MULTI-SECANT QUASI-NEWTON VARIANTS FOR PARALLEL
FLUID-STRUCTURE SIMULATIONS - AND OTHER
MULTI-PHYSICS APPLICATIONS
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Abstract. Multi-secant quasi-Newton methods based on secant information produced with
no overhead throughout subsequent solver iterations have been shown to be particularly suited to
solve non-linear fixed-point equations that arise from partitioned multi-physics simulations where the
exact Jacobian is inaccessible. In all these methods, the multi-secant equation for the approximate
(inverse) Jacobian is enhanced by a norm minimization condition. It is well-known, that fluid-
structure simulations, e. g., typically require the use of secant-information from previous time steps.
The number of these time-steps highly depends on the application, its parameters, the used solvers,
and the mesh resolution. Using to few leads to a relatively high number of iterations, using too
many not only to a computational overhead but also to an increase of the number of iterations,
as well. Determining the optimal number requires a costly try-and-error process, which can be
avoided in a modified method (presented in [13]) that considers the difference of the current (inverse)
Jacobian and the one of the previous time step in the norm-minimization. Thus, previous time step
information is taken into account in an implicit and automatized way without magic parameters. We
show numerical results for fluid-structure interactions for both methods proving the robustness and
numerical efficiency of the second variant. In addition, we propose a new algorithm eliminating the
drawback of having to store full interface Jacobian approximations for the Jacobian difference norm
minimization. This results in a highly efficient, parallelizable, and robust iterative solver applicable
for surface coupling in many types of multi-physics simulations.
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1. Introduction. Solving non-linear systems of equations that are given only
implicitly or even as a black-box functionality has become a common issue in multi-
physics simulations, where interface equations depend on the discretization details
of the single-physics domains, or in coupled optimization problems, where the task
function is evaluated by several software components together. In literature, two basic
solution approaches are discussed: (accelerated) fixed-point iterations (also referred
to as Anderson mixing [1, 8, 22, 14, 18]) and quasi-Newton methods [15, 9, 6, 12,
21, 16, 20]. Both approaches have been developed independently from each other
but can be shown to be equivalent in large parts. Basically, they are generalizations
of GMRES for non-linear problems. The common ingredient of all methods is the
approximation of the (inverse) Jacobian matrix based on 1) a multi-secant approach
using input and output data of the involved modules over several solver iterations
and 2) a norm minimization condition. In particular for time-dependent problems
requiring the solution of a non-linear equation in each time step, using information
from previous time steps can substantially improve the convergence. This can be
done in two fundamentally different ways: The first possibility is to explicitly include
input and output data from previous time steps in the multi-secant equation. This
induces the unknown parameter number of reused time steps which is highly problem-
dependent and can only be determined in a costly try-and-error process. The other
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possibility is to minimize the norm of the difference of subsequent (inverse) Jacobian
approximations. This implicit reuse of old information results in very robust and fast
converging solvers, but requires the explicit calculation and storage of the Jacobian
matrix, which is not necessary otherwise. The costs for this are prohibitively large in
most applications. Therefore, we present novel ideas to reduce these costs to linear
complexity in terms of the number of unknowns by sophisticated Jacobian truncation
and restart methods. In Sect. 2, we give an overview of the methods for a general
fixed-point problem and present convergence results for partitioned fluid-structure
interactions in Sect. 3. The efficient linear complexity algorithms are introduced in
Sect. 4 followed by numerical results evaluating the suitability of the different Jacobian
truncation and restart variants in Sect. 5.

2. Quasi-Newton and Anderson Acceleration. When solving problems as
described above, the problem can often be reduced to a general fixed-point equation

(2.1) H(x) =z with the residual R(x):= H(z) —x =0,

where H : RY — RY is an operator that we are able to apply, i.e., we assume that
we have a simulation environment that allows to evaluate H(x) for a given input z.
No further details of H are known. We additionally assume that the evaluation of H
is very expensive such that minimizing the number of iterations is crucial. In the last
years, two different communities have developed methods for this problem: so-called
quasi-Newton methods have been used in particular in the context of fluid-structure
interactions [15, 6, 12, 16, 13], whereas variants of Anderson mixing [1] have been
developed in a more general context [14, 22, 8, 18]. We introduce the general idea
from a quasi-Newton point of view. A Newton step for (2.1) reads

