
Parallel-in-time for moving meshes

Ben Southworth

Jan. 15, 2016

Abstract

With steadily growing computational resources available, scientists must de-
velop effective ways to utilize the increased resources. High performance, highly
parallel software has become a standard. However until recent years parallelism
has focused primarily on the spatial domain. When solving a space-time partial
differential equation (PDE), this leads to a sequential bottleneck in the temporal
dimension, particularly when taking a large number of time steps. The XBraid
parallel-in-time library was developed as a practical way to add temporal paral-
lelism to existing sequential codes with only minor modifications. In this work, a
rezoning-type moving mesh is applied to a diffusion problem and formulated in a
parallel-in-time framework. Tests and scaling studies are run using XBraid and
demonstrate excellent results for the simple model problem considered herein.

1 Introduction

Future computer architectures are trending towards an increase in processors and memory,
not faster individual processors. This means that for software to effectively utilize modern
architectures, it must incorporate increased parallelism. For the most part, parallelism in
scientific computing is focused on the spatial domain of a problem, while time stepping
remains sequential, which imposes a limit on the possible concurrency. Adding parallelism
to the temporal dimension has been considered in a number of works [4–6, 10–12], and
only recently has it become increasingly important due to the direction of computer
architecture development. One particular parallel-in-time method is the XBraid multigrid
reduction in time C-library, developed at Lawrence Livermore National Laboratory [2].

A brief overview of the theory behind XBraid can be found in Section 2.3, and a
detailed description in [5, 6]. The objective of XBraid is to be ‘non-intrusive,’ in the
sense that with only minor modifications, existing codes with sequential time stepping
routines can be wrapped with XBraid to add parallelism in the temporal dimension. One
consequence of this approach is a larger total cost to solve a space-time PDE, but this
cost can be efficiently distributed over an increased number of processors. XBraid is
unique in that it can easily be applied to existing sequential codes. There has been other
work on parallel-in-time solvers, most notably parareal [11] and PFASST [4], but they
generally lack either the non-intrusive feature of XBraid (PFASST), or practical speedup
over sequential time stepping (parareal). Nonetheless, for scientists to wrap their existing
code with XBraid, they must be confident that XBraid is well suited for their problem and
code. In this regard, it must be demonstrated that XBraid is compatible with standard
numerical methods, including adaptive mesh methods.
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Adaptive mesh methods are common in large scale numerical simulations, wherein
the mesh underlying the physical PDE is altered in some manner that is advantageous
to solving the PDE numerically. Such methods can be broadly broken into two cate-
gories: mesh refinement and moving meshes. Moving mesh methods can also be grouped
in two categories: the ‘quasi-Lagrange’ approach and the ‘rezoning approach.’ In quasi-
Lagrange methods, mesh points move continuously in time, wherein time derivatives of
the physical PDE are transformed onto mesh trajectories and an additional convective
term is introduced corresponding to mesh movement [13]. This approach is standard in
computational fluid dynamics, where the mesh moves with fluid flow. The rezoning ap-
proach keeps mesh points fixed at discrete time steps, and at each step they are relocated
to an optimal location in space with respect to the current solution [13]. A rezoning-type
moving mesh is the focus of this work.

In this paper, a parallel-in-time moving mesh is applied to a 1-dimensional diffusion
PDE and wrapped with XBraid. Section 2.1 introduces the physical PDE and discretiza-
tion, and Section 2.2 covers background theory on moving meshes and the moving mesh
PDE (MMPDE) implemented. The parallel-in-time framework is introduced in Section
2.3, along with an appropriate formulation of the PDE and MMPDE of interest to be
wrapped with XBraid. Numerical results, including test problems and scaling studies,
are presented in Section 3, and a short discussion on conclusions and future work can be
found in Section 4.

2 Problem formulation

2.1 Physical PDE

Consider the 1-dimensional diffusion equation subject to Dirichlet boundaries and a space-
time dependent forcing function

ut = kuxx + f(x, t), (1)

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = u0(x).

