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Abstract. This paper discusses the design and implementation of efficient solution algorithms
for symmetric and nonsymmetric linear systems associated with finite element approximation of
partial differential equations. The novel feature of our preconditioned MINRES solver (for symmetric
systems) and preconditioned GMRES solver (for nonsymmetric systems) is the incorporation of error
control in the natural norm (associated with the specific approximation space) in combination with a
reliable and efficient a posteriori estimator for the PDE approximation error. This leads to a robust
and balanced inbuilt stopping criterion: the iteration is terminated as soon as the algebraic error is
insignificant compared to the approximation error.
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1. Introduction. Mathematical models of many real-world phenomena often
formulate as partial differential equations (PDEs) with boundary and/or initial con-
ditions. Finite element methods are powerful tools for computing numerical solution
of PDEs. Galerkin finite element approximation in space leads to a single linear(ized)
system of equations whose coefficient matrix is ill-conditioned with respect to dis-
cretization parameters. Since the coefficient matrix has a well-defined sparse struc-
ture, iterative solution strategies can be effective nevertheless. The choice of iterative
solver for solving the linear system depends on the nature of the coefficient matrix.
Bubnov–Galerkin finite element (use of same trial and test functions) approxima-
tion of a diffusion equation leads to a symmetric positive definite linear system while
Petrov–Galerkin finite element (use of different trial and test functions) approxima-
tion usually leads to a nonsymmetric linear system. Although the preconditioned
conjugate gradient (CG) methods are commonly used to solve symmetric positive
definite linear systems we will use the classic MINRES (minimal residual) algorithm
of Paige & Saunders [12] to solve them. To solve nonsymmetric linear systems we will
use the GMRES (generalized minimal residual) algorithm of Saad & Schultz [15].

Wathen [18] observed that finite element approximation of PDEs endows the
problem with a ‘natural’ norm that is determined by the specific approximation space.
Thus, in finite element setting, the PDE approximation error, the linear algebra error
(algebraic error) and the total error at any iteration step are measured in this ‘natural’
norm. Henceforth, any reference to these errors will imply these errors measured in
the ‘natural’ norm.

This paper investigates devising a ‘balanced’ inbuilt stopping criterion for iterative
solvers of nonsymmetric and symmetric positive definite linear systems with PDE
origins. This is an active research field (see Silvester & Simoncini [17], Arioli et
al. [2]). The essence of the balanced stopping test is—the total error at any iteration
step is approximately the sum of the approximation error and the algebraic error. For
chosen discretization and problem parameters the approximation error is fixed but
usually unknown. By balancing the algebraic error and the total error a ‘balanced’
inbuilt stopping test is obtained. In the finite element setting, the total error and
the approximation error can be estimated using reliable and efficient a posteriori
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error estimators. Obtaining ‘effective’ upper and lower bounds on the algebraic error
in terms of the readily computable and monotonically decreasing quantities of our
chosen iterative solver is the novel feature of our stopping strategy.

The paper is structured as follows. We set up our symmetric positive definite
linear algebra problem in section 2. This section also develops the rationale of our
balanced stopping criterion. In section 3 using the S–IFISS toolbox [16] we present
some computational results based on our stopping test for the target symmetric posi-
tive definite linear system. We set up our nonsymmetric linear system in section 4. In
this section we also develop our balanced stopping test for the target nonsymmetric
linear system. In section 5 we present a set of computational results that can be repro-
duced using the IFISS toolbox [7] and which confirm the effectiveness of our balanced
stopping test. The section 6 contains the conclusions. Throughout the discussion R

will denote the set of real numbers.

2. Parameter dependent linear systems. Parameterized linear systems are
ubiquitous (see Butler et al. [4]). Here the entries of the matrix A and the solution vec-
tor u depend upon a finite numberm ∈ {1, 2, . . .} of parameters y = [y1, y2, . . . , ym].

A(y)u(y) = f.

Symmetric systems of this type arise in the solution of linear elliptic PDEs with
random coefficients. An example might be a heat conduction problem in a region
with m different materials: each having thermal conductivity coefficient that is not
known precisely. This can be modelled as a stochastic steady-state diffusion PDE.1

2.1. Stochastic steady-state diffusion PDE. The stochastic steady diffusion
equation is a model PDE which fits into the above framework. Let us suppose that
the steady diffusion process is defined in a spatial domain D ⊂ R

d, with an isotropic
permeability tensor K = κI where κ : D × Γ → R is parameterized by m i.i.d.
centered random variables, so that

(2.1) κ(~x, y1, . . . , ym) := µ(~x) + σ
m∑

k=1

ψk(~x) yk.

