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Abstract. The need for parallelism in time is being driven by changes in computer architectures, where
future speed-ups will be available through greater concurrency, not faster clock speeds. This leads to a bottleneck
for sequential time marching schemes because they lack parallelism in the time dimension. Multigrid Reduction
in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction
techniques and a multilevel hierarchy of coarse time grids. The goal of this work is the efficient solution of
nonlinear problems with MGRIT, where efficiency is defined as achieving similar performance when compared
to an equivalent linear problem. When solving a linear problem, using implicit methods and optimal spatial
solvers, e.g. classical multigrid, the spatial multigrid convergence rate is fixed across temporal levels, despite a
large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases
dramatically on coarser time grids. By using a variety of strategies, most importantly, spatial coarsening and
an alternate initial guess for the nonlinear solver, we reduce the work per time step evaluation over all temporal
levels to a range similar to those of a corresponding linear problem. This allows for overall speedups comparable
with those achieved, in previous work, for linear systems.

1. Introduction. Previously, ever increasing clock speeds allowed for the speedup of
sequential time integration simulations of a fixed size, and for stable wall clock times for
simulations that were refined in space (and usually time). However, clock speeds are now
almost stagnant, leading to the sequential time integration bottleneck.

By allowing for parallelism in time, much greater computational resources can be brought
to bear, and overall speedups can be achieved. Because of this, interest in parallel-in-time
methods has grown over the last decade. Here, the focus is on the multigrid reduction in time
(MGRIT) method [4]. MGRIT is a true multilevel algorithm and, as such, has optimal parallel
communication behavior, as opposed to a two-level scheme, where the size of the coarse-level
limits concurrency.

Work on parallel-in-time methods actually goes back at least 50 years [12]. For a gentle
introduction to this history, please see the review paper [6]. This work focuses on multigrid
approaches (and MGRIT [4, 5] in particular) because of multigrid’s optimal algorithmic scaling
for both parallel communication and number of operations. Note that Parareal [9], perhaps
the most well known parallel-in-time method, is equivalent [7] to a two-level multigrid scheme.

Consider a general first order ordinary differential equation (ODE) and the corresponding
time discretization:

(1) Ut = f(uat)v U(O) =g, t € [07T]7

(2) u(t + 0t) = ©(u(t), u(t + dt)) + g(t + dt),

where ® is a nonlinear operator that encapsulates the chosen time stepping routine and g is a
time dependent function that incorporates all the solution independent terms.

Sequential time marching schemes are optimal in that they move from time t =0tot =T
with the fewest possible applications of . By applying ® iteratively in, comparably expensive,
but highly parallel, multigrid cycles, MGRIT sacrifices efficiency for temporal concurrency.
Both methods are optimal, i.e. O(N), but the constant for MGRIT is higher.

Application of MGRIT to linear parabolic problems was studied in [4]. Figure 1 shows a
strong scaling study of MGRIT for linear diffusion on a (257)? x 16385 space time grid. The
space-time parallel runs used an 8 x 8 processor grid in space, with all additional processors
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Fig. 1: Time to solve 2D linear diffusion on a (257)2 x 16385 space-time grid using sequential time stepping
and two processor decompositions of MGRIT. [4]

being added in time. Both MGRIT curves represent the use of temporal and spatial coarsening,
so that the ratio of dt/dx? is fixed on coarse time-grids. The goal of this paper is to make
the overall performance (i.e., crossover point and speedup) of MGRIT for nonlinear problems
similar to that for linear problems.

When considering the performance of MGRIT, the application of ® is the dominant process.
When an optimal spatial solver such as classical spatial multigrid [10, 3, 13, 8] is used, the
work required for a time step evaluation is independent of the time step size. However, when
® is nonlinear, each application of ® is an iterative nonlinear solve, the conditioning of which
usually does depend on the time step size. The nonlinear parabolic p-Laplacian equation was
selected as the model problem:

(3) u(x,t) — V- (|Vu(x, )P 2Vu(x, t)) = b(x,t), x € Q, t € [0,T],
subject to the following Neumann boundary and initial conditions:

(4) |Vu(x, t)[P2Vu(x,t) - n = g(x,t), x € 9Q, t € (0,T]

(5) u(x,0) = ug(x), x € Q.

The p-Laplacian for p = 4 is well-known as a means of modeling soil erosion and transport
[1] and has also found uses in image processing (denoising, segmentation and inpainting) and
machine learning.

A naive application of MGRIT to (3) showed a large increase in nonlinear iteration counts,
per ® evaluation, on the coarser temporal grids. Therefore, our strategy is to minimize the cost
of each nonlinear solve. The goal is to ultimately achieve similar efficiencies for the nonlinear
and linear versions of (3). Note that the p = 2 is the heat equation.

Towards the goal of minimizing the overall cost of each nonlinear solve, a spatial coarsen-
ing strategy, where 6t/dx2 is held fixed, was pursued. This kept the conditioning of ® fixed
over all time levels, ultimately requiring far fewer nonlinear iterations per ® evaluation. In
addition, the smaller problem sizes drastically reduced coarse grid compute times. Unfortu-
nately, full spatial coarsening can degrade overall MGRIT convergence and, in some cases,
result in non-convergence. Maintaining the full spatial resolution on the first few coarse time
levels, but coarsening in space on the coarser levels, minimized the negative effects on MGRIT
convergence, while still dramatically reducing the overall cost of the nonlinear solve.