A method of lines approach is used to form a corresponding discrete problem, wherein
the spatial term, kuxx, is discretized using a finite element weak form. The discrete
problem is then given as the time dependent ODE Mut + Au = b, for mass matrix M ,
stiffness matrix A, and vector b. Discretizing ut using backward Euler, and defining
δu := u(t+1)−u(t)

δt
gives

Mδu + A(u(t) + δtδu) = b(t+1),

⇐⇒ (M + δtA)δu = −Au(t) + b(t+1). (2)

The finite element discretization of Eq. (1) is done in the MFEM finite element library [1],
and all linear solves are performed using HYPRE [9].

2.2 Moving mesh

A physical PDE as in Eq. (1) has some physical domain, Ωp, associated with it, in this
case a 1-dimensional space x ∈ [a, b]. Now, for a fixed time consider a corresponding
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1-dimensional computational domain, Ωc, with coordinates, ζ ∈ [0, 1], and an invertible
map

x = x(ζ),

ζ = ζ(x).

In solving a discrete physical PDE for solution u, this transformation is picked such that,
at a given time, t, the solution in the transformed spatial variable,

û(ζ, t) = u(x(ζ, t), t),

is smooth and easy to approximate using a uniform mesh over ζ. A moving mesh as a
function of time on Ωp, Th(t), is defined as

Th(t) : xj(t) = x(ζj, t), j = 1, ..., n,

for nodes j = 1, ..., n, and a fixed uniform mesh on Ωc,

T ch : ζj =
j − 1

n− 1
, j = 1, ..., n.

A mesh density function, K(x, ti) > 0, is then chosen that provides some measure of
how well-suited a mesh is for a given approximation to our physical PDE at time ti. For
a given physical mesh, Th(ti) : 0 = x1 < ... < xn = 1 and mesh density function, K, the
optimal mesh is defined to satisfy the equidistribution principle, that is∫ x2

x1

K(x, ti)dx = ... =

∫ xn

xn−1

K(x, ti)dx.

Several popular choices of mesh density functions are arc length and curvature, as well
as optimal linear error interpolation under the L2 and H1-norms [13]. In this work arc
length, given in Eq. (3), is used as a simple and effective choice of mesh density function,

K(x, t) =
√

1 + u2
x. (3)

Fig. 1 demonstrates why an equidistributed mesh with respect to arc length is desirable
over a uniform mesh. Note that in some literature, K(x, t) is referred to as the monitor
function. Herein, K(x, t) is referred to as the mesh density function and K(x, t)2 as the
monitor function, as this is consistent with moving mesh terminology in higher dimensions
[13].

For a time-dependent physical PDE, a coordinate transformation can be constructed
to generate an optimal mesh at each time step. However, this method is computationally
expensive, and can also result in large mesh movement on progressive time steps. The
solution at each time must be interpolated to the new mesh, and too much movement
between successive meshes degrades accuracy in interpolation. Both of these issues can
be addressed by formulating and solving equations for the velocity of each mesh node at
time t, and updating nodes at t+δt accordingly. This is (i) computationally less expensive
than coordinate transformations at each time step, and (ii) provides a degree of temporal
smoothing in mesh movement. A mesh equation involving the mesh speed is referred to
as a moving mesh PDE (MMPDE), and is the strategy utilized in this work [13].

A full derivation of MMPDEs can be found in [13]. Conceptually, the MMPDE is
constructed so that mesh nodes move in the direction of equidistribution with respect to
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Figure 1: Two 10-point meshes over f(x) = x10, x ∈ [0, 1]. The equidistributed mesh with
respect to arclength is shown on the right – notice that it includes more points close to the single
feature in the function than a uniform mesh, making it a easier to approximate the continuous
form.

K(x, t). A general MMPDE form is given in Eq. (4), where P is some positive-definite
operator to be chosen by the user, and τ > 0 is a user-specified parameter controlling
how rapidly mesh movement responds to changes in K,

∂x

∂t
=

1

τ

∂x

∂ζ
P

(
K
∂x

∂ζ

)−2(
∂x

∂ζ

)−1
∂

∂ζ

(
K
∂x

∂ζ

)
. (4)

There are many possible choices of P , discussed in detail in [13]. Choosing P = (Kxζ)
2

gives the MMPDE

xt =
1

τ

∂

∂ζ

(
K
∂x

∂ζ

)
. (5)

The right hand side of Eq. (5) forces the mesh towards equidistribution with respect
to the mesh density function K. When equidistribution is satisfied, this term is zero
and thus there will be zero mesh velocity and movement. For a fixed physical domain,
boundary nodes must remain stationary, and so zero Dirichlet boundary conditions are
applied to Eq.(5).