Here µ(~x) is the mean value of the permeability coefficient at the point ~x ∈ D,σ is
the standard deviation of the parameter variation, yk ∈ Γk is the image of the kth
random variable, Γ := Γ1 × · · · × Γm and {ψk}mk=1 are given functions defined on D.

The associated solution u(~x,y) : D × Γ → R satisfies almost surely

−∇ · K(~x,y)∇u(~x,y) = f(~x), ~x ∈ D ⊂ R
d, (d = 2, 3), y ∈ Γ,(2.2a)

u(~x,y) = g(~x), ~x ∈ ∂DD, y ∈ Γ,(2.2b)

K(~x,y)∇u(~x,y) · ~n = 0, ~x ∈ ∂DN = ∂D\∂DD, y ∈ Γ,(2.2c)

where ∂DD, ∂DN are the Dirichlet and the Neumann part of the spatial boundary
∂D. The vector ~n is the outward normal to ∂D. The source function f and the
boundary data g are given deterministic functions.

1Stochastic Galerkin finite element (see Deb et al. [5]) approximation of a parameterized PDE
results in a huge linear system. Since the existing storage requirements and computational flops
increase with the size of a linear system, an inbuilt balanced stopping test will significantly reduce
the computational work.
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The weak formulation of (2.2) is to find u such that u − ĝ ∈ W satisfies

(2.3)

∫

Γ

ρ(y)

∫

D

K(~x,y)∇u(~x,y) · ∇w(~x,y) d~xdy =

∫

Γ

ρ(y)

∫

D

f(~x)w(~x,y) d~xdy,

for all w ∈W (the space is defined below). Here ĝ is a smooth extension of g into the
domain and ρ(y) denotes the joint probability density function defined on the product
set Γ of a multivariate random variable defined on a probability space2 (Γ,B(Γ), π).

Note that the left side of (2.3) characterizes the energy norm

(2.4) ‖w‖2E :=

∫

Γ

ρ(y)

∫

D

K(~x,y) |∇w(~x,y)|2 d~xdy,

so that the solution space is W := {u : ‖u‖E <∞, u|∂DD×Γ = 0} = H1
0 (D)⊗ L2(Γ).

Stochastic Galerkin approximation of (2.3) is associated with choosing finite di-
mensional subspaces of the component spaces, that is Xh ⊂ H1

0 (D), Sp ⊂ L2(Γ) and
setting Xh ⊗ Sp =: Wh,p ⊂ W (see Lord et al. [11, section 9.5]). The parameter
approximation space Sp consists of global (multivariate) polynomials of total poly-
nomial degree ≤ p in the m parameters. The choice for Xh in a two-dimensional
spatial domain is the usual piecewise bilinear (Q1) or biquadratic (Q2) finite element
approximation.

This leads to the huge linear system with a Kronecker product (⊗) structure

(2.5) Ax = f ⇐⇒
(
I ⊗A0 + σ

∑m
k=1Gk ⊗Ak

)
x = f .

The matrices A0 and Ak are essentially the sparse finite element stiffness matrices
while Gk are the weighted gram matrices associated with the kth parameter. For
the space Sp, it is sensible to choose a basis set {ξj}nξ

j=1 that is orthonormal with
respect to the probability measure π. This leads to sparse matrices Gk (G0 = I,
at most two nonzeros in any row otherwise) and means that matrix-vector products
with the coefficient matrix A in (2.5) are cheap to compute—an essential ingredient
for a computationally efficient iterative solution strategy. We note that if (2.3) is
well posed, A is a symmetric positive-definite matrix. Also, since A is usually ill-
conditioned with respect to stochastic and finite element discretization parameters,
a preconditioner M is required. If σ is small relative to ‖A0‖, the positive-definite
matrix M− 1 := I ⊗ A0 will be a close approximation to A. This is known as mean
based preconditioning see Powell & Elman [14].

