A MULTILEVEL SOLUTION STRATEGY FOR THE STOCHASTIC GALERKIN
METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT
DATA
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Abstract. We discuss solving partial differential equations (PDEs) with random input data using the stochastic Galerkin
method. This method can often be computationally demanding as the method suffers from the curse of dimensionality where
the computational effort increases greatly as the stochastic dimension increases. We consider a multilevel solution strategy for
the stochastic Galerkin method that employs hierarchies of spatial and stochastic approximations in an attempt to diminish
some of the computational burden. Analysis of the proposed multilevel method and numerical results are presented that
compare the multilevel approach to the traditional, single-level stochastic Galerkin method.

1. Introduction. When using partial differential equations (PDEs) to model physical problems, the
exact values of coefficients are often not known exactly. To obtain more realistic results, the coefficients are
modeled by a set of random variables which induce variability in the solution of the physical model. We
consider the numerical solution of elliptic PDEs with random input data using the stochastic Galerkin (SG)
method [9, 11, 25]. The SG approach provides a powerful method to obtain highly accurate solutions by
transforming a PDE with random coefficients into a set of coupled deterministic PDEs using a spectral finite
element approach. However when a large number of uncertain parameters are required to characterize the
uncertainty in the system, the method suffers from the curse of dimensionality, where the computational
cost grows exponentially as a function of the number of random variables and the degree of the multivariate
stochastic basis polynomials used to approximate the underlying probability space of the problem.

We are interested in exploring a multilevel based solution strategy to alleviate some of the compu-
tational burden associated with the SG method. Similar to the ideas behind multigrid solvers for linear
equations, the proposed multilevel method uses a hierarchical sequence of spatial approximations to the
underlying PDE model, combined with varying stochastic discretizations in order to reduce computational
cost. Multilevel approaches have been successfully applied to sampling methods for solving PDEs with ran-
dom coefficients. Sampling methods, for instance Monte Carlo [7, 15] and stochastic collocation [2, 24], solve
a sequence of deterministic PDEs at given sample points in the stochastic space in contrast to non-sampling
methods like the SG method. Multilevel acceleration methods have been proposed and investigated for
the Monte Carlo method in [4, 5, 6, 21], and for the stochastic collocation method by Teckentrup et al.
n [22]. We propose a multilevel approach similar to the method in [22] for the SG method that employs
hierarchies of spatial and stochastic approximations. The goal is to reduce the computational effort and
considerable memory requirements inherent to the SG method while maintaining the overall accuracy of
the solution.

We start by describing the mathematical model and SG formulation for the model problem in Section
2. In Section 3, the formulation of the multilevel method is given along with error and cost analysis. In
Section 4, numerical results are provided that illustrate the performance of the proposed multilevel method
compared against the standard, single-level SG method. We conclude in Section 5 summarizing the results
and outline further research directions and improvements.

2. Problem Formulation. Let D be an open subset of R? and let (€2, F, i) be a complete probability
space, where {2 is the sample space, F is the o-algebra generated by 2 and p : F — [0, 1] is the probability
measure. Given the random field a(x,w) : ¥ x D — R and function f(x) € L?(D), the stochastic steady-
state diffusion equation with homogeneous Dirichlet boundary conditions is given by

-V (a(x,w)Vu(x,w)) = f(x) inDxQ 2.1)
u(x,w) =0 on 0D x Q. ‘
We are interested in finding a random function u(x,w) : D x @ — R which satisfies (2.1). We make
the assumption that the input random field can be represented in terms of a finite number M € N of
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2 Multilevel Methods for SPDEs

independent random variables with given probability density functions.

ASSUMPTION 2.1. (Finite-Dimensional Noise Assumption) Assume a(x,w) can be represented by a
finite number M € N of independent real-valued random variables & = [&1, ..., 0] where &+ Q — T,
with given probability density functions pps : Ty — RE, m=1,..., M.

Due to the independence of the random variables {ém}%:lv their joint probability density function p :
Ty x--- XI‘M%]RS' is given by

p(y) = p1(y1) - pa(ynr)s

where the vector y = (y1,...,yn)? € RM is introduced with g, := &, (w). In particular, we assume that
the diffusion coefficient a(x,y) is given by a truncated Karhunen-Lo&ve expansion [11, 13] given by

M
a(x,y) = ao(x) + ) _ a;(x)yi, (2.2)
i=1

where do(x) is the mean of the random field and a;(x) for ¢ > 0 involves the eigenfunctions and eigenvalues
of the assumed known covariance kernel of the random field, and y; for ¢« = 1,..., M are identically
distributed, uncorrelated random variables.

