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Abstract. In the numerical treatment of large-scale Lyapunov equations, projection methods
require solving a reduced Lyapunov problem to check convergence. As the approximation space
expands, this solution takes an increasing portion of the overall computational effort. When data are
symmetric, we show that the Frobenius norm of the residual matrix can be computed at significantly
lower cost than with available methods, without explicitly solving the reduced problem. For certain
classes of problems, the new residual norm expression combined with a memory-reducing device make
classical Krylov strategies competitive with respect to more recent projection methods. Numerical
experiments illustrate the effectiveness of the new implementation for standard and extended Krylov
subspace methods.

1. Introduction. Consider the Lyapunov matrix equation

AX +XA +BBT = 0, A ∈ Rn×n, B ∈ Rn×s, (1.1)

where A is a very large and sparse, symmetric negative definite matrix, while B is
tall, that is s≪ n. Under these hypotheses, there exists a unique positive semidefinite
solution X [19]. This kind of matrix equation arises in many applications, from the
analysis of continuous-time linear dynamical systems to the discretization of self-
adjoint elliptic PDEs; see, e.g., [1], and [18] for a recent survey. Although A is sparse,
the solution X is in general dense so that storing it may be unfeasible for large-scale
problems. On the other hand, under certain hypotheses on the spectral distribution
of A, the eigenvalues of X present a fast decay, see, e.g., [15], thus justifying the
search for a low-rank approximation X̃ = ZZT to X so that only the tall matrix Z is
actually computed and stored.

Projection methods compute the numerical solution X̃ in a sequence of nested
subspaces, Km ⊆ Km+1 ⊆ R

n, m ≥ 1. The approximation, usually denoted by Xm, is
written as the product of low-rank matrices Xm = VmYmV T

m where Km = Range(Vm)
and the columns of Vm are far fewer than n. The quality and effectiveness of the
approximation process depend on how much spectral information is captured by Km,
without the space dimension being too large. The matrix Ym is determined by solving
a related (reduced) problem, whose dimension depends on the approximation space
dimension. To check convergence, the residual matrix norm is monitored at each
iteration by using Ym but without explicitly computing the large and dense residual
matrix Rm = AXm+XmA+BBT [18]. The solution of the reduced problem is meant to
account for a low percentage of the overall computation cost. Unfortunately, this cost
grows nonlinearly with the space dimension, therefore solving the reduced problem
may become very expensive if a large approximation space is needed.

A classical choice for Km is the (standard) block Krylov subspace K◻m(A,B) ∶=
Range{[B,AB, . . . ,Am−1B]} [7], whose basis can be generated iteratively by means
of the block Lanczos procedure. Numerical experiments show that K◻m(A,B) may
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need to be quite large before a satisfactory approximate solution is obtained [14],[17].
This large number of iterations causes high computational and memory demands.
More recent alternatives include projection onto extended or rational Krylov sub-
space methods [17],[5], or the use of explicit iterations for the approximate solution
[14]; see the thorough presentation in [18]. Extended and more generally rational
Krylov subspaces contain richer spectral information, that allow for a significantly
lower subspace dimension, at the cost of more expensive computations per iteration.

We devise a strategy that significantly reduces the computational cost of evaluat-
ing the residual norm for both K◻m and the extended Krylov subspace EK

◻
m(A,B) ∶=

Range{[B,A−1B, . . . ,Am−1B,A−mB]}. In case of K◻m a “two-pass” strategy is im-
plemented to avoid storing the whole basis Vm, but only the last 3s vectors of the
Lanczos iteration; see [11] for earlier use of this device in the same setting, and, e.g.,
[6] in the matrix function context.

Throughout the paper, Greek bold letters (ααα) will denote s × s matrices, while
roman capital letters (A) larger ones. In particular Ei ∈ R

sm×s will denote the ith
block of s columns of the identity matrix Ism ∈ R

sm×sm. Scalar quantities will be
denoted by Greek letters (α).

Here is a synopsis of the paper. In Section 2 the basic tools of projection methods
for solving (1.1) are recalled. In Sections 3.1 and 3.2 we present a cheap residual
norm computation and the two-pass strategy for K◻m(A,B). In Section 4 we extend
the residual computation to EK

◻
m(A,B). Several numerical examples illustrating the

effectiveness of our strategy are reported in Section 5 while our conclusions are given
in Section 6.