2.2. A posteriori error estimation. A measure that is equally important is
the energy norm of the solution when the permeability coefficient is given by the mean
field, that is

(2.6) ‖w‖2E0
:=

∫

Γ

ρ(y)

∫

D

µ(~x) |∇w(~x,y)|2 d~xdy

The key point here is that the two norms are equivalent whenever the formula-
tion (2.3) is well posed (see Bespalov et al. [3, Proposition 4.2]); that is, there exist
positive constants λ and Λ such that

(2.7) λ‖w‖2E0
≤ ‖w‖2E ≤ Λ‖w‖2E0

∀w ∈ W.

2The triple (Γ,B(Γ), π) is assumed to define a probability space, see Lord et al. [11, section 4.1].

3



Let u, uhp, u
(k)
hp denote the true solution, exact numerical solution and numerical

solution at the kth step of our iterative solver respectively. Then using the local
problem error estimation strategy developed in [3, Lemma 4.1], one can approximate

the mean energy error ‖u− u
(k)
hp ‖E0 a posteriori. In light of (2.7) one can compute an

a posteriori error estimate η(k) for the total error at iteration k in the sense that [3,
Theorem 4.1]

(2.8) c η(k) ≤ ‖u− u
(k)
hp ‖E ≤ C η(k), with

C

c
∼ O(1).

By Galerkin orthogonality at iteration k

(2.9) ‖u− u
(k)
hp ‖2E

︸ ︷︷ ︸

total error

= ‖u− uhp‖2E
︸ ︷︷ ︸

approximation error

+ ‖uhp − u
(k)
hp ‖2E

︸ ︷︷ ︸

algebraic error

.

Thus, assuming the a posteriori energy estimates η(k) and η are close (reliable and
efficient)3 estimates of the total error and the approximation error at the kth iteration
step, (2.9) can be rewritten as

(2.10) (η(k))2 ≃ η2 + ‖e(k)‖2A,

where ‖uhp − u
(k)
hp ‖2E = ‖e(k)‖2A := e(k)

TA e(k) = r(k)
TA− 1 r(k),

and e(k), r(k) denote the iteration error and the residual at the kth iteration step.
The equivalence relation (≃) follows directly from (2.8). Note that the approx-

imation error is fixed for chosen stochastic and spatial parameters. Thus, we are
essentially constructing a sequence {η(k)} converging to η. A balanced stopping point
is when the contribution of the algebraic error in the sum (2.10) becomes insignificant.
So, we stop at iteration k∗, the smallest value of k such that

(2.11) ‖e(k∗)‖A ≤ η(k
∗).

Although preconditioned CG is used for solving symmetric positive definite linear
systems, devising balanced stopping criterion using (2.11) is not easy [10]. The exact
algebraic error is usually unknown. Computation of the algebraic error at any iteration
step k using quantities available at iteration k + d of preconditioned CG have been
devised (see Arioli [1]).4 But an optimal choice of the ‘delay’ parameter d for a
generic problem is still an open question. Thus, we devise a balanced stopping test
for preconditioned MINRES to solve symmetric positive definite linear systems.

2.3. A balanced stopping test for MINRES. In preconditioned MINRES,

the quantity ‖r(k)‖M :=
√

r(k)
TMr(k)5 is readily computable and monotonically de-

creasing. We will obtain bounds for ‖e(k)‖A in terms of ‖r(k)‖M. Since algebraic error

‖e(k)‖2A = r(k)
TA−1r(k), this involves calculating the Rayleigh quotient (see Golub &

Van Loan [8, p. 453]) bounds for A−1 and M. This is equivalent to calculating the
largest (Θ) and the smallest (θ) eigenvalue of the preconditioned matrix MA.

(2.12)
1

Θ
≤ (r(0))

TA− 1 r(0)

(r(0))
TM r(0)

,
(r(k))

TA− 1 r(k)

(r(k))
TM r(k)

≤ 1

θ
,

3This can be seen from the column for effectivity index η/(exact approximation error) in Tables
1 and 2 [3]. The effectivity is quite close to 1 thereby indicating that η is reliable and efficient.

4We have also devised a balanced stopping test for preconditioned CG using (2.11). However,
we do not mention the results in this paper.

5Here ‖ · ‖M indeed defines a norm since M is always a symmetric positive-definite matrix.
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‖e(k)‖A
‖e(0)‖A

≤
√

Θ

θ

‖r(k)‖M
‖r(0)‖M

⇐⇒ ‖e(k)‖A ≤
√
Θ

θ
‖r(k)‖M.(2.13a)

‖e(k)‖A ≤ 1√
θ
‖r(k)‖M.(2.13b)

The tighter bound (2.13b) will be used here. From (2.11) and (2.13b), we stop at
iteration k∗, which is the smallest value of k such that

(2.14)
1√
θ
‖r(k∗)‖M ≤ η(k

∗).