(2.2) "t = ok — T R(2F) = 2F — (T2 — I)R(2F)

with R .= I — H* =R o H™! and the reasoning that H — R = I and, thus,
R = (H—-R)oR ! = R -1 Al methods are based on matrices storing
the response in output differences depending on input differences of the function

R(z) =2 — H (x):

Wi, = [Azg, AZY, - AZF_,] with AzF=3" 3",

Vi = [AR§,ARY, - AR;_,] ,with AR} = R(2") — R(z")
with % := H(z*). k is a number that can be equal to the number of iterations done so
far, include a certain number of iterations from previous time steps in time-dependent

applications, or it can be fixed to a given value. For an approximation J —1 of the
inverse Jacobian of R, the multi-secant equation

(2.3) J WV, =W

has to be fulfilled. This under-determined system for the N? entries of J~! needs
suitable further restrictions which leads to a choice of methods that we shortly outline:

Least Squares. The least squares approach typically chooses k as the number of
previous iterations (possibly with an additional filter ensuring the full rank of Vj by
deleting columns if necessary). It enhances (2.3) by the norm minimization condition

(2.4) || — min,



MULTI-SECANT QUASI-NEWTON 3

where || - || denotes the Frobenius norm. This leads to the approximation
(2.5) JTL =WV with V= (VIV)TtvE

of the inverse Jacobian with the pseudo-inverse V,J of Vj, [21, 17, 13].

Broyden. Broyden’s methods [4] always uses k = 1, i.e., only information from a
single iteration is used, which leads, together with the norm minimization

(2.6) [J~5 — T8 = min

with the currently best inverse Jacobian approximation J 1 to an iterative improve-
ment of the inverse Jacobian approximation according to the formula
Wy — J*Livl)VlT

Virvi '

(27) J*l,i+1 _ J*l,i+ (

This method is known as bad Broyden’s method in contrast to the original good
Broyden’s method where both, the secant equation and the norm minimization are
formulated in terms of the Jacobian instead of its inverse.

Multi-Vector-Update. The multi-vector-update method can be interpreted as a
generalization of Broyden’s method that replaces the rank-one update in (2.6) based
on the previous iterate J 1 of the Jacobian by a rank-k update of an ’older’ Jacobian
approximation. This is realized by the norm minimization

(2.8) |7t — J];;UH — min

Often, this method is used for time dependent problems with a non-linear fixed-point
equation in every time steps which typically yields similar Jacobians in subsequent

time steps. In the latter case, Jp}lev is the inverse Jacobian approximation from the

previous time step. The inverse Jacobian is computed by a rank-k update of Jp_rlevz
(2.9) TN =Tk (W — T ViV

Successive Rank-One Jacobian Updates. Haeltermann showed in [11] that the
approximate inverse Jacobian in (2.5) can be written as a sequence of rank-one updates

(2.10) N AMVk+1V;:+1 — AuViV{§ = Ay L LY

for a linear mapping Ay with Ay Viy1 = Wiyq and Ly denoting the last column
of Li11, the matrix containing the orthonormalization of the columns of V. Without
knowing the actual mapping A,s, one can compute

(I — Ly L)AREH!
I(7 = Lo L) AR

(Jfl,k _ I)R($k+1)

and AMEk+1 = .
I(I = Ly L) AREH|

Ly =

where Ly, is the matrix with the orthonormalized columns of Vj,. Generalizing (2.10)
to the multi-vector-update formula yields
(2.11) JTURFL gLk — (A —

-1 \7 7T
prcv)Lk+1Lk+1'

As an initial guess for J~1, J=10 = inr}ev is used. Haeltermann [11] proposes an

improved least squares method with old time step recovery using the least squares
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method in rank-one update formulation (2.5). It also uses J~1% = J_1 and is similar,

but not identical with (2.11) as it lacks the term J,1, Ly11L{,in the update.

prev

Anderson Mixing. Comparing [22, 8] with [6, 16, 13] shows that the quasi-Newton
step executed with the Jacobian computed from the least squares condition (2.5) is
equivalent to type II Anderson acceleration, whereas type I Anderson acceleration is
equivalent to a quasi-Newton method using an approximation of the Jacobian instead
of its inverse. [17, 13] show that for fluid-structure interactions, our application exam-
ple described in the following section, the inverse Jacobian approximation is stable,
which is not the case for the Jacobian approximation for non-trivial problems [17].
In the following, we restrict our attention to the least squares approach, denoted
as LS, and the multi-vector-update method, denoted as MVJ. Before discussing
algorithmical details in Sect. 4, we recapitulate convergence results for two transient
and strongly coupled fluid-structure interaction scenarios in the following section.

