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Abstract. We present µ-BFBT, an approximation for the inverse Schur complement of a Stokes system with
highly heterogeneous viscosity. When used as part of a Schur complement-based Stokes system preconditioner, we
observe robust convergence rates for Stokes problems with smooth but highly varying (up to 10 orders of magnitude)
viscosities, optimal algorithmic scalability with respect to mesh refinement, and merely a mild dependence on the
polynomial order of high-order finite element discretizations (Qk × Pdisc

k−1, order k ≥ 2). For certain problems, µ-BFBT
significantly improves Stokes solver convergence over the widely used inverse viscosity weighted pressure mass matrix
approximation of the Schur complement. Using detailed numerical experiments, we discuss modifications to µ-BFBT
at Dirichlet boundaries, which decrease the number of iterations. The overall algorithmic performance of the Stokes
solver is governed by the efficacy of µ-BFBT as a Schur complement approximation and, in addition, by our parallel
hybrid spectral-geometric-algebraic multigrid (HMG) method, used for approximating the inverses of the viscous
block and variable-coefficient pressure Poisson operators within µ-BFBT. Building on the scalability of HMG, our
Stokes solver achieves parallel weak scalability of 90% for a more than 600-fold increase from 48 to all 30,000 cores of
TACC’s Lonestar 5 supercomputer.

1. Introduction and key ideas. Many problems in science and engineering involve creeping
non-Newtonian fluids. Important examples can be found in geophysical fluid flows, where the
incompressible Stokes equation with power-law rheology has become a prototypical continuum
mechanical description for creeping flows occurring in mantle convection, magma dynamics, and ice
flow. The linearization of the nonlinear momentum equations, for instance within a Newton method,
leads to flow equations (here, incompressible Stokes equations) with spatially-varying and highly
heterogeneous viscosity fields.

In particular, simulations of earth’s mantle convection at global scale [17] exhibit extreme
computational challenges due to a highly heterogeneous and anisotropic viscosity stemming from
temperature and strain-rate dependence and sharp gradients in narrow regions modeling tectonic
plate boundaries (six orders of magnitude drop in ∼5 km) [3, 15]. This leads to a wide range of
spatial scales since small localized features at plate boundaries of size O(1 km) influence plate motion
at continental scales of O(1000 km). The complex character of the flow presents severe computational
challenges for iterative solvers due to poor conditioning of linear systems that arise.

Since this paper focuses on preconditioning linearized Stokes problems, we can simplify our
problem setup by taking the viscosity as independent of the strain rate, but otherwise exhibiting
severe spatial heterogeneity. Given a bounded domain Ω ⊂ R3, right-hand side forcing f , and
viscosity µ(x) ≥ µmin > 0 for all x ∈ Ω, consider the incompressible Stokes equations

−∇ ·
[
µ(x) (∇u +∇u>)

]
+∇p = f in Ω, (1.1a)
∇ · u = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

where u and p are the unknown velocity and pressure fields, respectively. Discretizing (1.1) leads to
a sequence of linear systems of equations of the form[

A B>

B 0

] [
u
p

]
=

[
f
0

]
, (1.2)
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where A, B, and B> are matrices corresponding to viscous stress, discrete divergence, and gradient
operators, respectively. The discretization is carried out by high-order finite elements on (possibly
aggressively adaptively refined) hexahedral meshes with velocity-pressure pairings Qk × Pdisc

k−1 of
polynomial order k ≥ 2 with a continuous, nodal velocity space Qk and a discontinuous, modal
pressure space Pdisc

k−1. These pairings yield optimal asymptotic convergence of the finite element
approximation to the infinite dimensional solution with decreasing mesh element size, are inf-sup
stable, and have the advantage of preserving mass locally at the element level due to the discontinuous
pressure space [8]. While these properties are important for geophysics applications, the high-order
discretization, adaptivity, and the discontinuous pressure space add to the computational challenges
for iterative solvers. The level of difficulty is further raised by demands for large-scale parallelism,
i.e., efficient execution of the solvers on millions of threads with billions of degrees of freedom (DOF).

While exhibiting the previously mentioned challenges, the applications we are targeting demand
robust linear Stokes preconditioners for (1.2) with nearly optimal algorithmic and parallel scalability.
This paper describes the design of such preconditioners that are suitable for highly heterogeneous
viscosities µ as occurring, e.g., in mantle convection simulations. The proposed Schur complement
approximation, called µ-BFBT, significantly outperforms state of the art methods when both
robustness and algorithmic scalability are crucial. Further, the efficacy of the preconditioner is by
design independent of the number of parallel threads and parallel efficiency is largely unaffected
when scaling out to millions of threads.