After making Assumption 2.1, we have by the Doob-Dynkin Lemma that the solution u of the stochastic
elliptic boundary value problem (2.1) can also be represented by a finite number of number of random
variables £ or, equivalently, the vector y € RM. The solution u(x,w) thus has a deterministic equivalent
u(x,y), with the probability space (', B(T'), p(y)dy) replacing the abstract probability space (€, F, u).

2.1. Variational Formulation. Define L2(T) to be the set of real-valued
square-integrable functions on I and Hg (D) to be the subspace of the Sobolev space H' (D) of real-valued
functions of D that vanish on the boundary dD. Define

B2 m0) = {o: DXt > R [ ply) ole3) ) dy < (23)

which is isomorphic to the tensor space H{(D) @ L3(T). For ease of notation, we denote V := H{(D),
S := L2(T), and W := L2(T; Hj(D)) with norm

ol = [ 1ol o)y = [ [ 190ty dxoty)iy.
r rJ/p
We consider weak solutions u € W on D x I satisfying
b(u,v) =£L(v), YveW, (2.4)

where b(-,-) : W x W — R and £ : W — R are defined as

b(u,v):/rp/D aVu - Vvdxdy, K(v):/rp/D fudxdy. (2.5)

In order to have a unique solution, we assume that the approximate diffusion coefficient given by (2.2)
satisfies

0 < amin < a(X,¥) < Gmae <00 ae. in D xT| (2.6)
where amin, Gmas € R. In particular, a € L3° (T; L>°(D)). The Lax-Milgram theorem can be used to show

that there exists a unique solution to this problem providing the above assumption on a holds and
f e Ly(T; L*(D)).
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2.2. Discretization. Following the SG method [9, 11, 25], the variational formulation (2.4) is dis-
cretized using a Galerkin projection onto a finite-dimensional subspace of W ~ V ® S. The finite-
dimensional subspace for the spatial domain, denoted V* C V, is a spatial finite element basis and
the finite-dimensional subspace of the stochastic domain, denoted SP C S, is constructed using global
polynomials.

After suitable spaces V" and SP have been constructed, the h x p-SG approximation is the tensor
product finite element function u;} € WIfL = V" ® 8P, that satisfies

b(ul,v) =1(v) YveVhesP. (2.7)

Applying standard finite element analysis and assuming (2.6) holds and f € L?(D)® S with W} c W,
(2.7) has a unique solution u;} € Wg‘. Also, we have that u;‘ is the best approximation in the energy norm,
that is,

o=l = inf flu—ollg, (2.8)
where
Joll?, := / / a(x,y) [Vo(x, y) 2 dxp(y)dy. (2.9)
I JD

For v € W, we now proceed with discussing the particular finite-dimensional subspaces V" and SP
used and analyze the discretization error of the SG approximation u' € V" @ SP. Note that this error
estimate does not take into account the error of using M random variables to represent the random input
parameter a, nor the error of the iterative method.

2.2.1. Spatial Discretization. For the spatial discretization, the finite element method is used where
V" C V is defined to be the space of basis functions consisting of continuous, piecewise linear functions
on a shape-regular triangulation 7 of D that satisfies the Dirichlet boundary conditions with maximum
mesh spacing parameter h. We consider the finite element approximation of v in V* @ S denoted by u".

DEFINITION 2.2. A semi-discrete weak solution on D x T' to (2.4) is a function u" € V" ® S that
satisfies

b(ul(-,y),v) =lv) YweV'®s, (2.10)

where V" C H} (D).

If (2.6) holds for the approximate diffusion coefficient and f € L?(D) ® S, then (2.10) has a unique
solution u” € V* ® S. Also under the same conditions, u” is the best approximation in the energy norm,
that is,

|u—u"|,= inf Ju—v|g. (2.11)

vEVE®S
For our multilevel analysis, we introduce a mapping P" from H}(D) — V" that acts only on the spatial
components of u € W and make the following assumption on the spatial approximation of the semi-discrete
solution.