3. Application to Fluid-Structure Interactions. Partitioned fluid-structure
interaction simulations use two separate, possibly black-box solvers for the fluid and
the structure domain, respectively. For our experiments, we use the incompressible
flow solver and the elastic structure solver from the open source simulation toolbox
OpenFOAM!. The coupling conditions are realized by a Dirichlet-Neumann approach:
The fluid solver takes displacements and velocities (x4) at the wet surface and com-
putes forces (zy) exerted on the structure, whereas the structure solver takes these
forces and computes new displacements and velocities at the wet surface. Depending
on whether we execute the two solvers simultaneously or one after the other, this
yields two different types of fixed-point equations that have to be fulfilled in each
(implicit) time step:

0 F xyf . Zf o
< 5 0 ) ( oy > = ( -, ) (Vec-system) or So F(zq) =xzq (Seq-system),
where S denotes the action of the structure solver at the wet surface, F' the action of
the flow solver. We consider two test-cases displayed in Fig. 3.1, the FSI3 benchmark
from [19] and a flow through a flexible tube.

Lo——

(a) (b)
Fig. 3.1: Geometry and pressure visualization for the test-cases (a) FSI3 (at ¢ =
0.697 5) and (b) flexible tube (at t = 3.0- 1071 s).

The FSI3 test-case models a flow around a cylinder with an attached flexible flap.
The computational domain is 2.5m x 0.41m in size and the incompressible flow is
driven by a parabolic velocity profile with mean inflow velocity o = 0.2ms~" at the left
boundary and free outflow at the right boundary. The flexible flap is modelled using a
Saint-Venant-Kirchhoff material model. A period of 2 s is with dt = 1 x 10~%s. Both
solvers use implicit Euler time steps. The flexible tube example [2, 6, 9] simulates a
wave propagating in a three- dimensional elastic tube induced by an initial pressure

Thttp:/ /www.openfoam.org/



MULTI-SECANT QUASI-NEWTON 5

pulse of peak 1333.2 Pa with a duration of 10~3s. The tube is 0.05m long, has a wall
thickness of 0.001 m, and an inner diameter of 0.01m. It is considered an external
elastic structure with neglected inertia. A hundred time steps with dt = 1 x 107%s
are simulated. The physical parameters for both scenarios are given in Table 3.1.

FSI3 cylinder flap 3d flexible tube
Fluid Solid Fluid Solid
pr=1x10%kgm™  p,=1x10%kgm™  p; =1x10°kgm™  p, =1.2 x 103kgm ™3
vy =10x10"*Pa-s FE=14x10°Nm™> v;=30x10"?Pa-s FE =3.0x 10°Nm™>
Re = 200 vs = 0.4 Re =200 vs =0.3

Table 3.1: Physical fluid and structure parameters for the two test-cases. py and p,
denote the fluid and structure density, vy the dynamic fluid viscosity, Re the Reynolds
number, E the Young’s modulus, v; the Poisson’s ratio.

All experiments were conducted using preCICE? [10] for data transfer, data map-
ping, and the iterative solver. Table 3.2 shows the resulting numbers of iterations.
They show that both solvers yield comparable convergence properties, but the MVJ
solver does not require the costly optimization of the highly scenario-dependent num-
ber of reused time steps. For the flexible tube test-case, the MVJ method is superior
even if we compare it with the LS method with the optimal number of re-used time
steps. For more results, also on the parallel scalability of the solvers, see [17, 13, 5].

3d flexible tube FSI3
reuse 0 4 8 12 16 0 2 4 6 8 16 32
Seq-LS 155 9.3 8.8 9.2 9.4 115 6.2 53 55 57 66 7.8
Seq-MVJ | 8.5 5.5
Vec-LS 289 146 134 132 133|200 80 6.2 56 53 6.2 11.9
Vec-MVJ | 11.6 6.2

Table 3.2: Averaged number of coupling iterations of the L.S and MVJ method for
the flexible tube and the FSI3 test-case for the Seq- and the Vec-system and varying
numbers of reused time steps for the LS approach.