It is widely accepted that an effective approximation of the Schur complement S := BA−1B> is an
essential ingredient for attaining fast convergence. More precisely, a sufficiently good approximation
of the inverse Schur complement S̃−1 ≈ S is sought, which, together with an approximation of the
inverse viscous block, Ã−1 ≈ A, is used in an iterative scheme with right preconditioning based on
an upper triangular block matrix:[

A B>

B 0

] [
Ã B>

0 S̃

]−1 [
u
p

]
=

[
f
0

]
. (1.3)

Note that the original solution to (1.2) is recovered by applying the preconditioner once to the
solution of (1.3). For the preconditioned Stokes system (1.3), we use GMRES as the Krylov subspace
solver. This particular combination of Krylov method and preconditioner is known to converge in
just two iterations for optimal choices of Ã−1 and S̃−1 [2].

The established state of the art approximation of the Schur complement is the inverse viscosity-
weighted pressure mass matrix, Mp(1/µ), with entries [Mp(1/µ)]i,j =

∫
Ω qi(x) qj(x)/µ(x) dx, where

qi, qj ∈ Pdisc
k−1 are basis functions of the finite dimensional space Pdisc

k−1. In practice Mp(1/µ) is
diagonalized via lumping to simplify its inversion. Provided that µ is sufficiently smooth, Mp(1/µ)
can be an effective approximation of S in numerical experiments [4, 11] and spectral equivalence
can be shown [10]. However, it has been observed in applications with highly heterogeneous
viscosities µ (e.g., mantle convection [14, 15]) that convergence slows down significantly due to a
poor Schur complement approximation by Mp(1/µ). Therefore, we propose a new approximation,
called µ-BFBT, that remains robust when Mp(1/µ) fails. The possibly dramatic improvement in
convergence is demonstrated in Figure 1.1.

Preconditioners based on BFBT approximations for the Schur complement were initially proposed
in [6] for the Navier-Stokes equations. Over the years, these ideas were refined and extended
in [16, 12, 7, 9] to arrive at a class of closely related Schur complement approximations: pressure
convection-diffusion (PCD), BFBT, and Least Squares Commutator (LSC). The underlying principle
is that one seeks a commutator matrix X such that the commutator AD−1B> −B>X ≈ 0 nearly
vanishes (given an appropriate diagonal scaling matrix D−1). This can be converted into the following
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Figure 1.1. Left image shows the improvement in convergence obtained with the proposed µ-BFBT preconditioner
over a preconditioner using the inverse viscosity-weighted pressure mass matrix as Schur complement approximation.
Number of randomly placed sinkers (i.e., inclusions with high viscosity in low viscosity medium) is increased along x-axis.
The number of GMRES iterations required for a residual reduction by 106 is reported for the state of the art Mp(1/µ) and
the proposed µ-BFBT preconditioner. Fixed problem parameters are the dynamic ratio DR(µ) = max(µ)/min(µ) = 108,
discretization order k = 2, and the mesh refinement level ` = 7, resulting in 1283 finite elements. Right image shows
an example viscosity with 16 sinkers (blue spheres) and the stream lines of the computed velocity field.

least-squares minimization problem: minX

∥∥AD−1B>ej −B>Xej
∥∥2

C−1 for all j, where ej is the
j-th Cartesian unit vector and C is symmetric and positive definite. The solution is given by X =
(BC−1B>)−1(BC−1AD−1B>). Then the BFBT approximation of the inverse Schur complement can
be derived by algebraic rearrangement: S̃−1

BFBT :=
(
BC−1B>

)−1 (
BC−1AD−1B>

) (
BD−1B>

)−1.
In the literature cited above (which targets preconditioning of the Navier-Stokes equations), the
diagonal scaling matrices are chosen as C = D = M̃u, i.e., a lumped version of the velocity mass
matrix; hence we call this the Mu-BFBT approximation of the Schur complement. In [14] and later
in [15], the authors recognize that BFBT can provide an effective Schur complement approximation
for Stokes problems with highly varying viscosity. This was realized by different choices for the
diagonal scaling matrices based on entries of A, e.g., C = D = diag(A) in [15]; hence we refer to
this approach as diag(A)-BFBT.