2. Galerkin projection methods. Consider a subspace Km spanned by the
orthonormal columns of the matrix Vm = [V1, . . . ,Vm] ∈ Rn×sm and seek an approxi-
mate solutionXm to (1.1) of the formXm = VmYmV T

m with Ym symmetric and positive
semidefinite, and residual matrix Rm = AXm +XmA +BBT . With the matrix inner
product

⟨Q,P ⟩F ∶= trace(PTQ), Q,P ∈ Rn1×n2 ,

the matrix Ym can be determined by imposing an orthogonality (Galerkin) condition
on the residual with respect to this inner product,

Rm ⊥ Km ⇔ V T
mRmVm = 0. (2.1)

Substituting Rm into (2.1), we obtain V T
mAXmVm + V

T
mXmAVm + V

T
mBBTVm = 0,

that is

(V T
mAVm)YmV T

mVm + V
T
mVmYm (V T

mAVm) + V T
mBBTVm = 0. (2.2)

We assume Range(V1) = Range(B), that is B = V1γγγ for some nonsingular γγγ ∈ Rs×s.
Since Vm has orthonormal columns, V T

mB = E1γγγ and equation (2.2) can be written as

TmYm + YmTm +E1γγγγγγ
TET

1 = 0, (2.3)

where Tm ∶= V
T
mAVm is symmetric and negative definite. The orthogonalization pro-

cedure employed in building Vm determines the sparsity pattern of Tm. In particular,
for Km = K

◻
m(A,B), the block Lanczos process produces a block tridiagonal matrix

2



Tm with blocks of size s,

Tm =

⎛⎜⎜⎜⎜⎜⎝

τττ11 τττ12
τττ21 τττ22 τττ23

⋱ ⋱ ⋱
⋱ ⋱ τττm−1,m

τττm,m−1 τττm,m

⎞⎟⎟⎟⎟⎟⎠
.

As long as m is of moderate size, methods based on the Schur decomposition of the
coefficient matrix Tm can be employed to solve equation (2.3), see, e.g., [2], [8].

The last s columns (or rows) of the solution matrix Ym are employed to compute
the residual norm. In particular, letting Tm = V T

m+1AVm, it was shown in [10] that
the norm of the residual in (2.1) satisfies

∥Rm∥F =√2∥YmTT
mEm+1∥F =√2∥YmEmτττTm+1,m∥F . (2.4)

The matrix Ym is determined by solving (2.3), and it is again symmetric and positive
semidefinite. At convergence, the backward transformation Xm = VmYmV T

m is never
explicitly computed or stored. Instead, we factorize Ym as

Ym = Ŷ Ŷ T , Ŷ ∈ Rsm×sm, (2.5)

from which a low-rank factor of Xm is obtained as Zm = VmŶ ∈ Rn×sm, Xm = ZmZT
m.

The matrix Ym may be numerically rank deficient, and this can be exploited to further
decrease the rank of Zm. We write the eigendecomposition of Ym, Ym = WΣWT

(with eigenvalues ordered non-increasingly) and discard only the eigenvalues below
a certain tolerance, that is Σ = diag(Σ1,Σ2), W = [W1,W2] with ∥Σ2∥F ≤ ǫ (in
all our experiments we used ǫ = 10−12). Therefore, we define again Ym ≈ Ŷ Ŷ T ,

with Ŷ = W1Σ
1/2
1
∈ Rsm×t, t ≤ sm; in this way, ∥Ym − Ŷ Ŷ T ∥F ≤ ǫ. Hence, we set

Zm = VmŶ ∈ Rsm×t. We notice that a significant rank reduction in Ym is an indication
that all relevant information for generating Xm is actually contained in a subspace
that is much smaller than K◻m(A,B). In other words, the generated Krylov subspace
is not efficient in capturing the solution information and a much smaller space could
have been generated to obtain an approximate solution of comparable accuracy.