4. Efficient Algorithmic Realization. We have shown the robustness and
good convergence of the MVJ method for the fluid-structure interaction applications
in Sect. 3. This, however, has to be seen alongside with the higher computational
costs of the MVJ method compared to the LS approach. To illustrate this, we shortly
summarize the algorithmic components of both methods. Further details and a de-
scription of the parallelized versions can be found in [5]. The quasi-Newton iteration
for the least-squares method and the multi-vector-update, respectively, reads

(4.1) " = H(z*) — W virk

(4.2) 2 = H(2®) — (L, + WVt with Wi, o= Wi, — Jo L Vi

A common ingredient of both methods is the pseudo-inverse VkJr = (VI'V,) VI
Finding (V,T'V},) "1V Ty for a given vector y is equivalent to solving the least-squares
minimization z = argmin;pn||ViZ — y||2. This can be done very efficiently using a
@ R-decomposition of Vj, that exploits the fact that Vj, only grows by one column in

2http://wwwb.in.tum.de/wiki/index.php/PreCICE Webpage
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each iteration. From the decomposition Vi, = QR, we get 2 from solving the quadratic
system Rz = QTy via backward substitution. R € R¥** denotes the first k rows
of R and @ contains the first k columns of Q (if Vi € RV*¥). The costs for the QR-
factorization including backward substitution are O(N x k?) + O(k*) (compare [5]).
For both methods, we calculate z = a = (V;I'V;) "1V,T' (—r*) using the right-hand side
y := r¥. With this, we get the next quasi-Newton iterate from

(4.3) e =i+ Wea  and M =R - Jpﬁﬂﬂ"k + (W — Jz;“}svvk) o

for least-squares and the multi-vector-update, respectively. The multi-vector-update
in addition requires the calculation of W} and, at the end of a time step, the compu-
tation and storage of the resulting Jacobian to be used as J,,L, in the next time step.
As J71 € RVXN we have to carefully design the algorithms for these two components
in order to avoid any O(N?) costs in terms of storage and in terms of operations.

4.1. Efficient Representation of the Inverse Jacobian J~!. J~! has a
rank that is substantially smaller than N. This can be exploited to reduce the storage
requirements and the computational costs of the MVJ method. We avoid to build and
store the entire matrix but rather re-compute and store the sub-matrices W, € RYV*¥
and V,j € RFXN over several time steps. If k,, is the number of iterations in time step
m, the inverse Jacobian approximation after M time steps can be written as
(4.4) Jh =Wl +WEvE .+ W v
Obviously, this approach is efficient only for M substantially smaller than N. There-
fore, we investigate different restart alternatives. At each restart, the inverse Jacobian
estimation is restarted with new data. In other words, we divide the overall simulation
in chunks of time steps that represent one era of the Jacobian estimation. Whether
or not information from previous chunks can be retained in newer chunks depends
on the restart policy. In the following, M denotes an upper bound for the number of
time steps per chunk and K an upper bound for the number of iterations per time
step. We consider three different restart approaches:

RS-O Clear all. This obviously results in O(N x K x M) costs for both the storage
of J~1 in the form (4.4) and for the M palrs of matrix-vector multiplications
Y= VT z and Wk Y in J7 1z for any vector z € RY.

RS-LS. Clear J~!, but keep columns in V and W from time steps within the current

chunk, i.e., use the initial guess J =1 := 0, Wy := W, and V| := (VIV)1V7. If we
reuse at most K columns, the total costs are O(N x K)+ O(N x K x M).

RS-SVD. Do a subspace tracking based on a singular value decomposition (SVD) of
the matrix J—!
J 1 =w2e? with ¥ = diag(oy,09,...,0n)

where 01 > 09 > ... > on > 0 are real singular values, and ¥ € RV*N and

® ¢ RY*N are orthogonal matrices. At restart, we truncate this decomposition by
cutting off all singular values below a given threshold, i.e., we restart with

01
_ 92 T
(4.5) I =9 5),m1. & (®.5)jo1, &
e —
= U O = 6T
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The costs strongly depend on the efficient realization of the underlying SVD decom-
position. Apart from this step, the total costs are O(N x K) + O(N x K x M) if
we truncate the SVD decomposition such that only K values are left. For the effi-
cient implementation of the SVD, we assume that we have a truncated singular value
decomposition as in (4.5). At the end of the next chunk, our new estimate reads

M
(4.6) TS + > Wi, Vi
m=1

for which we have to compute an updated truncated SVD by performing M low-rank
updates of the form

@.7) TSE 4+ ABT = [T A][g ?}[¢ 5"

with A, B € RV*kn_ We use the algorithm proposed in [3], i.e., we compute the or-
thogonal components of A and B. With the matrices P and @ defining an orthonormal

basis of the column space of (I — @@T)A and (I — EET)B, we define
Ra=PT(I-TT )A, and Rp:=QT(I- 33 )B.