3. Computational results. To provide a proof of concept, we present the re-
sults of computational experiments when stopping test (2.14) is applied to precondi-
tioned symmetric positive definite linear systems arising from the model problem (2.2).

Following Deb et al. [5] the PDE problem (2.2) will be defined on a square do-
main D = (− 1, 1) × (− 1, 1) with zero Dirichlet boundary conditions everywhere
on the boundary and f(x1, x2) = 1

8 (2 − x21 − x22), ∀ (x1, x2) ∈ D. Rectangular
Q1 (piecewise bilinear) finite elements are used on a uniform grid with mesh size
h = 21− ℓ, ℓ = 3, 4, 5, 6. The diffusion coefficient κ in (2.1) is parameterized by
uniform random variables defined on Γk = [−1, 1], and the parameter approxima-
tion space Sp is spanned by complete Legendre polynomials of degree p = 3. The
mean field in the expansion (2.1) is constant, µ(x) = 1. The correlation length
is 2 in each coordinate direction and the spatial functions ψk =

√
3λk ϕk in (2.1)

are associated with eigenpairs {(λk, ϕk)}mk=1 of the (separable) covariance operator6

C(~x, ~x′) = σ2 exp
(
− 1

2‖~x− ~x′‖ℓ1
)
, ~x, ~x′ ∈ D ⊂ R

2. We present results for different
number of random variables m, standard deviation σ and mesh parameter h. A
reference algebraic solution x can be computed in each case by solving the precondi-
tioned discrete system with an absolute preconditioned residual (‖r(k)‖M) reduction
tolerance of 1e-14. Corresponding to this highly accurate solution x, a reference a
posteriori error estimate η can also be generated. The initial vector x(0) for the solver
is generated using MATLAB function rand.7

Representative results are presented in Figure 3.1. Each subplot shows the evo-
lution of ‖r(k)‖M, a posterior error estimator η(k) and 1√

θ
‖r(k)‖M at each iteration

step k; with θ estimated8 on the fly9 as the smallest Ritz value θ(k) of the tridiagonal
Lanczos matrix in the Lanczos process of preconditioned MINRES; full details can
be found in Greenbaum [9, section 2.5] The extremal Ritz values provide an accu-
rate estimate of the extremal eigenvalues, even when iteration number k is small (see
Parlett [13, chapter 13]). It can be seen that the sequence {η(k)} converges to the
reference a posteriori error η on each plot. Note that we have taken 9 more extra
iterations after convergence to check stopping at the correct place. Though we have
computed η(k) at each step here to illustrate our method, in practice it should be

6The problem can be set up in S–IFISS by selecting example 2 in the driver
stoch diff testproblem.

7The same initial vector is used for generating the reference solution and the algebraic solution
based on our stopping test (2.14).

8Since the size of the linear system is huge, the matrix is neither computed/assembled in a prac-
tical implementation. So, MATLAB function eig/eigs cannot be used here to compute eigenvalues.

9Also we know that λ ≤ θ and Θ ≤ Λ. This is not useful information in general, since a priori
estimates of λ and Λ are pessimistic and/or hard to find.
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computed periodically (for example, every 4-5 iterations) to have a minor impact on
the overall algorithmic cost. Notice that the curves for ‖r(k)‖M and 1√

θ(k)
‖r(k)‖M

are not parallel initially but soon become parallel as θ(k) converges to θ. The plots
in Figure 3.2 further confirm this observation. In fact our computational experiments
suggest no sign of the problematic ‘ghost’ (spurious) eigenvalues [8, p. 566] in any of
these computations (see Figure 3.2).