Algorithm 1 describes the generic Galerkin procedure to determine Vm, Ym and
Zm as m grows, see, e.g., [18]. Methods thus differ for the choice of the approximation
space. If the block Krylov space K◻m(A,B) is chosen, the block Lanczos method can
be employed in line 4 of Algorithm 1. In exact arithmetic,

Vmτττm+1,m = AVm−1 − Vm−1τττm,m − Vm−2τττm−1,m. (2.6)

Algorithm 2 describes this process at iteration m, with W = AVm−1, where the or-
thogonalization coefficients τττ ’s are computed by the modified block Gram-Schmidt
procedure (MGS), see, e.g., [16]; to ensure local orthogonality in finite precision arith-
metic, MGS is performed twice (beside each command is the leading computational
cost of the operation). To simplify the presentation, we assume throughout that the
generated basis is full rank. Deflation could be implemented as it is customary in
block methods when rank deficiency is detected.

We emphasize that only the last 3s terms of the basis must be stored, and the
computational cost of Algorithm 2 is fixed with respect to m. In particular, at each
iteration m, Algorithm 2 costs O ((19n + s)s2) flops.
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Algorithm 1: Galerkin projection method for the Lyapunov matrix equation
Input: A ∈ Rn×n, A negative def., B ∈ Rn×s

Output: Zm ∈ R
n×t, t ≤ sm

1. Set β = ∥B∥F
2. Perform economy-size QR of B, B = V1γγγ. Set V1 ≡ V1

3. For m = 2,3, . . . , till convergence, Do

4. Compute next basis block Vm and set Vm = [Vm−1,Vm]
5. Update Tm = V

T
mAVm

6. Convergence check:

6.1 Solve TmYm + YmTm +E1γγγγγγ
TET

1 = 0, E1 ∈ R
ms×s

6.2 Compute ∥Rm∥F =√2∥YmEmτττTm+1,m∥F
6.3 If ∥Rm∥F /β2 is small enough Stop, otherwise Continue

7. EndDo

8. Compute the eigendecomposition of Ym and retain Ŷ ∈ Rsm×t, t ≤ sm

9. Set Zm = VmŶ

Algorithm 2: One step of Block Lanczos with block MGS
Input: m, W , Vm−2,Vm−1 ∈ R

n×s

Output: Vm ∈ R
n×s, τττm−1,m, τττm,m, τττm+1,m ∈ R

s×s

1. Set τττm−1,m = τττm,m = 0
2. For l = 1,2, Do

3. For i =m − 1,m, Do

3. Compute ααα = VT
i−1W ← (2n − 1)s2 flops

5. Set τττ i,m = τττ i,m +ααα ← s2 flops
6. Compute W =W − Vi−1ααα ← 2s2n flops
7. EndDo

8. EndDo

9. Perform economy-size QR of W , W = Vmτττm+1,m ← 3ns2 flops

As the approximation space expands, the principal costs of Algorithm 1 are steps 4
and 6.1. In particular, the computation of the whole matrix Ym requires full matrix-
matrix operations and a Schur decomposition of the coefficient matrix Tm, whose
costs are O ((sm)3) flops. Clearly, step 6.1 becomes comparable with step 4 in cost
for sm≫ 1, thus for instance if convergence is slow, so that m≫ 1.

Step 9 of Algorithm 1 shows that at convergence, the whole basis must be saved
to return the factor Zm. This represents a major shortcoming when convergence is
slow, since Vm may require large memory allocations.

3. Standard Krylov subspace. For the block space K◻(A,B), we devise a
new residual norm expression and discuss the two-pass strategy.

3.1. Computing the residual norm without the whole solution Ym. The
solution of the projected problem (2.3) requires the Schur decomposition of Tm. For
real symmetric matrices, the Schur decomposition amounts to the eigendecomposi-
tion Tm = QmΛmQT

m, Λm = diag(λ1, . . . , λsm), and the symmetric block tridiagonal
structure of Tm can be exploited so as to use only O((sm)2) flops; see section 5 for
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further details. Equation (2.3) can thus be written as

ΛmỸ + Ỹ Λm +Q
T
mE1γγγγγγ

TET
1 Qm = 0, where Ỹ ∶= QT

mYmQm. (3.1)

Since Λm is diagonal, the entries of Ỹ can be computed by substitution [18, section 4],
so that

Ym = QmỸ QT
m = Qm (eTi QT

mE1γγγγγγ
TET

1 Qmej

λi + λj

)
ij

QT
m, (3.2)

where ek denotes the kth vector of the canonical basis of Rsm. It turns out that only
the quantities within parentheses in (3.2) are needed for the residual norm computa-
tion, thus avoiding the O ((sm)3) cost of recovering Ym.