However, even diag(A)-BFBT can fail to achieve fast convergence for some problems, as shown
below. Moreover, choosing the scaling matrices as diag(A) builds on heuristic algebraic arguments
and is problematic for high-order discretizations, where diag(A) is a very poor approximation of A.
These drawbacks led us to develop a new BFBT-type approximation for the Schur complement,

S̃−1
µ−BFBT :=

(
BC−1

µ B>
)−1 (

BC−1
µ AD−1

µ B>
)(

BD−1
µ B>

)−1
, (1.4)

where Cµ = Dµ = M̃u(
√
µ) are lumped velocity mass matrices that are weighted by the square root

of the viscosity.
After defining a set of benchmark problems, we compare the convergence obtained with different

Schur complement approximations. We study when µ-BFBT is advantageous toMp(1/µ), and discuss
boundary modifications for µ-BFBT that accelerate the convergence. Finally, we summarize an
algorithm for µ-BFBT-based Stokes preconditioning, which uses hybrid spectral-geometric-algebraic
multigrid (HMG), and we show near-optimal algorithmic and parallel scalability.

2. Class of benchmark problems. The design of suitable benchmark problems is critical to
conduct studies that can give useful convergence estimates for challenging applications. We seek
complex geometrical structures in the viscosity that generate irregular, nonlocal, multi-scale flow
fields. Additionally, the viscosity should exhibit sharp gradients and its dynamic ratio DR(µ) :=
max(µ)/min(µ) (also commonly referred to as viscosity contrast) can be six orders of magnitude
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or higher in demanding applications and it is important that min(µ)� 1 and max(µ)� 1. It has
been observed, by the authors and in [13], that the viscosity arising from a multi-sinker setup with
randomly positioned inclusions (e.g., as in Figure 1.1, right image) is a possible candidate to model
such challenging, highly heterogeneous coefficients.

We define the viscosity coefficient µ(x) ∈ [µmin, µmax], 0 < µmin < µmax <∞, with dynamic ratio
DR(µ) = µmax/µmin by means of rescaling a C∞ indicator function χn(x) ∈ [0, 1] that accumulates
n sinkers via a product of modified Gaussian functions:

µ(x) := (µmax−µmin)(1−χn(x)) +µmin with χn(x) :=

n∏
i=1

1− exp

(
−dmax

(
0, |ci − x| − w

2

)2
)

where ci ∈ Ω, i = 1, . . . , n, are the center points of the sinkers, d > 0 is exponential decay, and w ≥ 0
is the width of a sinker where µmax is attained. Throughout the paper, we fix Ω = [0, 1]3, d = 200,
w = 0.1, and draw from the same set of precomputed random points ci in all numerical experiments.
Two parameters are varied: (i) the number of sinkers n at random positions (e.g., the label S16-rand
indicates n = 16) and (ii) the dynamic ratio DR(µ) which in turn determines µmin := DR(µ)−1/2

and µmax := DR(µ)1/2.

3. Comparison of Schur complement approximations. We compare convergence of the
Stokes solver using the Schur complement approximation Mp(1/µ) with diag(A)-BFBT and with
the proposed µ-BFBT. The problem parameters are held fixed to S16-rand and DR(µ) = 108. The
numerical experiments were carried out using different levels of mesh refinement ` = 5, . . . , 7 (fixed
order k = 2) and different discretization orders k = 2, . . . , 5 (fixed level ` = 5).

The results are presented in Figure 3.1. In the left two plots, the poor Schur complement
approximation by Mp(1/µ) for this problem setup can be observed clearly. Convergence is stagnating
severely after about 25 GMRES iterations (similar results are found in [13, 15]). Since refining the
mesh or increasing the order does not influence convergence behavior, we assume the features of the
viscosity to be sufficiently resolved by the discretization.

The case diag(A)-BFBT (Figure 3.1, middle) is able to achieve fast convergence for discretization
order k = 2. A limitation of diag(A)-BFBT is a strong dependence on the order k. It can be
explained as a consequence of the reduction of diagonal dominance in the viscous block A with k,
i.e., for higher k the approximation of A by diag(A) deteriorates. Note that numerical experiments
with Mu-BFBT are not presented, because it performs poorly in the presence of spatially varying
viscosities. This leads to the conclusion that the choice of the scaling matrices C,D in S̃−1

BFBT

crucially affects the quality of the Schur complement approximation.
The µ-BFBT approximation delivers convergence that is nearly as fast as in the diag(A)-BFBT,

k = 2 case, however without deterioration when k is increased (see Figure 3.1, right). Thus µ-BFBT
exhibits the robustness of diag(A)-BFBT and additionally shows superior algorithmic scalability
with respect to k. Having shown the efficacy of µ-BFBT under certain problem parameters, we
continue by classifying the influence of crucial parameters on convergence.

