
ON THE SPECTRUM OF DEFLATED MATRICES WITH APPLICATIONS TO

THE DEFLATED SHIFTED LAPLACE PRECONDITIONER FOR THE

HELMHOLTZ EQUATION
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Abstract. The deflation technique to accelerate Krylov subspace iterative methods for the solution

of linear systems has been known for a long time. The first landmark papers are due to Nicolaides [21]
and Dostál [3] in the late eighties where deflation is used for Hermitian positive definite (HPD)

linear systems. In the last decade deflation was used and analyzed in combination with domain

decomposition and multigrid methods, which results in very effective algorithms. Examples are the
multilevel Krylov methods introduced in [6, 7], see also [24,25] where multilevel deflation techniques

are presented. Although these algorithms work very well in practice for non-Hermitian problems, not

much theoretical results are known so far in this direction. Here, we show inclusion regions for the
spectrum of an arbitrary deflated matrix based on the field of values, which generalize known results

for HPD systems. Moreover, for deflated GMRES we show a residual bound based on the field of

values. We apply our results to linear systems arising from the Helmholtz equation. We focus on
the combination of the complex shifted Laplace (CSL) preconditioner [8] with the multilevel Krylov

technique. Numerical examples indicate that the eigenvalues of the deflated CSL-preconditioned
system lie on exact the same circles as the CSL-preconditioned linear systems and are shifted away

from zero. Here we are able to prove these surprising results for any wavenumber and any dimension

using Möbius transformations and the Spectral Mapping Theorem. Our new results help to explain
the good performance of multilevel Krylov methods for the Helmholtz equation.

1. Introduction

The solution of linear systems of equations of the form

Ax = b,

where A ∈ Cn×n is nonsingular and x, b ∈ Cn, is a major component in numerical simulations arising
in scientific and engineering applications. When the matrix A is sparse, iterative methods based on
Krylov subspaces are often used. The convergence of Krylov subspace methods for Hermitian matrices
(as e.g., CG [14]) depends on the eigenvalues of A, while for non-Hermitian matrices the behaviour
of Krylov subspace methods (as, e.g., GMRES [23]) can only be directly linked to the eigenvalues
when the matrix is normal or close to normal (with the condition number of its matrix of eigenvectors
close to 1), see [18]. In these cases, if the eigenvalues of the matrix A are too spread or near zero the
convergence of the iteration can be slow. To obtain a better clustered spectrum, one can solve the
equivalent system of equations

M−1Ax = M−1b, (1)

with M an easily invertible matrix that approximates A in some sense. In this setting the matrix
M is known as a preconditioner. Alternatively, if the spectrum of A contains very small eigenvalues
these can be eliminated by deflating the corresponding eigenspaces. More precisely, suppose we want
to solve (1) using a Krylov subspace method, and the spectrum of A can be decomposed as

Λ(A) = {λ1, . . . , λr} ∪ {λr+1, . . . , λn}

where the eigenvalues λ1, . . . , λr are close to zero. If U ∈ Cn×r is a matrix whose columns span the
eigenspace U corresponding to the small eigenvalues, we can form the following deflation operator

P = I −AU(UHAU)−1UH , (2)

provided that UHAU is nonsingular, where UH denotes the Hermitian transpose of U . It can be shown
that the operator P is a projection with im(P ) = U⊥ and ker(P ) = AU . Since the spectrum of PA
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satisfies

Λ(PA) = {0} ∪ {λr+1, . . . , λn},
the problematic small eigenvalues are eliminated from the spectrum and a Krylov iteration to solve

PAx = Pb (3)

is expected to converge faster. In practice, exact eigenvectors are expensive to compute and the
deflation operator P in (2) is formed with a full-rank matrix U that contains approximate eigenvectors
of A. In this case we have

Λ(PA) = {0} ∪ {λ̃r+1, . . . , λ̃n},
where the nonzero eigenvalues λ̃j of PA may differ from the eigenvalues of A. It is then important to
quantify the difference between the nonzero spectrum of the deflated matrix PA and the spectrum of
the original matrix A and determine if the nonzero eigenvalues of PA can be shifted near zero or grow
increasingly large. Deflation for linear systems was introduced by Nicolaides [21] and Dostál [3], see
also [1,2,9,13,17,20]. The deflation technique is also related to multigrid methods, where the columns
of U are formed from the interpolation operator, see [27, 28] for a detailed comparison. Further,
deflation can be combined with standard preconditioning. One option is to precondition the deflated
system (3), it is also possible to first precondition the linear system and then construct the deflation

operator from the preconditioned matrix, i.e. first build Â = M−1A, and then use the projection

P̂ = I − ÂU(UHÂU)−1UH .