DEFINITION 2.3. The Galerkin projection P" : W — Li(F; V) is the orthogonal projection satisfying
||u — uhHE = Hu — PhuHE or equivalently,

b(Phu,v) = b(u,v) Yo e LA(T;V). (2.12)

ASSUMPTION 2.4. (spatial approxzimation error) Assume u € W is the unique solution to (2.4) and
u € V@ S is the unique solution to (2.10) for a particular h > 0, then there exist positive constants s
and Cp, independent of h, such that

< Cph®.

e = * |y

When using piecewise linear finite elements, this assumption is valid, see [14] for further details.
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2.2.2. Stochastic Discretization. The finite-dimensional space S? for the stochastic dimension is
constructed using global polynomials orthogonal with respect to the joint probability density function p,
called generalized polynomial chaos (gPC) [23, 25]. Consider the set of univariate polynomials {1} in
y; on the interval I'; C R orthonormal with respect to the measure p; for each ¢ = 1,--- , M with inner
product given by

<¢ ( ) '(/}k Yi > fp yz wk yz)pz(yz)dyz = Ojk, j,ki = 0,1,... (213)

where j and k are the degrees of the polynomials ¢§ and w,; respectively.

Given a multi-index @ = (aq,...,ap) € NY where |a| = Zf\il a;, the M-variate tensor product
polynomial is constructed as

H UL (). (2.14)
These polynomials are orthonormal with respect to the inner product defined by

(Waly), Taly)) = / Vo (y) U p(y)p(y)dy = Soup. (2.15)

Then for p > 0, define S? to be the complete polynomial space of total order at most p in M dimensions
given by

SP = span {Wq(y) : |a] < p}, (2.16)
where the dimension of S? is
_ (p+ M)
Q= (2.17)

We now write SP = span {¥;(y) : 0 <i < Q — 1} where each scalar index ¢ € 0,...,Q — 1 is assigned
to some multi-index a¢ whose components provide the degrees of the univariate basis polynomials.

We assume the input random field follows a uniform probability distribution, so the Legendre poly-
nomial basis is used to construct the basis. Now we discuss the error in the stochastic approximation
of the solution when using a truncated gPC expansion and introduce a projection associated with the
finite-dimensional subspace SP.

DEFINITION 2.5. The pth-order gPC approzimation of the solution u(x,y) € W can be obtained by
projecting u onto the subspace SP, that is,

Q-1
Ppu = Up(X, Y) = Z ul(x)\lll(y) VX € D7
=0

where P,u denotes the orthogonal projection operator from LIQJ(F) onto Sp.
We make the following assumption on the stochastic approximation to be used in the multilevel analysis.
ASSUMPTION 2.6. (stochastic approzimation error) Assume u € W and that there exist a positive

constant Cr and a sequence of positive numbers {/\k}keNo tending to zero monotonically, such that for all
k € Ny,

llu = Preully, < Crg,
where Cr is a constant independent of k.

When using uniform random variables to represent the input random field, this assumption is valid using
total order Legendre polynomials, see [1] for further details.
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3. Multilevel Method Formulation. Let {hg}fzo for L € N be the mesh width of a sequence of
increasingly fine triangulations of the spatial domain D, which leads to a hierarchic sequence of finite-
dimensional subspaces

Vhocymc...cvh c...c HY(D).

Assume for simplicity that hy = m~“hg for some m € N, m > 1. For £ =0,...,L, let u"(x,y) € V*® S
denote the semi-discrete weak solution satisfying (2.10) and assume that each semi-discrete weak solution
satisfies the spatial approximation error bound given in Assumption 2.4.

For any L € N, we have the identity

with the notation u/- := 0.

The multilevel SG method then approximates the semi-discrete weak solutions at each level using a
truncated gPC expansion of total order py_,. It follows from Assumption 2.4 that as h — 0, lower order
stochastic approximations are necessary to achieve a required accuracy. Thus, our multilevel solution
strategy can be written as

L

upt = (upe |, — i), (3.1)
=0

where py are the polynomial orders used in the gPC expansion and 0 < pg < p; < --- < pp < 0.

