ∆t and we assume that there are M of these. We denote measurements at time ti = i∆t as
Ŷi =

[
Θ(s1, i∆t), . . . ,Θ(sN , i∆t)

]
. We can concatenate the observations into a unique vector Ŷ = (Ŷ1, . . . , ŶM )

such that Ŷ ∈ Rd. The actual observed measurements are corrupted with additive Gaussian noise: Y = Ŷ + ε,
where ε ∼ N (0, σ2

obs I) with I being the identity matrix. Notice that Ŷ is an affine function of Θ0h. This
relationship can be made linear by a suitable redefinition of the data vector. Thus, we are lead to a linear
Gaussian inverse problem in standard form, Y = GΘ0h + ε, where G defines the forward operator, Θ0h 7→ Ŷ ,
that can be evaluated implicitly by solving a heat equation with no forcing term and initial conditions Θ0h for a
time interval necessary to collect the corresponding observations Ŷ .
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We adopt a statistical approach to inversion. To define the zero mean Gaussian prior distribution9 on Θ0h,
we model Θ0h as a discretized solution of a stochastic PDE of the form

γ
(
κ2I −4

)
Θ(s) =W(s), s ∈ D, (3.2)

where W is a white noise process, κ is a positive scalar parameter, 4 is the Laplacian operator and I is the
identity operator. In particular, we exploit the explicit link between Gaussian Markov random fields with the
Matérn covariance function and solutions to stochastic PDEs as outlined in [19]. Notice, in particular, that the
action of a square root of the prior covariance matrix on a vector is readily available as the solution of an elliptic
PDE on D and thus, it is scalable to very large inverse problems [19].

3.2. Goal-oriented linear inverse problem. We now introduce the goal-oriented feature of the problem.
We assume that we are only interested in the initial temperature distribution over the CPU (D1). Let Z be the
restriction of Θ0h to the domain of interest D1. Clearly, there exists a linear map between Z and Θ0h. That
is, Z = OΘ0h for some goal-oriented linear operator O ∈ Rp×n with p � n. Thus, we have a linear Gaussian
goal-oriented inverse problem as introduced in section 2 (we denote the parameters by Θ0h):{

Y = GΘ0h + ε

Z = OΘ0h
(3.3)

where both the marginal distribution of Θ0h and the likelihood Y |Θ0h are specified. In particular, we choose
a finite element discretization of the temperature field such that Θ0h ∈ R2400 and Z ∈ R370. Our goal is to
characterize optimal approximations of the posterior statistics of the QoI, Z|Y , for a given set of observations
(Figure 3.2 (left)). In this case, computing the posterior distribution of the QoI using direct formulas like (1.4)
is infeasible as the QoI is a finite-dimensional approximation to a distributed stochastic process, Θ(0)|D1 , and
can be arbitrarily high-dimensional depending on the chosen level of discretization of the process. Thus, we need
appropriate dimensionality reduction techniques in order to tackle this challenging inference task as explained in
section 2.

The configuration of this problem highlights a crucial aspect of dimensionality reduction of goal-oriented
inverse problems. Ideally we would position the measurement sensors on D1 since we are interested in inferring
the temperature field on the CPU. However, due to clear geometrical constraints, we are forced to place our
sensors on the heat sink (D3). As a result, observations are much more informative about the parameters in D3
rather than in D1. We see a hint of this by looking at Figure 3.2 (right). Figure 3.2 (right) shows the normalized
difference between prior and posterior variance (Var(Θ0h) − Var(Θ0h|Y ))/Var(Θ0h). In particular, notice that
the prior variance is reduced the most in a neighborhood of the sensor locations in D3 and this makes intuitive
sense as the collected data will be increasingly less informative as we move away from the sensors.

We first focus on the approximation of the posterior covariance of the QoI. If we use the suboptimal ap-
proximation introduced in (2.5), motivated by the optimality results presented in [24] for the non goal-oriented
case, then we have to pay a considerable computational price as a result of the data being informative about
directions in the parameter space that do not matter to the QoI. This is clear from the numerical results shown
in Figure 3.3 (left). Notice that if we try to approximate the posterior covariance, Γpos, of Θ0h by its optimal
approximation, Γ̂pos = Γpr − KK>, introduced in [11, 24] and shown in Theorem 2.1, then the convergence of
the approximation is rather slow (cf. blue dotted line in Figure 3.3 (left)). This is because there are many data
informed directions in the parameter space (notice the multitude of sensors on the heat sink in Figure 3.1 (left)).
If we use Γ̂pos to yield an approximation of the actual posterior covariance of interest, ΓZ|Y , by means of the
approximation Γ̂Z|Y = O Γ̂posO> as shown in (2.5), then the convergence of this approximation is still slow (cf.
green solid line in Figure 3.3 (left)). This slow convergence can be easily justified. The optimal approximation,
Γ̂pos = Γpr −KK>, of Γpos will account first for those directions that are the most informed by the data. These
directions correspond to modes with features near the locations of the sensors in D3. Thus, these modes will be
little informative about the parameters in the region of interest (D1). This explains the slow convergence of the
solid green line in Figure 3.3 (left). On the other hand, if we use the optimal approximation of ΓZ|Y defined in
Theorem 2.2, then the convergence of the approximation is remarkably fast (red solid line in Figure 3.3 (left)):
we just need to update ΓZ along a handful of directions, say 20, to achieve a satisfactory approximation of ΓZ|Y .