In the special case where A is Hermitian positive semidefinite (HPD) the deflated matrix PA is
Hermitian positive semidefinite, and it has been shown by Nicolaides [21] that for an HPD matrix A
and any operator P of the form (2) we have

λmin(A) ≤ λmin(PA), and λmax(PA) ≤ λmax(A). (4)

where λmin(PA), λmax(PA) denote the minimum nonzero eigenvalues of PA. Since the standard
worst-case residual bounds for the convergence of Krylov methods for HPD problems are based on
the condition number κ = λmin/λmax, this property provides some motivation for the use of deflation
techniques in this case.

In this paper we give a simple inclusion region for the eigenvalues of a deflated matrix PA that reduces
to (4) in the case of HPD matrices. We also give necessary and sufficient conditions on a matrix that
imply that the maximum eigenvalue of PA is bounded independently of the deflation subspace U . For a
normal matrix, the inclusion regions depend only on its eigenvalues. We will use a result that describes
the nonzero spectrum of PA shown by Gaul in [12], and by Kahl and Rittich [16] for HPD matrices.
We also present a field of values bound for deflated GMRES, which can be useful for non-normal
problems where the convergence cannot be linked to the eigenvalues. We then apply our results to
linear systems that arise from the discretization of the Helmholtz equation. We will focus here on the
multiplicative combination of a deflation operator with the discrete Helmholtz operator preconditioned
by the shifted Laplacian [8], one of the most efficient preconditioners currently in use. This operator
is then the basis of a multilevel Krylov method introduced in [6,7] which leads to convergence factors
that are just mildly dependent of the dimension of the linear system and the wave number. Using
results of [29] we will show that for a class of model problems the spectrum of the deflated deflated
CSL-preconditioned system lie on exact the same circles as the CSL-preconditioned linear systems and
are farther away from zero. This partially explains the improved performance of methods based on
the deflated shifted Laplacian in contrast to the shifted Laplace preconditioner.

2. Projections and Deflation

In this section we switch to the language of linear operators to present simpler matrix-free proofs of
the results that follow. Recall that a linear operator P is a projection if P 2 = P . A projection can be
completely characterized by its range and kernel. More precisely, if a projection P : Cn → Cn is given
then Cn = im(P ) ⊕ ker(P ), and further, if V, W are subspaces of Cn such that Cn = V ⊕W it can
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be shown that there exists a unique projection operator PV,W such that im(P ) = V and ker(P ) =W.
We first define some notation.

Definition 2.1. For a pair of closed subspaces V,W ⊂ Cn with Cn = im(P ) ⊕ ker(P ) the operator
PV,W is defined as the unique projection with im(P ) = V and ker(P ) = W. The projection PV,W is
called the projection onto V along W. The orthogonal projection PV,V⊥ onto V is denoted by PV .

Note that for a given projection PV,W the complementary projection is PW,V = I − PV,W . To use
deflation techniques for solving linear systems of equations, we will consider subspaces U with dimension
r and of the form AU , where A is the system matrix of the linear system. If a basis of the subspace U
is given, the projection PAU,U⊥ can be represented as described in the following theorem. For proof of
this theorem and other facts on projections we refer the reader to [12,22].

Theorem 2.2. Let U be a subspace of Cn of dimension r. Let U be a matrix whose columns form a
basis of U , and A ∈ Cn×n. Then the following are equivalent:

1. Cn = AU ⊕ U⊥.
2. UHAU ∈ Cr×r is nonsingular and the projection PAU,U⊥ can be represented by

PAU,U⊥ = AU(UHAU)−1UH .