To show the effectiveness of our stopping test (for various problem parameters),
the iteration counts k∗ needed to satisfy the stopping test (2.14) have been com-
pared in Table 3.1 with iteration counts k1 needed to satisfy a fixed absolute residual
(‖r(k)‖M) reduction tolerance of 1e-5. This tolerance value is a realistic user-input
tolerance choice in the absence of inbuilt stopping test (2.14).10 The table indicates
that the number of iterations for convergence remains bounded even as the spatial
grid is refined. This reconfirms that the mean based preconditioner M is spectrally
equivalent to A. Also when σ is increased, θ becomes increasingly smaller (close to
zero).11 The number of iterations for convergence based on (2.14) in the Table 3.1.1
is at least twice less as compared to those in Tables 3.1.2–3.1.3. Let η(k

∗) be the
corresponding a posteriori error estimate at the optimal stopping iteration k∗ and
eη∗ := |η − η(k

∗)|. The eη∗ columns in Table 3.1 show that η(k
∗) has converged

with a ‘good’ accuracy to the reference a posteriori error estimate η. Comparing the
columns for iteration counts, we find that for the same approximation error we save
a significant number of iterations by using our stopping test as compared to iteration
counts k1. This would result in significant savings in computational work of the solver
(as compared to using fixed absolute residual (‖r(k)‖M) reduction tolerance of 1e-5
or tighter) if one were to solve the discrete preconditioned linear systems arising from
adaptive finite element for the problem parameters. The number of degrees of freedom

(#dof) of the resulting finite dimensional space which is equal to (m+p)!
m!p! (2l − 1)2 is

also tabulated. The savings in the computational work of the iterative solver becomes
further significant in light of the huge size of these linear systems.

Table 3.1

Iteration counts for various problem parameters (Tables 3.1.1–3.1.3 (left–right))

ℓ σ = 0.3, m = 3 and p = 3 σ = 0.5, m = 3 and p = 3 σ = 0.5, m = 7 and p = 3

k1 k∗ eη∗ #dof k1 k∗ eη∗ #dof k1 k∗ eη∗ #dof
3 12 6 7.2e-5 2744 26 11 2.2e-3 2744 33 13 7.8e-4 5880
4 13 7 2.1e-5 12600 30 14 5.5e-5 12600 43 18 8.9e-4 27000
5 13 8 1.5e-5 53816 31 16 2.5e-4 53816 48 22 1.2e-3 115320
6 14 9 7.2e-6 222264 33 17 7.3e-4 222264 52 26 2.5e-4 476280

4. A balanced stopping test for GMRES. In this section we will develop
a balanced stopping test based on GMRES for solving nonsymmetric linear systems.
The underlying PDE will be the deterministic convection-diffusion equation.12

10The user will not know in general the stopping point k∗ a priori and is likely to provide a tighter
tolerance than actually required. This would lead to wastage of computational work and time.

11Sharp bounds [1− τ, 1+ τ ] for the Rayleigh quotient are established by Powell & Elman in [14,
Theorem 3.8], where the factor τ is the sum of the norms ‖ψk‖∞ of the functions in (2.1).

12The choice of deterministic convection-diffusion equation has been made because efficient and
reliable a posteriori error estimators for parameteric version of this PDE have not been devised.

6



0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

iteration number

lo
g(

re
si

du
al

s 
an

d 
a 

po
st

er
io

ri 
er

ro
r)

 

 
1√
θ(k)

‖r(k)‖M
‖r(k)‖M
η(k)
η

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

iteration number

lo
g(

re
si

du
al

s 
an

d 
a 

po
st

er
io

ri 
er

ro
r)

 

 
1√
θ(k)

‖r(k)‖M
‖r(k)‖M
η(k)
η

Fig. 3.1. Convergence plots for preconditioned MINRES with h = 1/32, p = 3 | m = 5, σ = 0.5
(left), m = 7, σ = 0.5 (right).
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Fig. 3.2. Ritz values plots with m = 5, p = 3 | h = 1/16, σ = 0.3 (left) h = 1/8, σ = 0.5 (right).

4.1. Convection-diffusion PDE. Find the solution u(~x) : D → R such that

−∇ · ǫ∇u(~x) + ~w(~x) · ∇u(~x) = f(~x), ~x ∈ D ⊂ R
d (d = 2, 3),

u(~x) = gD(~x), ~x ∈ ∂DD,

∇u(~x) · ~n = gN (~x), ~x ∈ ∂DN = ∂D\∂DD.

(4.1)

Here D is the spatial domain, ~w denotes the wind velocity and ǫ > 0 is the diffusion
coefficient. The source function f and the boundary data gD, gN are given functions.
The boundary ∂D is the union of Dirichlet ∂DD and Neumann ∂DN components and
~n is the outward normal to the boundary.