9 We assume, without loss of generality, zero mean of the parameters. In fact, if we are given a statistical model of the form
Y = GΘ0h + ε where Θ0h ∼ N (µpr,Γpr) has a nonzero prior mean, then we can trivially rewrite the statistical model as Ŷ :=
Y −Gµpr = G (Θ0h−µpr)+ ε for a modified data vector Ŷ and infer, equivalently, a zero prior mean process Θ0h−µpr ∼ N (0,Γpr).
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Notice also that the optimal approximation of the posterior mean of the QoI as a low-rank linear function of
the data introduced in Theorem 2.3 converges quite fast as a function of the rank of the approximation (Figure
3.3 (right)). Once a low-rank approximation of the form (2.13) is available, then it is possible to compute a very
good approximation of µZ|Y (Y ), for each new realization of the data Y , by just performing a low-rank (20 in
this case) matrix-vector product as opposed to the solution of an expensive linear system.

Θ∞

D1

D3

~q(t)

~q = 0

Sensors

~q = 0

D2

Material αi at 20 ◦C Domain
— m/s2 —

Copper 1.11× 10−4 D1
Silicon 8.8 × 10−5 D2

Aluminium 8.42× 10−5 D3

Fig. 3.1: (left) CPU cooling problem. Inversion for the initial temperature field on D1 given noisy sparse tempera-
ture measurements in space and time on an aluminium heat sink (D3). The figure shows the problem configuration,
the locations of the sensors (black dots), and the boundary conditions for the heat equation that describe the
time evolution of the temperature field on the domain. D := D1 ∪ D2 ∪ D3. (right) Material properties of the
different layers D1,D2,D3.
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Fig. 3.2: (left) Initial temperature field used to generate synthetic data according to the observational set up
described in the CPU cooling inverse problem. We remark that the initial temperature field used to generate
synthetic data was not drawn from the marginal distribution of Θ0h: it corresponds to a finer discretization of the
continuous stochastic process Θ(0) compared to Θ0h. (right) Normalized difference of prior to posterior variance
of the parameters, i.e., (Var(Θ0h)−Var(Θ0h|Y ))/Var(Θ0h). Notice that the regions of greatest relative decrease
of prior variance are localized in a neighborhood of the sensor locations (black dots).

4. Conclusions. In this paper we proposed statistically optimal and computationally efficient approxima-
tions of the posterior statistics of the QoI in a goal-oriented linear Gaussian inverse problem. The posterior
covariance of the QoI is approximated as a low-rank negative update of the prior covariance of the QoI. Opti-
mality holds with respect to the Förstner metric: the natural geodesic distance on the manifold of symmetric
and positive definite matrices. The posterior mean of the QoI is approximated as a low-rank function of the data
and optimality follows from the minimization of the Bayes risk for squared-error loss weighted by the posterior
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Fig. 3.3: (left) Convergence of the covariance approximations in the Förstner metric. The blue dotted line shows
the Förstner distance between the covariance of Θ0h|Y , i.e., Γpos, and its optimal approximation introduced in
[24], Γ̂pos = Γpr−KK>, as a function of the rank ofK (see Theorem 2.1). The red line shows the Förstner distance
between the posterior covariance of the QoI, ΓZ|Y , and its optimal approximation introduced in Theorem 2.2,
Γ̂Z|Y = ΓZ −KK>, as a function of the rank of K. Finally, the green line shows the Förstner distance between
ΓZ|Y and the suboptimal approximation (2.5) obtained as O Γ̂posO> where Γ̂pos is the optimal approximation of
Γpos introduced in [24]. (right) Error in the optimal approximation of the posterior mean of the QoI, µZ|Y (Y ).
The error is measured as the square root of E[ ‖µZ|Y (Y )−A∗ Y ‖2Γ−1

Z|Y
] and is a function of rank(A∗).

precision matrix of the QoI. These optimal approximations avoid computations of the full posterior distribution
of the parameters and focus only on directions in the parameter space that are informed by the data and that
are relevant to the QoI. These directions are obtained as the leading generalized eigenvectors of a suitable matrix
pencil and stem from a careful balance between all the ingredients of the goal oriented inverse problem: prior
information, forward model, measurement noise and ultimate goals. Future work includes the extension of these
optimality results to the nonlinear case.
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Appendix A. Technical results. The following lemma will be useful in proving theorems 2.2 and 2.3.