3. UHAU ∈ Cr×r is nonsingular and the projection PU⊥,AU can be represented by

PU⊥,AU = I − PAU,U⊥ = I −AU(UHAU)−1UH .

4. AU ∩ U⊥ = {0}.

Thus, with the help of a basis of U we have

PU⊥,AU = I −AU(UHAU)−1UH = P,

which is the deflation operator given in (2). In the following we will use PU⊥,AU and P to denote the
basis free and the matrix (basis) oriented version of the projection, since the matrix version is much
more used in the literature of deflation techniques. But we point out that U is just a subspace of Cn,
not necessarily an invariant subspace, as is often associated with deflation.

The next theorem describes the spectrum of a deflated operator and is shown in [12], and in the special
case of Hermitian positive definite matrices in [16]. We include here our own proof for completeness.

Theorem 2.3 (Theorem 3.24 in [12]). Let A : Cn → Cn be a nonsingular linear operator and U a
subspace of Cn such that Cn = U⊥ ⊕ AU . Then, the operator PU⊥A−1|U⊥ : U⊥ → U⊥ is nonsingular
and

PU⊥,AUA = (PU⊥A−1|U⊥)−1PU⊥ . (5)

In particular, the spectrum satisfies

Λ(PU⊥,AUA) = {0} ∪ Λ
(
(PU⊥A−1|U⊥)−1

)
. (6)

Proof. Since PU⊥,AUA|U = 0, to prove (5) it is sufficient to show

PU⊥,AUA|U⊥
(
PU⊥A−1|U⊥

)
= I.

For every x ∈ Cn we have

PU⊥A−1x = A−1x− PUA−1x,

Applying PU⊥,AUA on both sides we get

(PU⊥,AUA)PU⊥A−1x = (PU⊥,AUA)(A−1x− PUA−1x)

= PU⊥,AUAA
−1x = PU⊥,AUx.

In particular, if x ∈ U⊥
(PU⊥,AUA|U⊥)(PU⊥A−1|U⊥)x = x,
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so the assertion is proved. The statement (6) follows from the fact that both U and U⊥ are PU⊥,AUA-

invariant subspaces, since U is the kernel of PU⊥,AUA and U⊥ is the range of PU⊥,AUA. Hence the
eigenvalues of

PU⊥,AUA = (PU⊥A−1|U⊥)−1PU⊥

are either zero or the eigenvalues of (PU⊥A−1|U⊥)−1. �

Corollary 2.4. Let A : Cn → Cn be a nonsingular linear operator and U a subspace of Cn such that
Cn = U⊥ ⊕AU . Moreover, let V be a matrix whose columns form an orthonormal basis of U⊥. Then
V HA−1V is nonsingular and

Λ(PU⊥,AUA) = Λ(PA) = {0} ∪ Λ((V HA−1V )−1). (7)

Proof. The matrix representation of PU⊥ is just PU⊥ = V V H . If T = [(T )ij ] is the matrix representa-
tion of PU⊥A−1|U⊥ in the orthonormal basis of U⊥ formed by the columns of V , then the ij-th entry
of T is given by

(T )ij = vHi (PU⊥A−1|U⊥vj) = vHi (V V HA−1vj)

= (V V Hvi)
HA−1vj = vHi A

−1vj = (V HA−1V )ij .

This implies by Theorem 2.3 that V HA−1V is nonsingular and with equation (6) we obtain (7). �

Note that for symmetric positive semidefinite matrices the well-known fact that PA is positive semi-
definite follows immediately from Corollary 2.4.

3. Deflation and the Field of Values

To set the stage for the following results, recall that for a matrix A ∈ Cn×n, the field of values of A is
the set

W (A) = {xHAx : x ∈ Cn, ‖x‖ = 1}.
Clearly Λ(A) ⊂W (A) for any matrix A. The Toeplitz-Hausdorff theorem states that field of values is
a convex set [15]. In particular, if A is normal and Λ(A) = {λ1, . . . , λn}, the field of values of A is the
convex hull of its spectrum:

W (A) = conv(Λ(A)) =

{
n∑
i=1

αiλi : αi ≥ 0, i = 1, . . . , n,

n∑
i=1

αi = 1, λi ∈ Λ(A)

}
The next lemma is stated as an exercise in [15].