The weak formulation of (4.1) is to find u ∈ H1
E such that

(4.2) ǫ

∫

D

∇u·∇v d~x +

∫

D

(w ·∇u)v d~x =

∫

D

fv d~x+ ǫ

∫

∂DN

gNv d~x, ∀ v ∈ H1
E0
.

HereH1
E := {u ∈ H1(D) |u = gD on ∂DD}, H1

E0
:= {u ∈ H1(D) |u = 0 on ∂DD}.

Provided that (4.2) is well posed (see Elman et al. [6, p. 242]), the Petrov–
Galerkin finite element method with streamline diffusion method [6, p. 251] results
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in the nonsingular linear system

(4.3) Fx = f or equivalently MFx = Mf .

Here M is a preconditioner. The linear system can be written as F = ǫA +N + S
[6, chapter 6]. Here A is a symmetric (diffusion matrix) positive definite matrix, N
is a skew symmetric matrix (convection matrix) and S is the positive semi-definite
stabilization matrix. Since F is nonsymmetric (if ~w 6= ~0) (preconditioned) GMRES
is used to solve (4.3).

The ‘natural’ norm for Sobolev space H1(D) is the L2(D) norm of the gradient
[18]. The a posteriori error estimators η(k), η are computed in this ‘natural’ norm
which is inbuilt in IFISS [6, p. 264-265].

At iteration k, the triangle inequality gives

(4.4) ‖u− u
(k)
h ‖2E

︸ ︷︷ ︸

total error

≤ ‖u− uh‖2E
︸ ︷︷ ︸

approximation error

+ ‖uh − u
(k)
h ‖2E

︸ ︷︷ ︸

algebraic error

,

where u is the true solution, uh is the exact numerical approximation, u
(k)
h is the

finite element approximation corresponding to iterate x(k) and ‖ · ‖E denotes the
L2(D) norm of the gradient.
Rewriting (4.4) in terms of the a posteriori error estimators and iteration error e(k)

(4.5) (η(k))2 <
∼

η2 + ‖e(k)‖2A,

where ‖uh − u
(k)
h ‖2E = ‖e(k)‖2A := e(k)

TA e(k).

4.2. Balanced stopping test for preconditioned GMRES. We have

r(k) = Fe(k) =⇒ e(k) = F−1r(k) =⇒ ‖e(k)‖2A = r(k)
TF−TAF−1r(k).

Assuming F is diagonalizable then in GMRES, ‖r(k)‖2 :=
√

r(k)
T
r(k) is monoton-

ically decreasing and readily computable. So, we will obtain bounds for ‖e(k)‖A in
terms of ‖r(k)‖2. This involves computing the Rayleigh quotient bounds of F−TAF−1

and the identity matrix I—θ ≤ r
(k)TF−TAF−1

r
(k)

r
(k)TI r

(k)
≤ Θ. Here θ, Θ are respectively

the smallest and the largest eigenvalue of F−TAF−1. This leads to13

‖e(k)‖A ≤ Θ√
θ
‖r(k)‖2.(4.6a)

‖e(k)‖A ≤
√
Θ ‖r(k)‖2.(4.6b)

Using the tighter bound (4.6b), we stop at iteration k∗, which is the smallest value of
k such that

(4.7)
√
Θ ‖r(k∗)‖2 ≤ η(k

∗)

Cheap, efficient and reliable14 a posteriori error estimator η(k) is inbuilt in IFISS. As
mentioned earlier, η(k) can be computed periodically to have a minor impact on the

13We have also devised a balanced stopping test in GMRES for linear system arising from every
step of Picard and/or Newton step in Navier–Stokes equation but we do not mention results here.

14Reliability of the a posteriori estimator in this case not always guaranteed on coarser grids. This
might result in an overestimation of the total error and hence premature stopping of our GMRES
solver. In such situations the stopping test (4.6a) should be used.
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Table 5.1