Eq. (5) is discretized using backward Euler in time and central finite difference
schemes in space. Central differences give a tridiagonal operator that is second order
in space and satisfies the CFL condition with a given first-order, time-stepping method
like backward Euler. The specific discretization in Eq. (6) also gives an elliptic oper-
ator, which is well-suited for solving with spatial multigrid [3]. A second order central
difference scheme is used to approximate (ux)j, which yields

x
(i)
j − x

(i−1)
j

δt
=

1

τ

[
∂

∂ζ

(
K(i)∂x

(i)

∂ζ

)]
j

, where[
∂

∂ζ

(
K
∂x

∂ζ

)]
j

=
(Kj+1 +Kj)(xj+1 − xj)

2(∆ζ)2
− (Kj +Kj−1)(xj − xj−1)

2(∆ζ)2
, (6)

Kj =
√

1 + (ux)2
j .
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2.3 Braid Implementation:

A space-time PDE can be formulated using the method of lines as an ODE

u(i) = Φu(i−1) + g(i), i = 1, 2..., Nt (7)

u(0) = u(0),

where Φ is an operator to advance spatial points one time step, δt, constructed from a
spatial discretization and time stepping scheme. This forms a system of equations over
the temporal domain, t0, ..., tNt , as

Au = g =⇒


I
−Φ I

. . . . . .

−Φ I




u(0)

u(1)

...
u(Nt)

 =


g(0)

g(1)

...
g(Nt)

 . (8)

In a standard multigrid fashion, points in time are split into a fine grid, F , and coarse
grid C. The form of A in Eq. (8) allows for explicit forming of the ideal interpolation and

restriction operators, P =
(
−A−1

ffAfc Ic
)T
, R =

(
−AcfA−1

ff Ic
)

[8], respectively, and a
Petrov-Galerkin coarse grid operator is given by

A∆ = RAP =


I

−Φk1+1 I
. . . . . .

−ΦkNc−1+1 I

 , (9)

where ki ≥ 1 is the number of F -points between the ith and (i + 1)th C-points and Nc

the size of the coarse grid. Notice that at the ith time step, the Galerkin coarse grid
operator (Eq. (9)) takes ki + 1 steps of the fine grid step size, which is equivalent to the
action of the fine grid operator. This defeats the purpose of a coarse grid, so consider the
non-Galerkin operator

B∆ =


I
−Φ∆1 I

. . . . . .

−Φ∆Nc
I

 , (10)

where Φ∆i
takes a time step of size ∆i = δt(ki + 1). XBraid solves Eq. (8) using a

full approximation storage (FAS) multigrid scheme [3], with ideal interpolation and the
coarse grid operator in Eq. (10). The user must only provide a function Φ(δt) that takes
a time step of size δt, and a few other simple routines.

To apply XBraid to the moving mesh problem, the discretized physical PDE and

MMPE are coupled and the solution is stored in a block vector format v(i) =
(
x(i) u(i)

)T
,

where x(i) is the mesh and u(i) the physical solution at time ti. Notice in Eq. (6) that
solving for the ith mesh is implicit upon evaluating the mesh density function K(x, t)
with x(i),u(i). Coupling the MMPDE and physical PDE in this fashion results in a fully
nonlinear, time-stepping routine. Instead of solving the fully nonlinear PDE, the system
is linearized by evaluating K(x, t) on u(i) and x(i−1) when solving for x(i). The basic
outline of Φ(δt) for the (linearized) moving mesh algorithm used in this paper is then

1. Move the mesh with respect to the current approximation, u(i).
2. Interpolate solution values from the old mesh to the new mesh.
3. Take a time step in the physical PDE.
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3 Numerical results