Proposition 3.1. Let Tm = QmΛmQT
m denote the eigendecomposition of Tm.

Then

∥Rm∥2F = ∥eT1 SmD−11 Wm∥22 + . . . + ∥eTsmSmD−1smWm∥22, (3.3)

where Sm = QT
mE1γγγγγγ

TET
1 Qm ∈ R

sm×sm, Wm = QT
mEmτττTm+1,m ∈ R

sm×s and Dj =
λjIsm +Λm for all j = 1, . . . , sm.

Proof. Exploiting (2.4) and the representation formula (3.2) we have

∥Rm∥2F = ∥YmEmτττTm+1,m∥2F =
XXXXXXXXXXX(

eTi Q
T
mE1γγγγγγ

TET
1 Qmej

λi + λj

)
ij

QT
mEmτττTm+1,m

XXXXXXXXXXX
2

F

=
s∑

k=1

XXXXXXXXXXX(
eTi Smej

λi + λj

)
ij

Wmek

XXXXXXXXXXX
2

2

.

(3.4)
For all k = 1, . . . , s, we can write

XXXXXXXXXXX(
e
T
i Smej

λi + λj

)
ij

Wmek

XXXXXXXXXXX
2

2

= ⎛
⎝
sm∑
j=1

e
T
1 Smej

λ1 + λj

e
T
j Wmek

⎞
⎠
2

+ . . . + ⎛⎝
sm∑
j=1

e
T
smSmej

λsm + λj

e
T
j Wmek

⎞
⎠
2

= (eT1 SmD
−1

1 Wmek)2 + . . . + (eTsmSmD
−1

smWmek)2 .
(3.5)

Plugging (3.5) into (3.4) we have

∥Rm∥2F =
s∑

k=1

sm∑
i=1

(eTi SmD−1i Wmek)2 = sm∑
i=1

s∑
k=1

(eTi SmD−1i Wmek)2 = sm∑
i=1

∥eTi SmD−1i Wm∥2
2
.

Algorithm 3 summarizes the procedure that takes advantage of Proposition 3.1.
The algorithm shows that computing the residual norm by (3.4) has a leading cost
of 4s3m2 flops for Standard Krylov (with ℓ = s). This should be compared with the
original procedure in steps 6.1 and 6.2 of Algorithm 1, whose cost is O (s3m3) flops,
with a large constant.

Once the stopping criterion in step 6.3 of Algorithm 1 is satisfied, the factor
Zm can be finally computed. Once again, this can be performed without explicilty
computing Ym, which requires the expensive computation Ym = QmỸ QT

m. Indeed,
the truncation strategy discussed around (2.5) can be applied to Ỹ by computing the

matrix Y

̂
∈ Rsm×t, t ≤ sm so that Ỹ ≈ Y

̂
Y

̂
T
. This factorization further reduces the
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Algorithm 3: cTri
Input: Tm ∈ R

ℓm×ℓm, γγγ, τττm+1,m ∈ R
ℓ×ℓ (ℓ is the block size)

Output: res (= ∥R∥2F )
1. Compute Tm = QmΛmQT

m

2. Compute Sm = (QT
mE1γγγ) (γγγTET

1 Qm) ← (2ℓ − 1)ℓ2m + (2ℓ − 1)ℓ2m2 flops

3. Compute Wm = (QT
mEm)τττTm+1,m ← (2ℓ − 1)ℓ2mflops

4. Set res = 0
5. For i = 1, . . . , ℓm, Do

6. Set Di = λiIℓm +Λm

7. res = res + ∥(eTi Sm)D−1i Wm∥2
2

← 2ℓ2m + ℓm + ℓ flops

8. EndDo

overall computational cost, since only (2ms − 1)tms flops are required to compute
QmY

̂
, with no loss of information at the prescribed accuracy. The solution factor Zm

is then computed as Zm = Vm (QmY

̂
). We also observe that the eigendecomposition

of the current Tm has been already computed during the last step of the iterative
process.