Iteration counts and errors for GMRES solver

ℓ ILU AMG #dof

k1 k∗ eη∗ k1 k∗ eη∗

3 6 2 1.4e-2 5 2 1.5e-2 81
4 9 3 6.2e-3 5 3 2.6e-3 289
5 16 8 1.9e-3 5 3 8.9e-4 1089
6 37 19 5.0e-4 4 4 7.3e-5 4225

overall algorithmic cost. But we compute it here at every iteration step to show the
effectiveness of our balanced stopping test. Computing the Rayleigh quotient bounds
is equivalent to solving for the extremal eigenvalues of the generalized eigenvalue prob-
lem for A and FTF . The matrices FTF and A are both symmetric positive definite
and thus, the generalized eigenvalue problem can be converted to a symmetric posi-
tive definite algebraic eigenvalue problem through a Cholesky factorization of FTF .
Hence, all the eigenvalues of F−TAF−1 are real and greater than zero. The finite
element matrices obtained are quite sparse and relatively ‘small’ (see the rightmost
column in Table 4.1), so the eigenvalues in the stopping test can be computed cheaply
through MATLAB function eigs.15

5. Computational results. Again, to provide a proof of concept, we present
the results of computational experiments when stopping test (4.7) is applied to pre-
conditioned nonsymmetric linear systems arising from the model problem (4.1). Fol-
lowing [6, p. 240] the PDE problem (4.1) will be defined on a square domain
D = (− 1, 1) × (− 1, 1). The source function is f(x1, x2) = 0, ∀ (x1, x2) ∈ D. The
wind velocity ~w = (2x2(1 − x21), −2x1((1 − x22)) and zero Dirichlet boundary con-
ditions are imposed everywhere on the boundary except at x1 = 1 where u = 1.
Rectangular Q1 (piecewise bilinear) finite elements are used on a uniform grid with
mesh size h = 21− ℓ, ℓ = 3, 4, 5, 6. The diffusion coefficient ǫ = 1/64 is fixed and
the optimal inbuilt value of SUPG stabilization parameter [6, p. 253] is used.16 The
inbuilt preconditioners in IFISS–incomplete Cholesky factorization [6, p. 83] and al-
gebraic multigrid (AMG) [6, p. 314] are used to solve (4.3) using preconditioned
GMRES. In MATLAB notation incomplete LU (ILU) [L,U ] = ilu (F ). The AMG
preconditioner is used with its default inbuilt options in IFISS.

We present results for a hierarchy of finite element grids. For each grid, a reference
solution x is computed using MATLAB backslash (Gaussian elimination) function
along with the corresponding reference a posteriori error estimate η. The random
initial vector is generated by MATLAB function rand. Let η(k

∗) be the corresponding
a posteriori error estimate at the balanced stopping iteration step k∗ and let eη∗ :=
|η − η(k

∗)|. The eη∗ columns in Table 5.1 show that η(k
∗) has converged with some

accuracy to the reference a posteriori error estimate η. A comparison of the iteration
counts k∗ based on (4.7) with iteration counts k1 (to satisfy a fixed absolute residual
‖r(k)‖2 reduction tolerance of 1e-5) indicates significant savings in iteration counts
especially if one is solving adaptively. Representative results are presented in Figure
5.1. Each subplot shows the evolution of η(k), ‖r(k)‖2 and

√
Θ ‖r(k)‖2 with iteration

index k. When ‖e(k)‖A is insignificant in (4.5), {η(k)} converges to η. In order to
illustrate convergence we have taken nine more iterations after balanced stopping.

6. Conclusion. We have devised a balanced stopping test for symmetric positive
definite and nonsymmetric linear systems with PDE origins. The viewpoint taken is
that consideration of the PDE origins of such systems is essential to devise a balanced
stopping test. It is shown that if a reliable and efficient a posteriori error estimation
routine is available then a balanced inbuilt stopping criterion can be realized.

15For huge systems an alternative way of estimating the extremal eigenvalues needs to be devised.
16The problem can be setup by selecting problem 4 in the driver cd testproblem of IFISS.
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Fig. 5.1. Convergence plots for ILU (left) and AMG (right) preconditioned GMRES for h = 1/32.
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[5] M. K. Deb, I. M. Babuška, and J. T. Oden, Solution of stochastic partial differential equa-
tions using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg, 190
(2001), pp. 6359–6372.

[6] Howard Elman, David Silvester, and Andy Wathen, Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press,
Oxford, UK, 2014. Second Edition.

[7] Howard C. Elman, Alison Ramage, and David J. Silvester, IFISS: A computational labora-
tory for investigating incompressible flow problems, SIAM Review, 56 (2014), pp. 261–273.

[8] Gene Golub and Charles Van Loan, Matrix Computations, The John Hopkins University
Press, Baltimore, USA, 2013. Fourth Edition.

[9] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.
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