4. Robustness classification of µ-BFBT over established state of the art. This section
compares the widely used Schur complement approximation Mp(1/µ) with µ-BFBT by means of
varying the two problem parameters: (i) the number of randomly placed sinkers n and (ii) the
dynamic ratio DR(µ). The parameter n influences the geometric complexity of the viscosity µ while
DR(µ) controls the sharpness of gradients.

Tables 4.1a and 4.1b present the number of GMRES iterations for a 10−6 residual reduction. We
observe that for the S1-rand problem the iteration count is essentially the same for both Mp(1/µ)
and µ-BFBT, and that it stays stable across all dynamic ratios DR(µ) = 104, . . . , 1010. Hence for this
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Figure 3.1. Comparison of Stokes solver convergence with Mp(1/µ) (left column), diag(A)-BFBT (middle
column), and µ-BFBT (right column) preconditioning. We fix the problem S16-rand, DR(µ) = 108 while varying mesh
refinement level ` (top row) and discretization order k (bottom row). This comparison shows that µ-BFBT combines
robust convergence of diag(A)-BFBT with improved algorithmic scalability when k is increased.

relatively simple problem, µ-BFBT has no advantages and its additional computational costs make
it less efficient than Mp(1/µ). This simple setup is often considered in convergence experiments, but
it does not reveal the limitations of the Mp(1/µ) approach.

The limitations are revealed by increasing the number of randomly positioned sinkers. Two
observations for Mp(1/µ) can be made from Table 4.1a. First, the number of GMRES iterations rises
dramatically with increasing number of sinkers (factor ∼80 increase for n = 1, . . . , 28, DR(µ) = 108).
Second, in a multi-sinker setup the dependence on DR(µ) becomes more severe (factor ∼50 increase
for n = 24, DR(µ) = 104, . . . , 1010). Over the whole range of parameters n and DR(µ), the number
of GMRES iterations increases by a factor >300. For the the most extreme setup, S28-rand,
DR(µ) = 1010, the iteration count exceeds 10000. Such convergence behavior shows that Mp(1/µ)
exhibits poor approximation properties to the Schur complement for certain classes of problems with
highly heterogeneous viscosities.

The advantages in robustness of the µ-BFBT preconditioner are demonstrated in Table 4.1b.
Compared to Mp(1/µ), the number of GMRES iterations is stable and the increase over the whole
range of problem parameters is just about a factor of 2. Only 60 iterations were performed for the
most extreme parameters, S28-rand, DR(µ) = 1010, which took >10000 iterations with Mp(1/µ).

5. Modifications for Dirichlet boundary conditions. In this final section on Stokes solver
convergence with µ-BFBT, we discuss the dependence on mesh refinement level ` and discretization
order k. The numerical experiments for µ-BFBT in Figure 3.1, right did show slightly slower
convergence rates when ` or k were increased. This behavior is investigated now with the goal to
achieve perfect mesh independence and only a mild dependence on the order.

For unbounded domains Ω = R3, the commutator relationship that leads to the BFBT formulation
is exactly satisfied for the associated differential operators, thus the minimum of the infinite
dimensional problem corresponding to the discrete least-squares minimization problem (see Section 1)
is zero. In the presence of Dirichlet boundary conditions the commutator, in general, does not vanish
at the boundary. Therefore a possible source for deteriorating Schur complement approximation
properties of µ-BFBT is a commutator mismatch inside mesh elements that are touching the
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Table 4.1
Robustness classification for Schur complement approximations (a) Mp(1/µ) and (b) µ-BFBT in terms of

number of GMRES iterations (10−6 residual reduction, GMRES restart at 100). Problem parameters n (num-
ber of randomly placed sinkers) and DR(µ) (dynamic ratio) are varied. Discretization is fixed to k = 2, ` = 7.