Lemma 3.1. Let A ∈ Cn×n and Q ∈ Cn×r with QHQ = I ∈ Cr×r. Then

W (QHAQ) ⊂W (A).

Theorem 2.3 and Lemma 3.1 can be combined to give an inclusion set for the eigenvalues of a deflated
matrix.

Theorem 3.2. Let A ∈ Cn, and U ⊂ Cn a subspace such that Cn = U ⊕AU . Let P = PU⊥,AU be the

projection onto U⊥ along AU . Then the spectrum of PA satisfies

Λ(PA) \ {0} ⊂W (A−1)−1

Proof. Let r = dim(U), m = n− r and V ∈ Cn×m be a matrix with orthonormal columns that form a
basis for U⊥. Since V HV = I, we have, by Lemma 3.1 and Corollary 2.4

Λ(PU⊥,AUA) \ {0} ⊂ Λ
(
(PU⊥A−1|U⊥)−1

)
= Λ

(
PU⊥A−1|U⊥

)−1
= Λ((V HA−1V ))−1 ⊂W (A−1)−1.

�
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Theorem 3.2 shows that every nonzero element of Λ(PA) is the reciprocal of an element of the field of
values of A−1. When A is normal with eigenvalues λ1, λ2, . . . , λn, every z ∈ W (A−1)−1 is a weighted
harmonic mean of the eigenvalues of A,

z =

[
n∑
i=1

αjλ
−1
j

]−1

with αj ≥ 0 and
∑n
j= αj = 1. Therefore, for a normal matrix A, the inclusion region from Theorem

3.2 depends only on the eigenvalues of A.

Corollary 3.3. Let A ∈ Cn be normal, and U ⊂ Cn a subspace as in the hypothesis of Theorem 3.2.
Then the spectrum of P = PU⊥,AUA satisfies

Λ(PU⊥,AUA) \ {0} ⊂ conv(Λ(A−1))−1 = {z−1 : z ∈ conv(Λ(A−1))}.

In the HPD case, we have

conv(Λ(A−1)) = [λmax(A)−1, λmin(A)−1]

hence conv(Λ(A−1))−1 = [λmin(A), λmax(A)], so Theorem 3.2 is a generalization of (4). The connection
between the spectrum of a deflated matrix PA and the field of values of A−1 shown in Theorem 3.2
allows us to give bounds for the modulus of the eigenvalues of a deflated matrix. For a matrix A, we
denote by ν(A) the distance of the field of values to 0 and µ(A) the numerical radius, defined as

ν(A) = min{|z| : z ∈W (A)}, and µ(A) = max{|z| : z ∈W (A)}.

It is clear that ν(A) > 0 if and only if 0 /∈W (A). In view of the equality

W (A−1) =

{
xHA−1x

xHx
: x 6= 0

}
=

{
yHAHy

yHAHAy
: y 6= 0

}
,

the condition 0 /∈ W (A) is equivalent to 0 /∈ W (A−1). The following corollary of Theorem 3.2 gives
bounds for the minimum and maximum eigenvalues of A that are independent of the deflation subspace.

Corollary 3.4. Let A ∈ Cn and U ⊂ Cn a subspace such that Cn = U ⊕ AU . Let P = PU⊥,AU be

the projection onto U⊥ along AU . Let λmin(PA), λmax(PA) denote the nonzero eigenvalues of PA of
minimum and maximum modulus. Then

|λmin(PA)| ≥ µ(A−1)−1,

and, if ν(A) > 0, we also have

|λmax(PA)| ≤ ν(A−1)−1. (8)

Proof. By Theorem 3.2, we have, for every λ ∈ Λ(PA) \ {0},

|λ−1| ≤ µ(A−1),

therefore |λmin(PA)| ≥ µ(A−1)−1. The inequality for λmax(PA) is proved similarly. �

Corollary 3.5. Let A ∈ Cn be normal and U ⊂ Cn a subspace such that Cn = U ⊕ AU . Let PU⊥,AU
be the projection onto U⊥ along AU . If λmin(PA), λmax(PA) denote the nonzero eigenvalues of PA of
minimum and maximum modulus, then

|λmin(PA)| ≥ λmin(A), (9)

and, if ν(A) > 0, we also have

|λmax(PA)| ≤ λmax(A)2

ν(A)
. (10)
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Proof. To show (9), note that for a normal matrix A, we have µ(A−1) = |λmax(A−1)| = |λmin(A)−1|,
combining this with the first inequality from the previous corollary then (9) follows. For the second
part, we recall an inequality for ν(A−1) shown in [4]:

ν(A−1) = min
06=x∈Cn

xHA−1x

xHx
= min

06=y∈Cn

yHAHy

yHy

yHy

yHAHAy
≥ ν(A)

‖A‖2
. (11)

For a normal matrix A we have ‖A‖2 = λmax(A)2, so from (11) and the previous corollary we obtain
inequality (10). �

The condition ν(A) > 0 is necessary for the maximum nonzero eigenvalue λmax(PU⊥,AUA) to be
bounded above independently of the deflation subspace U . This follows from the fact that every
z = (xHA−1x)−1 ∈ W (A−1)−1 can be attained as an eigenvalue of a deflated matrix PU⊥,AUA by

choosing the deflation subspace U = {x}⊥. When ν(A) = 0 we have 0 ∈W (A), which implies that the
set W (A−1)−1 is unbounded.

4. A residual bound for deflated GMRES

As remarked in the introduction, eigenvalues alone may not be sufficient to determine the convergence
of GMRES for non-normal matrices. The field of values has been studied as an alternative set that
can provide information on GMRES convergence. In particular, if rk is the k-th residual of a GMRES
iteration, the following bound holds:

‖rk‖
‖r0‖

≤ (1− ν(A)ν(A−1))k/2. (12)

This bound is a generalization of a result due to Elman [5] for the residuals of the GCR method.
It was first proved by Starke in [26] for matrices with a positive-definite Hermitian part, and later
shown to hold in the general case by Eiermann and Ernst in [4], see also [19]. Since the bound is
only informative in the case where 0 /∈ W (A), it is not directly applicable to an iteration with a
(singular) deflated matrix PA. In order to overcome this problem we show now using Theorem 2.3
that a GMRES iteration with PA is equivalent to an iteration with a smaller nonsingular matrix M .
Further, we show that the quantities ν(M) and ν(M−1) are larger than the corresponding quantities
for A, thus improving the bound (12).

Theorem 4.1. Let A ∈ Cn×n, U a subspace of Cn and suppose that the deflation operator P = PU⊥,AU
is well defined. Moreover, let V ∈ Cm×m a matrix with orthonormal columns that form a basis for U⊥,
and M = (V HA−1V )−1. Then GMRES applied to the singular system PAx = b with a zero initial
guess generates the sames residuals as GMRES applied to the nonsingular system My = V Hb with a
zero initial guess.

Proof. From Corollary 2.4 we have thatM is well defined and is the matrix representation of (PU⊥A−1|U )−1

in the basis formed by the columns of V . Let U be a matrix with orthonormal columns that form
a basis for U , and let Y = [U V ]. Then Y is unitary, and Theorem 2.3 implies that PA can be
block-diagonalized in the basis given by the columns of Y ,

PA = [U V ]

[
0 0
0 (V HA−1V )−1

]
[U V ]

H
= [U V ]

[
0 0
0 M

]
[U V ]

H
. (13)

Therefore, for any polynomial p we have

p(PA) = [U V ]

[
0 0
0 p(M)

]
[U V ]

H
.

Let Πk denote the set of polynomials p of degree at most k such that p(0) = 1. The GMRES method
applied to PAx = b with a zero initial guess leads to a residual minimization problem in step k:

min
p∈Πk

‖p(PA)b‖ = min
p∈Πk

‖V p(M)V Hb‖ = min
p∈Πk

‖p(M)V Hb‖,
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where we have used in the last step that V has orthonormal columns. This is the same residual
minimization problem that results from applying GMRES to the system My = V Hb. completing the
proof. �

We remark that the matrix M from the previous theorem is only introduced for theoretical purposes
and is never formed explicitly, since the deflated GMRES iteration uses only the matrix PA. The next
theorem gives a bound for the residuals of the deflated GMRES method.