3.2. A “two-pass” strategy. While the block Lanczos method requires the
storage of only 3s basis vectors, the whole Vm = [V1, . . . ,Vm] ∈ Rn×sm is needed to
compute the low-rank factor Zm at convergence (step 9 of Algorithm 1). Since

Zm = Vm(QmY

̂
) = m∑

i=1

ViE
T
i (QmY

̂
), (3.6)

we suggest not to store Vm during the iterative process but to perform, at convergence,
a second Lanczos pass computing and adding the rank-s term in (3.6) at the ith step,
in an incremental fashion. We point out that the orthonormalization coefficients are
already available in the matrix Tm, therefore Vi is simply computed by repeating the
three-term recurrence (2.6), which costs O ((4n + 1)s2) flops plus the multiplication
by A, making the second Lanczos pass cheaper than the first one.

4. Extended Krylov subspace. Different strategies for building the basis Vm =[V1, . . . ,Vm] ∈ Rn×2sm of the Extended Krylov subspace EK
◻(A,B) can be found

in the literature, see, e.g., [9],[12],[17]. An intuitive key fact is that the subspace
expands in the directions of A and A−1 at the same time. In the block case, a natural
implementation thus generates two new blocks of vectors at the time, one in each of
the two directions. Starting with [V1,A

−1V1], the next iterations generate the blocks

V
(1)
m ,V

(2)
m ∈ Rn×s by multiplication by A and solve with A, respectively, and then

setting Vm = [V(1)m ,V
(2)
m ] ∈ Rn×2s. As a consequence, the block Lanczos procedure

described in Algorithm 2 can be employed with W = [AV(1)m−1,A
−1V

(2)
m−1] (with 2s

columns). The orthogonalization process determines the coefficients of the symmetric
block tridiagonal matrix Hm with blocks of size 2s,

Hm =

⎛⎜⎜⎜⎜⎜⎝

ϑϑϑ11 ϑϑϑ12

ϑϑϑ21 ϑϑϑ22 ϑϑϑ23

⋱ ⋱ ⋱
⋱ ⋱ ϑϑϑm−1,m

ϑϑϑm,m−1 ϑϑϑm,m

⎞⎟⎟⎟⎟⎟⎠
∈ R2sm×2sm,
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such that Vmϑϑϑm+1,m = [AV(1)m−1,A
−1V

(2)
m−1]−Vm−1ϑϑϑm,m−Vm−2ϑϑϑm−1,m. The coefficients

ϑϑϑ’s correspond to the τττ ’s in Algorithm 2, however as opposed to the standard Lanczos
procedure, Hm ≠ Tm = V

T
mAVm. Nonetheless, a recurrence can be derived to compute

the columns of Tm from those of Hm during the iterations; see [17, Proposition 3.2].
The computed Tm is block tridiagonal, with blocks of size 2s, and this structure
allows us to use the same approach followed for the block Standard Krylov method
as relation (2.4) still holds. Algorithm 3 can thus be adopted to compute the residual
norm also in the Extended Krylov approach with ℓ = 2s. Moreover, it is shown in [17]
that the off-diagonal blocks of Tm have a zero lower s × 2s block, that is

τττ i,i−1 = [τττ i,i−10
] , τττ i,i−1 ∈ R

s×2s i = 1, . . . ,m.

This observation can be exploited in the computation of the residual norm as

∥Rm∥F =√2∥YmEmτττTm+1,m∥F =√2∥YmEmτττTm+1,m∥F ,
and τττm+1,m can be passed as an input argument to cTri instead of the whole τττm+1,m.

The Extended Krylov subspace dimension grows faster than the Standard one as it
is augmented by 2s vectors per iteration. In general, this does not create severe storage
difficulties as the Extended Krylov approach exhibits faster convergence than standard
Krylov in terms of number of iterations. However, for hard problems the space may
still become too large to be stored, especially for large s. In this case, a “two-pass”-
like strategy may be appealing. To avoid the occurrence of sm new system solves with

A, however, it may be wise to still store the second blocks, V
(2)
i , i = 1, . . . ,m and only

save half memory allocations, those corresponding to the matrices V
(1)
i , i = 1, . . . ,m.