(a) Mp(1/µ)

#sinkers \DR(µ) 104 106 108 1010

S1-rand 29 31 31 29
S4-rand 53 63 71 80
S8-rand 64 79 93 165

S12-rand 70 86 99 180
S16-rand 85 167 231 891
S20-rand 84 167 380 724
S24-rand 117 286 3279 5983
S28-rand 108 499 2472 >10000

(b) µ-BFBT

#sinkers \DR(µ) 104 106 108 1010

S1-rand 29 29 29 30
S4-rand 39 41 42 44
S8-rand 38 40 41 44

S12-rand 38 40 43 45
S16-rand 40 45 47 48
S20-rand 34 36 37 38
S24-rand 31 32 39 55
S28-rand 29 31 42 60

boundary ∂Ω. A similar argument is made in [9] where a damping to the scaling matrix D−1 in
S̃−1

BFBT is introduced to achieve mesh independence (C−1 is not changed). There, damping affects the
normal components of the velocity space inside mesh elements touching ∂Ω and simply a constant
damping factor of 1/10 is set regardless of mesh refinement `.

Now, we attempt to enhance our understanding how modifications at the Dirichlet boundary ∂Ω
influence convergence and therefore the efficacy of µ-BFBT as a Schur complement approximation.
Let ΩD :=

⋃
e∈D Ωe, D := {e | Ωe ∩ ∂Ω 6= ∅}. ΩD is the union of all mesh elements Ωe touching

the Dirichlet boundary. Given value a ≥ 1, extend the definition of M̃u(
√
µ) (the lumped velocity

matrix weighted by √µ) to a version with boundary amplification:

M̃u(wµ,a) where wµ,a(x) :=

{
a
√
µ(x) x ∈ ΩD√
µ(x) x /∈ ΩD

(5.1)

We distinguish between left boundary amplification al for Cµ = M̃u(wµ,al) and right boundary
amplification ar for Dµ = M̃u(wµ,ar) in (1.4). Note that amplifying of the weighting function at
the boundary is similar to damping at the boundary after taking the inverses C−1,D−1, which was
performed in [9].

The Stokes solver convergence under the influence of boundary amplifications al, ar is summarized
in Table 5.1 where the number of GMRES iterations for 10−6 residual reduction is given. Additionally,
the fastest iteration counts +2 are highlighted in color. The highlighting creates a “pattern of fast
convergence” showing that the boundary amplification is most effective when performed non-
symmetrically, i.e., either al > 1 or ar > 1 but not both. Further, we learn that with higher mesh
refinement level ` the boundary amplification should increase roughly proportional to 2`. Similar
observations can be made for the discretization order k. Note that these implications were made
after extensive numerical experiments for which Table 5.1 just serves as a brief summary.

6. Parallel hybrid spectral-geometric-algebraic multigrid (HMG) for µ-BFBT. Two
aspects of the Stokes preconditioner with µ-BFBT have not been discussed yet. One is the approxima-
tion of the inverse viscous block Ã−1 required in (1.3) and the other is the approximation of inverses
(BC−1

µ B>)−1 and (BD−1
µ B>)−1 in (1.4). For brevity, we introduce the notation Kd := BC−1

µ B>.
The operator Kd can be regarded as a discrete variable-coefficient Poisson operator on the discontin-
uous pressure space Pdisc

k−1 with Neumann boundary conditions (recall from Section 5 that Cµ = Dµ

when al = ar).
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Table 5.1
Influence of boundary amplifications al, ar on the Stokes solver convergence with µ-BFBT for discretizations:

(a) k = 2, ` = 5, (b) k = 2, ` = 7, (c) k = 5, ` = 5. Reported are the number of GMRES iterations for 10−6 residual
reduction for the problem S16-rand, DR(µ) = 106. Colors highlight lowest iteration count +2. Increase of mesh
refinement level ` or discretization order k demands larger boundary amplification to maintain fast convergence.

(a) k = 2, ` = 5

al \ ar 1 2 4 8 16 32

1 33 33 34 34 34 35
2 33 33 34 34 34 34
4 33 34 34 36 38 39
8 34 34 36 39 43 44

16 34 34 38 43 46 49
32 34 34 39 44 49 53

(b) k = 2, ` = 7

al \ ar 1 2 4 8 16 32

1 45 37 34 34 34 34
2 37 36 35 36 36 36
4 34 36 38 39 40 41
8 34 36 39 42 44 44
16 34 36 40 44 45 46
32 34 36 41 44 46 47

(c) k = 5, ` = 5

al \ ar 1 2 4 8 16 32

1 63 53 46 43 43 44
2 53 51 51 51 52 53
4 47 51 55 59 62 64
8 44 51 59 65 69 72
16 43 52 62 69 75 78
32 44 53 64 72 78 82