Theorem 4.2. Let A ∈ Cn×n, U , P , V and M as in the hypothesis of Theorem 4.1. Then

ν(M−1) ≥ ν(A−1), and ν(M) ≥ ν(A).

and for the k-th residual of GMRES applied to PAx = b, we have the bound

‖rk‖
‖r0‖

≤ (1− ν(M)ν(M−1))k/2.

Proof. The first inequality follows from the inclusion

W (M−1) = W (V HA−1V ) ⊂W (A−1).

For the second inequality, let zHMz
‖z‖ ∈W (M), then for y = (V HA−1V )−1z and x = A−1V y we have

|zHMz|
‖z‖

=
|zH(V HA−1V )−1z|

‖z‖
=
|yH(V HA−1V )y|

‖y‖

=
|xHAx|
‖V Hx‖

=
|xHAx|
‖V V Hx‖

≥ |x
HAx|
‖x‖

∈W (A),

where in the two last steps we have used that V has orthonormal columns and ‖V V Hx‖ ≤ ‖x‖ since
V V H is the matrix form of the orthogonal projection PU⊥ . This shows that ν(M) ≥ ν(A). The second
part of the theorem follows from the first, combined with Theorem 4.1 and the residual bound (12). �

5. The spectrum of the deflated shifted Laplace preconditioner for the Helmholtz
equation

In this section we use the previous results to analyze the spectrum of a deflated matrix arising from the
discretization of the Helmholtz equation. The Helmholtz equation is a fundamental physical model for
the propagation and scattering of waves, with applications arising in acoustics, seismics and medical
imaging, among other areas. For Ω = (0, 1)d and k ∈ R, we consider the model boundary value
problem:

−∆u− k2u = f and u = 0 on ∂Ω.

Equation (14) is known as the Helmholtz equation and k is the wavenumber. In practical applications
the dimension d is equal to 2 or 3 and the wavenumber can be large. After discretizing using finite
differences on a uniform grid Gh with grid size h, we obtain a system of equations of the form

Ax = b, where A = −∆h − k2I, (14)

with −∆h the discretized Laplacian. For accuracy of the solution the quantity kh must be kept
constant for increasing wave numbers k. This leads to a large linear system of equations that has to
be solved with (preconditioned) iterative methods. The design and analysis of iterative methods and
preconditioners for the discrete Helmholtz equation with d = 2 or d = 3 and high or non-constant
wavenumber is an active area of research, and no standard method exists at the moment. Since the
matrix −∆h is HPD, the spectrum Λ(−∆h) is real and positive. Moreover, the spectrum of −∆h

contains small eigenvalues, so the matrix A will have positive and negative eigenvalues with some of
them close to zero. The sparse linear system (14) is solved using Krylov subspace methods with a
preconditioner to accelerate the convergence. A widely used preconditioner for the Helmholtz equation
is the complex shifted Laplacian

M = −∆h − k2(β1 − iβ2)I, 0 ≤ β1, β2 ≤ 1. (15)
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The complex shifted Laplace (CSL) preconditioner was introduced in [8] and it is currently ranked
among the most efficient preconditioners for the Helmholtz equation. The resulting preconditioned
matrix is given by Â = M−1A. The CSL problem in (15) can be interpreted physically as a damped
Helmholtz problem, and this damping allows the preconditioner to be inverted efficiently with a multi-
grid method. The resulting preconditioned system has a more favorable eigenvalue distribution for
Krylov methods. One of the nice properties of the shifted Laplacian preconditioner is that the eigen-
values of Â lie on the boundary of a circle for our class of model problems. This was proved in [29],
here we give a shorter proof.

Theorem 5.1. Let A ∈ Cn and M ∈ Cn be given as in (14) and (15). Then the spectrum of M−1A
lies on the boundary of the circle

|z − c|2 = r2 (16)

with center c =
(

1
2 ,

1−β1

2β2

)
and radius r = 1

2

√
1 + (1−β1)2

β2
2

= |c|.