3.1. Error Analysis. We now analyze the convergence of the proposed multilevel method.
LEMMA 3.1. Let {Ppe}eL:o be the LIQ,(F) projection operators Pp, : S — SP¢ for £ =0,..., L defined in

Definition 2.5. Letu € W and uht € Vh® S satisfy (2.4) and (2.10) respectively and let uM't € Vhe @ Spr
be the L-level multilevel approzimation defined in (3.1). Then,

L
o= < o (nuwuw r2y° ||uPpHur|W) ~Culen+ep), 62)
=0

where C, = [ Smax,
min

Proof. Let the spatial projection operators {th}ZLZO be defined as in (2.3). Then for P'u € V" it

follows that P,(P"u) € V" @ SP since P, acts only on the y-components of Phu. Using the optimality
property given by (2.8) yields

e = uz™ || =

L
_ E he o he—1
u (upoz Upp_y >
=0
L

w— Pyt PMru—Y " (B, ,PMu—P,,
£=0

E

<

2

thflu)

E

L
< Hu —utt HE + Z HPh/Z (u— PPL%“) — phe (u - PPL—@“) HE
=0
L
<lu =t | 5+ 2]fu— Pyl -
=0

Since the energy norm is equivalent to the norm on W, we have the bound in the desired norm. O
This result shows that the total error allows for a splitting of the error into a spatial error component
ep and a stochastic error component e,. Now, we seek to show that when the polynomial orders are chosen
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appropriately, the stochastic discretization error e, of the multilevel approximation converges at the same
rate as the spatial discretization error ey, thus resulting in a convergence result for the total error.

LEMMA 3.2. Under the spatial and stochastic approximation error assumptions given in Assumptions
2.4 and 2.6, the SG multilevel approximation (3.1) admits the error bound:

L
Hu — 'u,JLwLH <, <CDhZ + 2ZCF)\LZ> <2K,Cphi, (3.3)
£=0

when the polynomial orders are chosen so that

Ar—¢ < (2Cr(L+1))" ' Cphj.

Proof. For the spatial discretization error ey, we have from Assumption 2.4 that e, < Cphj.
Now for the stochastic discretization error e,, using Assumption 2.6 we have

L L
ep = 22 Hu - PpL%uHW < QZCF)\L,K.
£=0 £=0

Then, we choose the polynomial orders so that
A—¢ < (2Cp(L+ 1)) ' Cphs,. (3.4)

Thus, the error e, is bounded by

L
ep <2 Cr(2Cr(L+1))" Cphj = Cphs,
£=0

as claimed. O

3.2. Cost Analysis. In this section, we investigate a cost metric for the multilevel SG method
that provides formulas for determining the number of levels, the spatial discretization parameters, and
stochastic parameters that should be used. We assume that the stochastic approximation error bound
given in Assumption 2.6 holds with A, = p, " for some r > 0, where py is the total order degree used in the
stochastic discretization. This is a reasonable assumption when using total order multivariate Legendre
polynomials where r is related to the stochastic regularity of the solution u, see [1].

When approximating the SG solution a linear system of size Ny - @ must be solved, where Ny is the
number of spatial degrees of freedom and Q = (%[Tp!)! is the number of stochastic degrees of freedom with
an order p approximation space with M random variables. We estimate the computational cost of the
method by determining the degrees of freedom that must be resolved. Making the estimate @ = O (pM ),
we assume the computational cost for the multilevel approximation can be estimated with

L
cosTM: =>"pi" ,CF, (3.5)
£=0

where C} is the number of degrees of freedom for solving the deterministic problem with mesh size h
plus the number of degrees of freedom for solving the deterministic problem with mesh size hy_q, i.e.
Cr = h;d + h[__dl, where d is the spatial dimension. Since we assume that the hierarchy of meshes are
obtained using uniform refinement, we have hy = m‘hg = m~¢ as we assume hg = 1 for simplicity. Now
we analyze the cost of the multilevel method to achieve a desired level of accuracy and derive formulas for
the parameters in the multilevel formulation. We denote by COSTiw L the computational cost required to
achieve a desired accuracy e.

THEOREM 3.3. Suppose Assumptions 2.4 and 2.6 hold with A\ = p, " for some r > 0. Then, for any
€ > 0, there exists an integer L such that

-M _d
s

Hu—u]LWLnge and COSTnger
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Proof. Following [22], we consider the spatial and stochastic error contributions, e and e,., separately as
shown in Lemma 3.1. To achieve the desired accuracy, it is sufficient to bound both the error contributions
by 5. Recall that we have h, = m~thg = m~¢. In addition, we assume without loss of generality that
ho = 1. If this is not the case, this will only scale the constants CD and Cr. We start by considering the

spatial error and require e, < 5. It is sufficient to require Cphj < §, so we choose L to be

1 2 1 2
L= [logm (CD>—‘ < —log,, ( CD) +1, (3.6)
s € s €

1/s
so that hy, < (20 ) . This requirement fixes the number of levels L.