The approximation of the inverse viscous block Ã−1 is well suited for multigrid V-cycles. In [15],
we developed a hybrid spectral-geometric-algebraic multigrid (HMG) for that purpose, which exhibits
extreme parallel scalability and retains nearly optimal algorithmic scalability (see also Section 7 for
scalability results). While traversing the V-cycle shown in Figure 6.1, HMG initially reduces the
discretization order (spectral multigrid); after arriving at order one, it continues by coarsening mesh
elements (geometric multigrid); once the degrees of freedom fall below a threshold, algebraic multigrid
(AMG) carries out further coarsening until a direct solve can be computed efficiently. Parallel forest-
of-octrees algorithms, implemented in the p4est parallel adaptive mesh refinement library, are used
for efficient, scalable mesh refinement/coarsening, mesh balancing, and repartitioning [5]. During the
geometric coarsening, the number of compute cores and the size of the MPI communicator is reduced
successively to minimize communication. Then the transition to AMG is done at a sufficiently small
core count. AMG continues to further reduce the number of cores down to a single core for the
direct solver.

Additionally, multigrid V-cycles can also also be employed to approximate the pressure Poisson
operator Kd. However, it turned out to be problematic to apply the HMG strategy directly due
to the discontinuous, modal discretization of the pressure space. We took a novel approach in [15]
by considering the underlying infinite-dimensional variable-coefficient Poisson operator, where the
coefficient is derived from the diagonal scaling matrix (here, C−1

µ or D−1
µ ). Then we re-discretize

with continuous, nodal high-order finite elements in Qk. This continuous, nodal Poisson operator is
then approximately inverted with an HMG V-cycle that is similar to the one described above for the
inverse viscous block approximation Ã−1. Additional smoothing is applied in the pressure space
(Figure 6.1, green level) to account for modes in a residual that are present in Pdisc

k−1 but not in Qk.
In numerical experiments throughout the paper, three smoothing iterations with Chebyshev

accelerated point-Jacobi smoother at downward and upward traversal of the V-cycle were performed.
PETSc library [1] implementations of Chebyshev acceleration, AMG, direct solver, and GMRES
were used.

7. Algorithmic and parallel scalability for HMG+µ-BFBT Stokes preconditioner.
After establishing the robustness of the Stokes solver due to µ-BFBT preconditioning in Section 4,
we study the scalability of the solver in this section. One component of scalability is algorithmic
scalability, which is the dependence of GMRES iterations on the resolution of the mesh and the
discretization order. The second component is parallel scalability where runtime is measured on
increasing numbers of compute cores. Presenting both components of scalability is required to fully
assess the performance of a solver at scale.



8 Johann Rudi, Georg Stadler, and Omar Ghattas

HMG hierarchy
pressure space

spectral
p-coarsening
geometric
h-coarsening

algebraic
coars.

discont. modal

cont. nodal
high-order F.E.
trilinear F.E.

decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

Figure 6.1. Hybrid spectral-geometric-algebraic multigrid (HMG). Left: Illustration of multigrid hierarchy. From
top to bottom, first, the multigrid levels are obtained by spectral coarsening (dark blue). Next, the mesh is geometrically
coarsened and repartitioned on successively fewer cores to minimize communication (light blue). Finally, AMG
further reduces problem size and core count (light red). The multigrid hierarchy for the pressure Poisson operator Kd

additionally involves smoothing in the discontinuous modal pressure space (green). Right: The multigrid V-cycle
consists of smoothing at each level of the hierarchy (circles) and intergrid transfer operators (arrows downward for
restriction and arrows upward for interpolation). To enhance efficacy of the the V-cycle as a preconditioner, different
types of projection operators are employed for these operators depending on the phase within the V-cycle.

The algorithmic scalability in Table 7.1 shows results for the Stokes solver as well as its individual
components by giving iteration numbers for solving the systems Au = f and Kdp = g. By
studying the individual components we seek to potentially identify poor approximations of the Schur
complement. All systems, Stokes, A, and Kd, are solved with preconditioned GMRES down to a
relative tolerance of 10−6. The preconditioners for A and Kd are HMG-V-cycles as described in
Section 6. For the µ-BFBT preconditioner, we set a constant left boundary amplification al = 1
and vary the right boundary amplification ar according to results from Section 5. The iteration
counts show ideal mesh independence when increasing the level of refinement ` in Table 7.1a. This
holds for both components A and Kd and also the whole Stokes solver, hence the Schur complement
approximation by µ-BFBT is also mesh-independent. When the discretization order k grows the
iteration counts presented in Table 7.1b increase mildly. The convergence of both components A
and Kd exhibits a small dependence on k. Since the increase in number of iterations is sightly larger
for the full Stokes solve than for A and Kd, we assume a mild deterioration of µ-BFBT as a Schur
complement approximation. A reason can be the lumping performed to generate the diagonal scaling
matrices C−1

µ and D−1
µ .