Lemma A.1. A linear Gaussian model consistent with (1.4) is given by: Y = GO†Z+δ, with Z ∼ N (0,ΓZ),
O† := ΓprO>Γ−1

Z and δ ∼ N (0,Γδ) is independent of Z with Γδ := Γobs +G(Γpr − ΓprO> Γ−1
Z OΓpr)G>.

Proof. Consider the identity Y = GX + ε = GO†OX + G (I − O†O)X + ε = GO†Z + δ, where
O† := ΓprO>Γ−1

Z and δ := G (I−O†O)X +ε. A simple computation shows that E[(I−O†O)XZ>] = 0. Hence,
(I −O†O)X and Z are uncorrelated, and, more importantly, independent since they are also jointly Gaussian.
It follows that δ and Z are also independent since ε was independent of X and Z = OX. In the hypothesis
of zero prior mean, the mean of δ is also zero. Moreover, Γδ = Var[G (I − O†O)X] + Var[ε] since X and ε are
independent. Simple algebra leads to the particular form of Γδ.

Proof of Theorem 2.2. By applying [24, Theorem 2.3] to the linear Gaussian model defined in Lemma
A.1, we know that a minimizer, Γ̂Z|Y , of the Förstner metric between ΓZ|Y and an element ofMZ

r is given by:
Γ̂Z|Y = ΓZ −

∑r
i=1 η

2
i (1 + η2

i )−1 q̂iq̂
>
i , where (η2

i , q̂i) are the generalized eigenvalue-eigenvector pairs of the pencil
(HZ ,Γ−1

Z ), with the ordering η2
i ≥ η2

i+1, the normalization q̂>i Γ−1
Z q̂i = 1 and where HZ := O>† G> Γ−1

δ GO†
is the Hessian of the negative log–likelihood Y |Z ∼ N (GO†,Γδ). Moreover, [24, Theorem 2.3] implies that
the Förstner metric, at optimality, is given by: d2

F (Γ̂Z|Y ,ΓZ|Y ) =
∑
i>r ln2( 1 + η2

i ) and that the minimizer is
unique if the first r eigenvalues of the pencil (HZ ,Γ−1

Z ) are distinct. Now let (λi, qi) be defined as in Theorem
2.2. A simple computation shows that (λi(1 − λi)−1 , qi) are the generalized eigenvalue-eigenvector pairs of the
pencil (GΓprO> Γ−1

Z O ΓprG
> , Γδ). Moreover, (λi(1−λi)−1 , qi) are also the generalized eigenpairs of the pencil

(HZ O ΓprG
> , Γ−1

Z O ΓprG
>). Then, it must be that η2

i = λi(1 − λi)−1 and q̂i = αO ΓprG
> qi for some real

α > 0 since (η2
i , q̂i) are the generalized eigenpairs of (HZ ,Γ−1

Z ). Given the normalizations q̂>Γ−1
Z q̂ = 1 and

q>i (GΓprO> Γ−1
Z O ΓprG

> )qi = 1, it must be α = 1. It is easy to see, using a counting argument, that the (q̂i)
are indeed all the generalized eigenvectors of the pencil (HZ ,Γ−1

Z ) associated with positive eigenvalues. Simple



10 SPANTINI ET AL.

algebra then leads to (2.8) and (2.9). �

Proof of Theorem 2.3. By applying [24, Theorem 4.1] to the linear Gaussian model defined in Lemma
A.1, we know that a minimizer of 2.12 is given by: A∗ =

∑r
i=1 ηi(1 + η2

i )−1 q̂iv̂
>
i , where (η2

i , q̂i) are generalized
eigenvalue-eigenvector pairs of the pencil (HZ ,Γ−1

Z ) with normalization q̂>i Γ−1
Z q̂i = 1, whereas (v̂i) are generalized

eigenvectors of the pencil (GO† ΓZ O>† G>,Γδ) with normalization v̂>i Γδ v̂i = 1. Moreover, [24, Theorem 4.1] tells
us that the Bayes risk associated with the minimizer A∗ can be written as: E[ ‖A∗ Y −Z ‖2Γ−1

Z|Y
] =

∑
i>r η

2
i + n,

where n is the dimension of the parameter space. The fact that the vectors (q̂i) can be written as q̂i = O ΓprG
> qi

was proved in Theorem 2.2. Furthermore, in the proof of Theorem 2.2 we showed that: η2
i = λi(1− λi)−1. Using

the latter expression we can rewrite the minimizer as: A∗ =
∑r
i=1
√
λi (1− λi) q̂iv̂>i . If (v̂i) are generalized

eigenvectors of the pencil (GO† ΓZ O>† G>,Γδ), then they must also be generalized eigenvectors of the pencil
(GΓprO> Γ−1

Z O ΓprG
> , ΓY ). In particular, it has to be v̂i = α qi for some real α > 0. Given the normalizations

q>i GΓprO> Γ−1
Z O ΓprG

> qi = 1 and v̂>i Γδ v̂i = 1, it must be: α = λ
1/2
i (1 − λi)−1/2. Simple algebra then leads

to (2.13). �
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