Finally, we remark that if we were to use more general rational Krylov subspaces,
which use rational functions other than A and A−1 to generate the space [18], the
projected matrix Tm would lose the convenient block tridiagonal structure, so that
the new strategy would not be applicable.

5. Numerical experiments. In this section some numerical examples illus-
trating the enhanced algorithm are reported. All results were obtained with Matlab
R2015a on a Dell machine with two 2GHz processors and 128 GB of RAM.

The standard implementation of projection methods (Algorithm 1) and the pro-
posed enhancement, where lines 6.1 and 6.2 of Algorithm 1 are replaced by Algo-
rithm 3, are compared. For the standard implementation, different decomposition
based solvers for line 6.1 in Algorithm 1 are considered: The Bartels-Stewart algo-
rithm (function lyap), one of its variants (lyap2)1, and the Hammarling method
(lyapchol). All these algorithms make use of SLICOT or LAPACK subroutines. To
make fair comparisons, we used a C-compiled mex-code cTri to implement Algo-
rithm 3, where LAPACK and BLAS subroutines were employed. In particular, the
eigendecomposition Tm = QmΛmQT

m is performed by the LAPACK subroutine dsyevr
which tridiagonalizes Tm, when necessary, and applies Dhillon’s MRRR method [4].
The main advantage of MRRR is the computation of numerically orthogonal eigenvec-
tors without an explicit orthogonalization procedure. This feature limits to O((ℓm)2)
flops the computation of Tm = QmΛmQT

m ∈ R
ℓm×ℓm; see [4] for more details. In all our

experiments the convergence tolerance on the relative residual norm is tol = 10−6.
Example 5.1. In the first example, the block Standard Krylov approach is tested.

We consider A ∈ Rn×n, n = 21904 stemming from the discretization by centered finite

1The function lyap2 was slightly modified to exploit the orthogonality of the eigenvectors matrix.
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differences of the differential operator

L(u) = (e−10xyux)x + (e10xyuy)y,
on the unit square with zero Dirichlet boundary conditions, while B = rand (n, s),
s = 1 and s = 4, that is the entries of B are random numbers uniformly distributed
in the interval (0,1). B is then normalized, B = B/∥B∥F . Table 5.1(left) reports the
CPU time (in seconds) needed for evaluating the residual norm (time res) and for
completing the whole procedure (time tot). Convergence is checked at each iteration.
For instance, for s = 1, using lyapchol as inner solver the solution process takes
20.13 secs, 18.09 of which are used for solving the inner problem of step 6.1. If we
instead use cTri, the factors of Xm are determined in 4.98 seconds, only 2.57 of
which are devoted to evaluating the residual norm. Therefore, 85.8% of the residual
computation CPU time is saved, leading to a 75.3% saving for the whole procedure.
An explored device to mitigate the residual norm computational cost is to check the
residual only periodically. In the right-hand side of Table 5.1 we report the results in
case the residual norm is computed every 10 iterations.

Table 5.2 shows that the two-pass strategy of Section 3.2 drastically reduces
the memory requirements of the solution process, as already observed in [11], at a
negligible percentage of the total execution time.

Table 5.1

Example 5.1. CPU times and gain percentages. Convergence is checked every d iterations.
Left: d = 1. Right: d = 10.

time res gain time tot gain time res gain time tot gain
(secs) (secs) (secs) (secs)

s = 1 (320 its) s = 1
lyap 19.28 86.7% 21.41 76.7% 2.15 87.4% 4.41 46.9%

lyapchol 18.09 85.8% 20.13 75.3% 2.07 86.9% 3.71 36.9%
lyap2 17.27 85.1% 19.41 74.3% 1.81 85.1% 3.42 31.6%
cTri 2.57 Î 4.98 Î 0.27 Î 2.34 Î

s = 4 (240 its) s = 4
lyap 224.21 94.1% 228.64 92.2% 25.54 94.5% 29.31 82.3%

lyapchol 102.28 87.1% 106.63 83.3% 10.98 87.3% 15.03 65.6%
lyap2 104.01 87.3% 108.31 83.6% 11.39 87.7% 15.86 67.4%
cTri 13.20 Î 17.78 Î 1.39 Î 5.17 Î