3.1 Test problems

Example 1: Consider the problem

ut −
uxx
2

= f(x, t), (11)

u(0, t) = u(1, t) = 0, (12)

u(x, 0) = 0, (13)

where f(x, t) is defined as a Gaussian bump moving across the spatial domain in time,
given by

f(x, t) =

e
−1

1−
(

x−0.5(t+0.25)
0.05

)2
t ∈ [0, 1.5]

0 t > 1.5
. (14)

At any fixed time, t ≤ 1.5, f(x, t) is a Gaussian bump of width w = 0.05, centered at
c = t+0.25

2
. Hypre is used to perform the linear solve associated with each time step [9],

and the time-stepping routine is wrapped in XBraid to add parallelism to the temporal
dimension via multigrid V-cycles in time. Results of applying XBraid V-cycles in time
to this problem with 100 time steps over t ∈ [0, 2.4] and 30 spatial unknowns are given
in Fig. 2. The average convergence factor for this problem is CF ≈ 0.05.

Initial mesh and space-time domain
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Figure 2: Example 1 coupled with an MMPDE (Eq. (5)) and wrapped with XBraid. The physical
solution in space-time is shown as a heat map, and the space-time mesh is shown as black lines
overlaying the physical PDE solution.
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Fig. 2 is a proof of concept, but uses a very small spatial and temporal problem size.
As problem size increases, stability with regards to mesh location is problematic using
standard V-cycles. Specifically, the mesh can be erroneously moved outside of the phys-
ical domain during initial V-cycles due to a poor current approximation to the solution.
This can lead to a degradation in convergence or even divergence of iterations. However,
this problem can be addressed by using full multigrid (FMG) cycles in time, an option
provided in XBraid. FMG cycles allow the solver to begin resolving mesh location and
the physical solution on a coarse temporal grid. Experimentally, when the finest tem-
poral grid is reached, each solution has a sufficiently accurate approximation that mesh
movement will remain inside the physical domain. If this does not immediately resolve
a mesh stability issue, the amount of mesh movement can also be adjusted using the
parameter τ in Eq. (6).

Example 2: Now, consider the same problem as Ex. 1 with a set of five time-dependent
Gaussian bump sources with domains [x0, x1]× [t0, t1] and strength (leading constant) S
given by

f1 : [0.85, 0.95]× [0.05, 0.15], S = 1500,

f2 : [0.15, 0.45]× [0.05, 0.45], S = 900,

f3 : [0.20, 0.80]× [0.50, 0.70], S = 200,

f4 : [0.70, 0.90]× [0.50, 1.10], S = 1200,

f5 : [0.10, 0.50]× [0.80, 1.00], S = 900.

The purpose of Example 2 is to create a solution with sharper gradients, making the
physical PDE, and particularly mesh movement, more difficult. Applying FMG to this
problem with (Nx, Nt) = (40, 402), convergence in the ‘eyeball norm’ takes 5 iterations,
and convergence to 10−9 accuracy in the discrete l2-norm takes 8 iterations. The solution
on iterations 0, 1, 2, and 4 is given in Fig. 3. Examples 1, 2 are done on a small problem
size, primarily for visualization purposes to see how the space-time mesh moves with the
physical solution. Success on larger problems can be seen in scaling studies in Sec. 3.2.

3.2 Scaling.

A strong scaling study is solving a fixed problem size and considering the speedup as
the number of processors is increased, while a weak scaling study is fixing the problem
size per processor and increasing the number of processors. For each of these studies,
a relative error tolerance is used as the stopping criterion. Theoretically, the stopping
criterion is given by residual tolerance in the L2 norm,

‖r‖L2 =

√∫
Ωt

∫
Ωx

|r|2dxdt < tol, (15)

for some continuous residual, r, and spatial and temporal domains, Ωx and Ωt, respec-
tively. Let r̂ be the discrete residual computed in XBraid. Then Eq. (15) is approximated
as ‖r‖L2 ≈ ‖r̂‖l2 ·

√
δt∆x, and the relative stopping tolerance defined as

t̂ol =
tol√
δt∆x

,
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Figure 3: Example 2 coupled with an MMPDE (Eq. (5)) and wrapped with XBraid. The
physical solution in space-time is shown as a heat map, and the spatial mesh is shown as black
lines overlaying the physical PDE solution.

where tol = 10−10 is the absolute tolerance.
Scaling studies are run on Example 2, with smallest problem size (Nx, Nt) = (25, 252).