With this, the inverse Jacobian update (4.7) can be transformed to

= —T —T
U5 +ABT =[G P K [3Q)  with k= | > Y|4 A|| 2B
0 0 Ra Rp
Diagonalizing K as ¥'7 K& = Y finally yields =A =B
T 5L T 0 / e nT
(4.8) TSS + AB" = (@ P| W) ¥ (@ Q@) .

If ¢ is the dimension of the column space of (I — @@T)A and (I — EET)B, the costs
for computing an orthonormal basis of these spaces are O(c?N). The matrix K €
RUE+)x(K+e) can be computed with O(k,,, KN +¢2N) (for the computation of A and
B) plus O((K + ¢)%k,,) (for the matrix-matrix multiplication AB”) operations. The
costs for the SVD of K depend only on the small number K + ¢ and, thus, not on N.
Summarizing, the costs for the update of the SVD are linear in N. After the update,
the new SVD can be truncated again to keep a small but accurate representation.

4.2. Efficient Calculation of Wk. Instead of recomputing Wk in every itera-
tion, we update Wy, := Wy, —J, 1, Vi by adding the new column AZy_, —J, L AR} _,.

prev

5. Numerical Results. The proposed MVJ restart variants influence the accu-
racy of the inverse Jacobian approximation. We study the effects of this influence for
a one-dimensional flexible tube scenario [7] which allows for a detailed analysis and
fast prototyping using MatLab due to it’s simplicity while still offering characteris-
tic challenges in coupled FSI simulation. We give a very brief scenario description,
omitting formulas and details. The fluid flow is assumed to be incompressible and
inviscid. The 1D model is obtained by averaging over the tube in radial direction, as
shown in Figure 5.1 (left). The conservation of mass and momentum simplifies to

Or(au) + 0y (au®) +adyp=0 and  9; + 9,(au) =0
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with the inflow velocity u, the kinematic pressure p and the cross sectional area of
the tube a. We use a time varying, sine-shaped inlet velocity and non-reflecting
outlet boundary conditions. The elastic wall is modelled by a Hookean constitutive
law neglecting inertia. This enhances instabilities. The fluid exerts stresses on the
structure only in radial direction leading to a purely radial motion of the tube wall. We
simulate the scenario over one full period of the inlet velocity [0; 7] with 100 time steps.
Following [7], we use the dimensionless structural stiffness x, the dimensionless step
size 7 and the spatial resolution N as parameters characterizing the difficulty: The
coupling becomes more challenging for decreasing structural stiffness x, decreasing
time step size 7 and increasing spatial resolution N.

Figure 5.1 shows the averaged number of iterations numbers for the implicit MVJ
method and the LS method (with reuse of eight time steps). The performance of the
LS method suffers from its strong dependency on the number of reused time steps (R):
We obtain in-acceptable numbers of iterations for zero-reuse, for R = 8, the difficult
cases (small 7 and k) show excellent results, but the method diverges for the easier
cases. A comparison of the restart variants is given in Figure 5.2 for different chunk
sizes M of the MVJ estimation era and four parameter settings of (7, ). The clear-
all method RS-0 yields the worst performance as expected unless M is large enough.
As RS-0 yields a mixture of LS(R = 0) and the MVJ method, it inherits the bad
LS(R = 0) convergence. In contrast, explicitly re-using multi-secant information at
restart with the RS-LS method shows good results for small chunk sizes M = 1,2 for
all cases except the hardest setting (7 = 0.001, x = 10). Here, the amount of re-used
information across MVJ-chunk borders is not sufficient for small M. Nonetheless, the
good results for RS-LS(Rrs = 2, M = 2) raise hopes for a cheap but efficient fixed-
point acceleration method for scenarios with moderate instabilities. However, the
mixture with the LS(R) method reintroduces the dependency on the reuse parameter
R = Rps (only in a less sensitive way) as shown in Figure 5.3, where we vary the
number of reused time steps at restart (Rpg) for different chunk sizes. Once again,
M = 2 shows superior performance for arbitrary numbers of reused time steps at
restart (except for the last case), but the optimum is obtained for Rrg = 2 (case 1,2)
and Rrs = 8 (case 3), respectively, which is also the optimal parameter R for the
LS method. The optimum of RS-LS(M = 2, Rrs) yields lower numbers of iterations
than the MVJ method as it benefits from both reuse approaches.