Parallel scalability results were obtained on the full Lonestar 5 peta-scale system at the Texas
Advanced Computing Center (TACC). Lonestar 5 is a new Cray XC40 system consisting of 1252
compute nodes. Each node is equipped with two Intel Haswell 12-core processors and 64 GBytes
of memory. The Lonestar 5 supercomputer entered production in January 2016 and is a new
architecture. It is therefore desirable to perform scalability measurements in order to broaden our
knowledge of the parallel performance of our Stokes solver (in addition to results in [15]).

The weak scalability (DOF/core fixed to ∼1 million) in Figure 7.1a shows that the Stokes solver
with µ-BFBT (blue curve) maintains 90% efficiency over a 618-fold increase in degrees of freedom
along with cores. Even for the setup of the Stokes solver (green curve), which mainly involves
the HMG hierarchy generation, we observe 71% efficiency. We consider these to be remarkable
results for such a complex implicit multi-level solver with optimal algorithmic performance (when
the mesh is refined or nearly algorithmically optimal when the order is increased) and with a
convergence rate that is by design independent of the number of cores. Furthermore, extreme
scalability results utilizing IBM’s BG/Q architecture were demonstrated in [15]. There, we achieved
97% weak efficiency over a 96-fold core increase up to 1.6 million cores for the solve phase of the
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Table 7.1
Algorithmic scalability for Stokes solver with HMG+µ-BFBT preconditioning while (a) varying mesh refinement

level ` and (b) varying discretization order k (problem S16-rand, DR(µ) = 106). Computational cost is expressed
in number of GMRES iterations (abbreviated by It.) for full Stokes solve (10−6 residual reduction). Left boundary
amplification for Cµ is fixed to al = 1; right boundary amplification ar for Dµ varies. Additionally, the number of
GMRES iterations for solving only the sub-systems Au = f and Kdp = g are given for demonstration of HMG efficacy.

(a) Algorithmic scalability (fixed order k = 2)

` ar u-DOF It. p-DOF It. DOF It.
[×106] A [×106] Kd [×106] Stokes

4 1 0.11 18 0.02 8 0.12 40
5 2 0.82 18 0.13 7 0.95 33
6 4 6.44 18 1.05 6 7.49 33
7 8 50.92 18 8.39 6 59.31 34
8 16 405.02 18 67.11 6 472.12 34
9 32 3230.67 18 536.87 6 3767.54 34
10 64 25807.57 18 4294.97 6 30102.53 34

(b) Algorithmic scalability (fixed level ` = 5)

k ar u-DOF It. p-DOF It. DOF It.
[×106] A [×106] Kd [×106] Stokes

2 2 0.82 18 0.13 7 0.95 33
3 4 2.74 20 0.32 8 3.07 37
4 8 6.44 20 0.66 7 7.10 36
5 16 12.52 23 1.15 12 13.67 43
6 32 21.56 23 1.84 12 23.40 50
7 64 34.17 22 2.75 10 36.92 54
8 128 50.92 22 3.93 10 54.86 67
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Figure 7.1. Parallel scalability on Lonestar 5 for Stokes solver with HMG+µ-BFBT preconditioning (problem
S16-rand, DR(µ) = 106 as in Table 7.1a). (a) Weak scalability of setup and solve phases (normalized w.r.t. deviations
from const. DOF/core). Numbers along the graph lines indicate weak efficiency w.r.t. ideal weak scalability (baseline is
48 cores result). DOF/core is ∼1 million, the largest problem size on 29640 cores has 30 billion DOF. (b) Strong
scalability of solve phase for different configurations of OpenMP-threads (OMP) substituting MPI ranks s.t. one thread
is assigned to each core. Numbers along the graph lines indicate strong efficiency w.r.t. ideal speedup (baseline is 48
cores result).

HMG+diag(A)-BFBT preconditioned Stokes solver with the additional difficulty of handling highly
adaptively refined meshes. Note that µ-BFBT and diag(A)-BFBT are similar in terms of parallel
scalability, because we measure time per GMRES iteration.