The number of spatial points, Nx, is then increased by factors of two and the ratio
δt = ∆x2 maintained, up to a largest size of (800, 8002). Note that the algorithm used
is spatially serial, and thus, for the scaling study all processors are used in the temporal
dimension. This is primarily for ease of implementation, as a spatially parallel moving
mesh requires a nontrivial communication algorithm to interpolate between meshes stored
on different processors, and because this work is focused on demonstrating parallel-in-time
capabilities.

Results of the strong and weak scaling studies are shown in Fig. 4. Observe that for
sufficiently large problem sizes, XBraid achieves near perfect strong and weak scaling.
From an algorithmic standpoint, how the number of required FMG iterations scales with
increased problem size is also of interest. Table 1 shows the FMG iterations for all
problem sizes considered for Examples 1 and 2. Observe that the number of iterations
actually improves as the problem size increases, which is perhaps due to the non-linearity
becoming better resolved for larger problem sizes with the simple linearization used.

Scaling studies measure the parallel efficiency of a numerical method, but it is also im-
portant to consider how the method performs relative to other methods. Comparing the
wall time required to solve the problem using XBraid with the wall time of a temporally
serial implementation (all parallelism done spatially) gives the speedup that parallel-in-
time provides over a serial time stepping scheme. Because the moving mesh algorithm
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Problem size (25, 252) (50, 502) (100, 1002) (200, 2002) (400, 4002) (800, 8002)

Ex. 1 – Iterations 7 6 6 5 4 3

Ex. 2 – Iterations 13 12 10 9 8 6

Table 1: FMG iterations to converge to relative tolerance, t̂ol, based on an absolute tolerance of
tol = 10−10.

used herein is currently serial, this comparison has yet to be done. For the 1-dimensional
model problem considered, it is likely that spatial parallelism will be faster than tempo-
ral due to the small problem sizes. However, for higher dimensions and more difficult
problems with significantly more unknowns, the parallel-in-time approach is expected to
overcome spatial parallelism with respect to wall time, e.g. see [5, 7].

Generally, for a given spatial problem size, there is a point at which it is no longer
beneficial to add processors to the spatial domain. In this case a bottleneck develops in
the temporal dimension, wherein a substantial part of the code remains strictly serial,
while increasing the number of processors does not decrease wall times. Such a bottleneck
is particularly problematic for numerical schemes that require a substantial number of
time steps, perhaps due to a CFL condition, δt = ∆x2, or simply due to a large tem-
poral domain. This is where XBraid comes in – XBraid requires more floating point
operations to solve a space-time problem than a temporally serial implementation and is,
thus, not optimal for small problems. However, when sufficient computing resources are
available and the problem size is sufficiently large, XBraid can offer a scalable speedup
and increased parallelism.

4 Conclusions and future work

This work investigates the implementation of a parallel-in-time moving mesh algorithm
applied to a 1-dimensional diffusion PDE. Initial results are promising, successfully cou-
pling the physical PDE and MMPDE and wrapping the system with the XBraid parallel-
in-time library. Near perfect strong and weak scaling are achieved and stability issues are
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resolved using FMG cycles in time. However, the model problem used thus far is only
one dimensional in space and relatively smooth. Future work will involve implementing
a moving mesh algorithm in higher dimensions, and coupling this with more complicated
physical PDEs. It will be important to implement a spatially parallel moving mesh and
consider the speedup of XBraid over sequential time stepping. Due to the difficult com-
munication algorithms required for a spatially parallel moving mesh, this speedup may
occur at a reasonably small number of processors. Tangential work will involve applying
XBraid to alternative adaptive mesh methods, including quasi-Lagrange moving mesh,
adaptive time steps, and full space-time adaptive mesh refinement, in order to show
XBraid’s applicability to all standard types of adaptive mesh algorithms.
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