Now, we want to minimize ZeL:o pﬁ/f_ng‘ subject to the constraint e, < § which is equivalent to

Ze 0oPrte < W Treating the polynomial orders {p,} as continuous variables, the Lagrange multiplier
method yields the optimal choice for the polynomial order at each level given by

ro_ _—td_
PL—t = [(46}‘)1/ € 1/Tg(m’L>1/Tmr+M—‘ , (3.7)

where g(m, L) = ZLO m737 . Now that the polynomial orders have been chosen, we examine the com-
plexity of the multilevel approximation:

L L
_ L M
COSTME = ZpL KCr = Zp%{zméd Z( rﬁfgm L)re 77—%—1) m*d
¢

£=0

I M
< (me\(fl (mr:r[:fg(m L) 4 1))

£=0

Now we consider bounding Z =0 m® for a constant ¢ > 0 where
L < llog,,(2¢2) +1 from (3.6),

mc(L+1) -1 mc(L+1) (QCD)C/S m2c

L
cl %C
;m e < a1 ¢ - (3.8)

Then we have the following bounds in terms of e:

L L

od —dr
E m™M E M(r+M) < eeM(H-M) and g(m L) €s(rtM) | (3'9)
/=0 £=0

Z/\

Therefore using (3.9), we have

M
COST]\/[L < ( 3(7‘+M) Em + EaAl)

( 71_%)1\4 o (3.10)
~ € sM ~E T s,

0

Now, we consider the standard single-level SG approximation to construct a similar cost metric for a
given accuracy. Under the same assumptions on the spatial and stochastic approximation error, the error
for the hgy, x psr SG approximation can be bounded by

ke = wpsi |l < Cohse + Crpsg-
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Then for a total error of €, we require each contribution to be of order €¢/2. Thus, we choose hgy, ~ el/s
and pgr, ~ e~ Y/". The computational cost to achieve a total error of € is then

-M _d

COSTEE = pMhgd < e 5. (3.11)

This is the same computational cost derived in Theorem 3.3. In practice, as demonstrated in Section 4, we
find that the multilevel method offers computational savings compared to the single-level approach, even
though this is not apparent in the theoretical cost bound. This is due, in part, to several known factors.
First, the stochastic approximation error using truncated polynomial chaos expansions offers exponential
convergence, under certain conditions [3, 25]. Thus, we are over-estimating the stochastic discretization
error, leading to higher than necessary polynomial orders being specified in the formula. Also, we are
making an initial weak assumption on the cost metric, which leads to a pessimistic bound on the actual
computational cost.

4. Numerical Results. In this section, numerical experiments are reported comparing the multilevel
approach with the standard, single-level approach. We consider the stochastic diffusion equation (2.1) with
D =10,1]3, f(x) = 1, and boundary conditions u(x,w) = g(x) on D x I where

1 [0,1] x [0,1] x {0}
g(x)=1<2 [0,1] x [0,1] x {1}
0 otherwise.

The diffusion coefficient a(x,y) is modeled with a truncated Karhunen-Loeéve expansion with mean p =1
and standard deviation o = 0.2 with an underlying exponential covariance function with correlation length
¢ = 1/5. We assume the M = 3 random variables are uniform over [—1,1] so the Legendre multivariate
polynomials are used as the stochastic basis functions. The finite element method is used to spatially
discretize the problem using tri-linear finite element basis functions on a hexahedral mesh of D.

The multilevel method implementation proceeds as follows: for each level, the problem is discretized
and the resulting SG linear system is solved using the preconditioned conjugate gradient (PCG) method
with mean-based preconditioning [10, 16, 20]. The iterative method is terminated when the relative residual
error is reduced to 1078. The error of the approximate multilevel solution is computed with respect to a

reference solution u,.¢ = ug, computed with a fine spatial mesh width h=1 /48 and high order stochastic

basis functions of order p = 6.