Table 5.2

Example 5.1. Memory requirements with and without full storage, and CPU time of the second
Lanczos sweep.

memory reduced CPU time
whole Vm mem. alloc. (secs)

n s m s ⋅m 3s
21904 1 327 327 3 1.18
21904 4 240 960 12 1.67

Example 5.2. The RAIL benchmark problem 2 solves the generalized Lyapunov
equation

AXE +EXA +BBT = 0, (5.1)

2http://www.simulation.uni-freiburg.de/downloads/benchmark/Steel%20Profiles%20%2838881%29
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where A,E ∈ Rn×n, n = 79841, B ∈ Rn×s, s = 7. Following the discussion in [17],
equation (5.1) can be treated as a standard Lyapunov equation for E symmetric and
positive definite. This is a recognized hard problem for the Standard Krylov subspace,
therefore the Extended Krylov subspace is applied, and convergence is checked at
each iteration. Table 5.3 collects the results. In spite of the 57 iterations needed
to converge, the space dimension is large, that is dim (EK

◻
m(A,B)) = 798 and the

memory-saving strategy of Section 4 may be attractive; it was not used for this specific
example, but it can be easily implemented. The gain in the evaluation of the residual
norm is still remarkable, but less impressive from the global point of view. Indeed,
the basis construction represents the majority of the computational efforts.

Table 5.3

Example 5.2. CPU times and gain percentages.

time res gain time tot gain
(secs) gain (secs)

lyap 17.61 69.9% 89.24 11.9%
lyapchol 7.84 32.5% 83.01 5.3%

lyap2 9.94 44.5% 84.21 6.7%
cTri 5.29 Î 78.60 Î

Example 5.3. In the last example, we compare the Standard and the Extended
Krylov approaches. We consider the matrix A ∈ Rn×n, n = 39304, coming from the
discretization by isogeometric analysis (IGA) of the 3D Laplace operator on the unit
cube [0,1]3 with zero Dirichlet boundary conditions and a uniform mesh. Since high
degree B-splines are employed as basis functions (here the degree is 4 but higher values
are also common), this discretization method yields denser stiffness and mass matrices
than those typically obtained by low degree finite element or finite difference methods;
in our experiment, 1.5% of the components of A is nonzero. See, e.g., [3] for more
details on IGA. For the right-hand side we set B = rand(n, s), s = 3, B = B/∥B∥F .
In the Standard Krylov method the residual norm is computed every 20 iterations.
The convergence can be checked every d iterations in the Extended approach as well,
with d moderate to avoid excessive wasted solves with A at convergence [17]. In our
experiments the computation of the residual norm only takes a small percentage of
the total execution time and we can afford taking d = 1. In both approaches, the
residual norm is computed by Algorithm 3. Table 5.4 collects the results.

Table 5.4

Example 5.3. Performance comparison of Standard and Extended Krylov methods.

m whole Vm reduced time res two-pass time tot
mem. alloc. mem. alloc. (secs) (secs) (secs)

St. Krylov 300 900 9 0.78 21.45 44.34
Ex. Krylov 30 180 180 0.08 - 78.58

The Standard Krylov method generates a large space to converge. Nonetheless,
the two-pass strategy allows us to store only 9 basis vectors. This feature may be
convenient if storage of the whole solution process needs to be allocated in advance. By
checking the residual norm every 20 iterations, the standard Krylov method becomes
competitive with respect to the extended procedure, which is in turn penalized by
the system solutions with dense coefficient matrices. This example emphasizes the
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potential of the enhanced classical approach when system solves are costly, in which
case more recent methods pay a higher toll.

6. Conclusions. We have presented an expression for the residual norm that
significantly reduces the cost of monitoring convergence in projection methods based
on K◻ and EK

◻ for Lyapunov equations and symmetric data. For the Standard
Krylov approach, the combination with a two-pass strategy makes this classical al-
gorithm appealing, both in terms of computational costs and memory requirements,
compared with recently developed methods, whenever data do not allow for cheap
system solves.
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