Proof. Observe that Â = T (−∆), where T is the Möbius transformation

T (z) =
z − k2

z − k2(β1 − iβ2)
.

The Spectral Mapping Theorem implies that Λ(Â) = T (Λ(−∆h)). Since a Möbius transformation maps
(generalized) circles to (generalized) circles in the complex plane, the image of the real line under T is
a circle. A straightforward computation shows that R is mapped to the circle

|z − c|2 = r2 (17)

with center c =
(

1
2 ,

1−β1

2β2

)
and radius r = 1

2

√
1 + (1−β1)2

β2
2

= |c|. Therefore, the eigenvalues of the

preconditioned matrix Â lie also on this circle. �

For low wave numbers k ∈ R the spectrum of the matrix lies on an arc close to (1, 0) but for increasing

wave numbers the spectrum of Â contains very small eigenvalues that slow down the convergence of
a Krylov solver, see also [10]. It was proposed in [7] to accelerate the convergence using a coarse grid
correction operator scheme that resembles a deflation operator. This technique can be described as
follows. We consider the coarse grid G2h ⊂ Gh and let Z and Y be the standard linear interpolation
and full-weight restriction operators. The intergrid operators satisfy Z = cY T for a constant c that
depends on the dimension d. The resulting two-grid correction matrix

PTG = I − ÂZ(ZÂZT )−1ZT (18)

is a deflation operator, and is the basis of a multilevel Krylov method introduced in [7], which leads
to convergence factors that are just mildly dependent of the dimension of the linear system and the
wave number.

Note that since the eigenvalues of the (normal) matrix Â lie on the right half of the complex plane,

which is a convex set, we have 0 /∈ W (Â) = conv(Λ(Â)), and this implies that the coarse grid system

ZÂZT is nonsingular and the projection PTG is well-defined. It has been observed in numerical
experiments that the eigenvalues of PTGÂ lie on the same circles as the eigenvalues of M−1A for one
dimensional problems, and that the smallest eigenvalue (in modulus) is larger than the corresponding

eigenvalue of M−1A. Explicit formulas for the eigenvalues of PTGÂ for the one-dimensional Helmholtz
equation are given in [11]. Here we are able to prove that the above mentioned observations hold not
only for 1D but for larger dimensions as well.

Theorem 5.2. Let A,M ∈ Cn be given as in (14) and (15). Let PTG ∈ Cn be given as in (18).
Then the spectrum of PTG lies on the boundary of the same circle as the spectrum of M−1A, i.e. the
spectrum of PTG lies on the boundary of the circle

|z − c|2 = r2 (19)
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Figure 1. Nonzero spectrum of Â (left) and PTGÂ (right) for β1 = 1, β2 = 0.5 and various values of k, and kh.

with center c =
(

1
2 ,

1−β1

2β2

)
and radius r = 1

2

√
1 + (1−β1)2

β2
2

= |c|. Moreover,

|λmin(Â)| ≤ |λmin(PTGÂ)|. (20)

Proof. By Theorem 3.2, we have

Λ(PTGA) \ {0} ⊂ conv(Λ(Â−1))−1.

Since Â−1 = T̂ (−∆) for the Möbius transformation T̂ (z) = (z − k2(β1 − iβ2)/(z − k2), we have

Λ(Â−1) = T̂ (−Λ(∆)) ⊂ T (R). The image of the real line under T̂ is the line on the complex plane

that goes through the points p1 = (β1,−β2) and p2 = (1, 0). Therefore, the set conv(Λ(Â)−1) is the

line segment bounded by T̂ (0) = (β1,−β2) and T̂ (∞) = (1, 0). The image of this line segment under
the inversion z 7→ 1/z is contained in the circle described by equation (19). Equation (20) follows
immediately from Corollary 3.5 �

Thus we proved the surprising fact that the eigenvalues of the shifted Laplace preconditioned system
stay on the the same circles after applying deflation. However, they are much better clustered. Figure
1 illustrates the situation for one-dimensional Helmholtz problems.
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