Finally, Figure 7.1b reports strong scalability results (DOF fixed to 59 million) and how the
number of OpenMP threads substituting MPI ranks influences speedup. Over the 78-fold increase
from 48 to 3744 cores, efficiency reduces moderately, which is 68% in the worst case OMP1. However,
in the largest run with 29,640 cores, the granularity is only ∼2000 DOF/core, which becomes
problematic for strong scalability. This behavior is expected for an implicit solver, especially for a
multi-level based method that does not sacrifice algorithmic optimality for parallel scalability.
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8. Conclusion. The numerical performance of µ-BFBT as an approximation to the inverse
Schur complement for problems with variations in the viscosity is very promising. The combination
of robustness as well as algorithmic and parallel scalability (when combined with HMG) make it an
appealing choice for challenging large-scale Stokes flow applications with highly heterogenous viscosity.
Since locally refined meshes are important in many applications, for instance in geophysics, extending
the treatment of boundary conditions in µ-BFBT to adaptively refined meshes is highly desirable.
This is the subject of our current research. Furthermore, we seek theoretical arguments that can
support the efficacy of µ-BFBT as a preconditioner and systematic derivations for modifications at
Dirichlet boundaries.

REFERENCES

[1] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley,
Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang, PETSc
users manual, Tech. Report ANL-95/11 - Revision 3.6, Argonne National Laboratory, 2015.

[2] Michele Benzi, Gene H. Golub, and Jörg Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[3] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Eh Tan, Tiankai Tu, Georg Stadler, Lucas C.
Wilcox, and Shijie Zhong, Scalable adaptive mantle convection simulation on petascale supercomputers,
in Proceedings of SC08, ACM/IEEE, 2008, pp. 1–15. Gordon Bell Prize finalist.

[4] Carsten Burstedde, Omar Ghattas, Georg Stadler, Tiankai Tu, and Lucas C. Wilcox, Parallel
scalable adjoint-based adaptive solution for variable-viscosity Stokes flows, Comput. Method. Appl. M., 198
(2009), pp. 1691–1700.

[5] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133.

[6] Howard C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J.
Sci. Comput., 20 (1999), pp. 1299–1316.

[7] Howard C. Elman, V. E. Howle, John Shadid, Robert Shuttleworth, and Ray Tuminaro, Block
preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–1668.

[8] Howard C. Elman, David J. Silvester, and Andrew J. Wathen, Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation,
Oxford University Press, Oxford, second ed., 2014.

[9] Howard C. Elman and Ray S. Tuminaro, Boundary conditions in approximate commutator preconditioners
for the Navier-Stokes equations, Electron. Trans. Numer. Anal., 35 (2009), pp. 257–280.

[10] Piotr P. Grinevich and Maxim A. Olshanskii, An iterative method for the Stokes-type problem with variable
viscosity, SIAM J. Sci. Comput., 31 (2009), pp. 3959–3978.

[11] Tobin Isaac, Georg Stadler, and Omar Ghattas, Solution of nonlinear Stokes equations discretized by
high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics,
SIAM J. Sci. Comput., 37 (2015), pp. B804–B833.

[12] David Kay, Daniel Loghin, and Andrew Wathen, A preconditioner for the steady-state Navier-Stokes
equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[13] Dave A. May, Jed Brown, and Laetitia Le Pourhiet, pTatin3D: High-performance methods for long-term
lithospheric dynamics, in Proceedings of SC14, IEEE Press, 2014, pp. 274–284.

[14] Dave A. May and Louis Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, Phys. Earth Planet. In., 171 (2008), pp. 33–47.

[15] Johann Rudi, A. Crisiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis, Yves Ineichen,
Costas Bekas, Alessandro Curioni, and Omar Ghattas, An extreme-scale implicit solver for complex
PDEs: Highly heterogeneous flow in earth’s mantle, in Proceedings of SC15, ACM, 2015, pp. 5:1–5:12. Winner
of Gordon Bell Prize.

[16] David J. Silvester, Howard C. Elman, David Kay, and Andrew J. Wathen, Efficient preconditioning
of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128 (2001),
pp. 261–279. Numerical analysis 2000, Vol. VII, Partial differential equations.

[17] Georg Stadler, Michael Gurnis, Carsten Burstedde, Lucas C. Wilcox, Laura Alisic, and Omar
Ghattas, The dynamics of plate tectonics and mantle flow: From local to global scales, Science, 329 (2010),
pp. 1033–1038.