The RS-SVD restart approach yields the most robust and reliable results, even
in the face of severe instabilities (case 4). The cut-off parameter ¢ which controls the

3 \ )
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Fig. 5.1: Left: Schematic drawing of the deformed flexible tube. The fluid pres-
sure acting on the inner tube walls leads to deformation in radial direction. Right:
Comparison of the averaged number of coupling iterations of LS (with eight reused
timesteps) and MVJ.



w

o

iterations

w

MULTI-SECANT QUASI-NEWTON

9

case (r =0.001, < =10)

6 case (r =0.1, < =100)

N
P

iterations

o case (7 =0.1, < =10)

o case (v =0.01, < =10)

iterations

w & w
oS o o

N
=}

o
o

16

chunk size M

16

16
chunk size M

16 32

chunk size M

chunk size M

—=—RS-LS —-A=RS-0 — + = MV] —6—RS-SVD ¢=10" RS-SVD ¢=107

Fig. 5.2: Averaged number of iterations for the restart methods from Sect. 4, for
different sizes of the MV J estimation era M.

case (r =0.1, « =100) case (7 =0.1, « =10) 5 case (7 =0.01, x =10) case (7 =0.001, x =10)

8 8
4 504 -
2’ 2 % 2 2 40
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§° 53 8 § 20
£ 44 - =) = . ~a =]
- O ~—A.—._h 104
3 —— A=A 3
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
reused time steps at restart R reused time steps at restart R o reused time steps at restart R, reused time steps at restart R

~-A~RS-LS M=2 — < ~RS-LS M=4 —6—RS-LS M=8 — = —RS-LS M=16 e

Fig. 5.3: Averaged number of iterations for RS-LS restart method for different num-
bers of reused time steps at restart RrS, and chunk sizes M.

Jacobian truncation, however, has to be chosen properly as can be seen in Figure 5.2
where e = 107! is too restrictive. For the efficiency of the RS-SVD method, it is crucial
that the actual rank of the Jacobian is small compared to the number of interface
elements N and independent from N. Figure 5.4 shows the rank of the Jacobian (grey
bars) together with the rank of the truncated reduced order model, depending on the
cut-off parameter € for different N (corresponding to 2(/N + 1) unknowns). Depending
on the difficulty of the test case, the rank grows, but it keeps (nearly) constant for
increasing N. Thus, the RS-SVD restart method is expected to be well-suited and
efficient for coupled FSI simulation — even in case of strong instabilities.

Conclusion. We have analysed two different quasi-Newton methods suited for par-
titioned multi-physics simulations using black-box solvers. The numerical results and
the complexity analysis of the underlying algorithms showed that the novel combi-
nation of the MVJ method with a careful algorithm design based on efficient decom-
positions of the inverse Jacobian approximations and their truncation yields a very
powerful and robust iterative solver for non-linear interface equations. In particular,
it comes without the strong sensitivity on unknown solver parameters and has an
optimal linear complexity.

case (r =0.1, x =100) case (r =0.1, « =10) case (r =0.01, « =10) case (+ =0.001, « =10)

103 | () 103 10° T 10° o
102 102 af 8 102 e 102
10 10 ol —tol—fo 10 10
S ® © rank(7) S & ON S & ON S & ON
RO ‘\’QQ N RSN \90 NSNS \96 NN \96

—e dim()) [__Jrank()) —®— rank(ROM) ¢ 101 —®— rank(ROM) ¢ 102 —®— rank(ROM) ¢ 103

Fig. 5.4: Rank (grey bars) of the truncated Jacobian (ROM) for different values of
truncation parameter € and numbers of unknowns N (orange stems) at the interface.
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