The Trilinos framework [12] is used to implement and numerically test the multilevel method. The
Stokhos package offers tools for embedded uncertainty quantification methods and is used to assemble the
algebraic equations for the SG method [19]. In order to compute the polynomial chaos coefficients, an
approach similar to automatic differentiation that incorporates template-based generic programming and
operator overloading is used, see [17, 18] for further details. We use the CG iterative solver provided by the
Belos package with a mean-based preconditioner implemented using algebraic multigrid from the MueLu
package [8].

We now present an experiment using the multilevel method for approximating the solution of (2.1)
where the spatial discretization is refined by a factor of two in each spatial dimension starting with an initial
mesh width of hg = 1/5. The reported error is measured by |-||, which is defined for a gPC expansion

v(x,y) = S0 vi(x) Ti(y) as,

1/2

Q-1
[oll, = (Z Ivi(X)Isz))
i=0

Figure 4.1a shows the finite element error, and confirms Assumption 2.4 holds with approximate values
Cp = 0.002 and s = 7. The stochastic approximation error, shown in Figure 4.1b, satisfies Assumption 2.6
with approximate values Cr = 1.2 x 10~% and r = 9. Using these computed constants, Figure 4.2a shows
the polynomial orders for each level, py_p, determined from (3.7) with number of levels computed from
(3.6). Figure 4.2b shows the total iterative solve time, measuring the computational cost, of the multilevel
method and standard single-level SG method. In the plot, the data labeled ML-Formula is the result of
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(a) Spatial Finite Element Error (b) Stochastic Approximation Error

Fig. 4.1: Left: The spatial finite element approximation error Hué/48 - ugH versus 1/h. Right: The stochastic approximation
*

1/48 1/48
error ’LLG — ’LLP

. versus p.

the multilevel method with the polynomial orders and mesh sizes determined using the formulas derived
in Theorem 3.3. For data labeled ML-Best, the parameters are chosen manually to achieve an accuracy of
€ while minimizing the computational cost. The data labeled SL is the result of the standard single-level
method with hand-tuned parameters chosen to achieve an accuracy of €. For this problem formulation, for
all desired accuracy levels tested ML-Best, using hand-tuned polynomial orders, outperforms the standard
single level method in overall solve time. The multilevel method using polynomial orders dictated by the
formula is competitive with the standard single-level method.

5 10°
—a e=10" & -4 ML-Formula
-t e—101 e—e ML-Best
_ — SL
4p— wex e=10"" |4
T vy =10"°

N T~ oo =107 7 10!
T — |[o® =10"| g
N g
=3 by
3 £
[} [
B 2
5 3
c 2k - x 9 )
s Tl £ 10°F

1 =~

1071 2 : 3 ‘4 : 5 : 6 : 7 8
0 s 10° 10° 10 10° 10° 10° 10°
0 1 2 Accuracy ()
Level ¢
(a) Formula Derived Polynomial Orders (b) Total Solve Time

Fig. 4.2: Left: Polynomial order as determined by (3.7) at each level L of the multilevel method for varying accuracies e.
Right: The total iterative solve time versus the level of accuracy e for the proposed multilevel method and standard single-
level method. The multilevel formulation using hand-tuned polynomial orders, ML-Best, offers computational savings for all
desired accuracy levels tested. ML-Formula, using the polynomial orders dictated by the formula, is competitive with the
standard, single-level method in overall solve time.

5. Conclusions. The stochastic Galerkin method is a powerful method to obtain highly accurate ap-
proximate solutions to PDEs with random input coefficients, yet it is expensive, especially as the stochastic
dimension increases. We propose and analyze a multilevel solution strategy based on the idea that the
solution can be written as a telescoping sum of a hierarchy of spatial approximations. The ability to use
lower-order stochastic approximations within the sum allows for computational savings. Our numerical
results show that this method can achieve considerable computational savings while maintaining overall
accuracy in the solution.
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In the current implementation, the accuracy of the computed solution is determined by comparing it

to a reference solution computed with a fine mesh and high polynomial order, however in practice, this
comparison is infeasible. A more practical implementation method is needed to determine when the mul-
tilevel solution has achieved the desired accuracy. Also, the bounds used for the stochastic approximation
error and the computational cost metric are weak, and result in a bound on the computational cost of the
multilevel method that is not sharp. In particular, the computational cost is currently an estimate on the
number of unknowns in the system. A more accurate cost estimate would include a measurement of the
number of non-zeros in the linear operator which is a better estimator of the computational effort.
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