To further reduce the average cost of each ® evaluation, an improved initial guess was also
investigated. A commonly used approach is to use the previous time step as the initial guess
for the nonlinear solver. On coarse time grids, this is a poor approximation to the solution.
Instead, the approximate solution at the corresponding time point from the previous MGRIT
iteration is used. This reduces the average number of nonlinear iterations per ® evaluation, to
below that of an equivalent sequential time integration.
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Fig. 2: Fine- and coarse-grid temporal meshes. Fine-grid points are present on only the fine-grid, whereas
coarse-grid points are on both the fine- and coarse-grid.

In Section 2, the general MGRIT framework is discussed. In Section 3, our strategy for
improving the performance of MGRIT for nonlinear problems is presented and justified. In
Section 4, by introducing spatial coarsening and an improved initial guess, this strategy is
implemented. In sections 5.1 and 5.2, weak and strong scaling results are presented. Weak
scaling results show that the MGRIT algorithm scales effectively, while strong scaling results
show overall speedups in line with the comparable linear problem.

2. MGRIT overview. First, a brief overview of the MGRIT algorithm is presented.
Define a uniform temporal grid with time step 6¢ and nodes ¢;, j = 0,..., N; (non-uniform
grids can easily be accommodated). Further, define a coarse temporal grid with time step
AT = mét and nodes T; = jAT, j =0,1,...,Ny/m, for some coarsening factor m. This is
depicted in Figure 2. In block triangular form, the time-stepping problem (2) is

I Ug 20
—d, I u g1

(6) Au) = : = . |=8g
—Py,1 T uy, gN,

Sequential time marching is a forward block solve of this system. MGRIT solves this system
iteratively, in parallel, using a coarse-grid correction scheme based on multigrid reduction.
Both are O(N) methods but MGRIT is highly concurrent. Multigrid reduction strategies are
essentially approximate cyclic reduction methods and, as such, successively eliminate unknowns
in the system. If the fine points are eliminated, the system becomes

I llAﬁo
—om I UA 1

(7) Aa(ua) = . : = gn,
—pm T uAth

By defining “ideal” restriction, R, and interpolation, P, this system can be represented in a
multigrid fashion. Let R be injection, and

I ®T ... om-LT r

(8) P =
I o7 ... gmuT

With this, the “ideal” coarse-grid operator is Ax = RAP. The limitation of this exact
reduction method is that the coarse-grid problem is, in general, as expensive to solve as the
original fine-grid problem. Multigrid reduction methods address this by approximating Aa
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Fig. 3: F- and C-relaxation for coarsening by factor of 4 . Note that each F-interval and C-update is indepen-
dent.

with Ba, where

(9) Ba = . :
N

and ®A is an approximate coarse-grid time stepper. One obvious choice for defining ® is
to re-discretize the problem on the coarse grid. Convergence of MGRIT is governed by the
approximation Ax =~ Ba. Using a re-discretization of ® with AT = mdt has proven effective
[4, 5].

The coarse-grid is used to compute an error correction based on the residual equation (see
Algorithm 1). Relaxation is a local fine-grid process used to resolve fine-scale behavior. Figure
3 shows the actions of F- and C-relaxation on a temporal grid with m = 4. F-relaxation
propagates the solution, forward in time, from each coarse point to the neighboring F-points.
Each interval of F-points is updated independently (i.e, in parallel) during F-relaxation. Each
C-point update is similarly independent.

2.1. MGRIT algorithm for nonlinear problems. Putting the above components to-
gether results in the MGRIT algorithm for nonlinear problems. This is a straight-forward
extension of the linear algorithm [4] using the FAS (nonlinear multigrid) scheme [2]. The F-
relaxation, two-grid variant is equivalent to the popular Parareal algorithm [7], which has been
shown to be effective for a variety of nonlinear problems. The FAS description of MGRIT first
appeared in [5].

Injection is used to map to the coarse level (like Parareal). The exception is the spatial
coarsening option where the spatial restriction and interpolation functions, R, and P,, are
used to coarsen in space. With this, the two-level the MGRIT algorithm is presented in
Algorithm 1.

Algorithm 1 MGRIT(A, u, g)

1: Apply F- or FCF-relaxation to A(u) = g.

2: Inject the fine grid approximation and its residual to the coarse grid
UA,i < Umy, TAi <~ 9mi — (A(ll))ml

3: If Spatial coarsening then
uni < Ra(uai), ra < Ra(ray)

4: Solve BA(VA) = BA(UA) +Tra.

5: Compute the coarse grid error approximation: ea >~ va — ua

6: If Spatial coarsening then
eni «— Pileay),

7: Correct using ideal interpolation: u = u + Pea

A variety of cycling strategies are available in multigrid (e.g., V, W, F). All the results
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ot 6x Av. Max Min ot ox Av. Max Min
1/1024  1/32 3.4 4 2 11024  1/32 34 4 2
1/256 1/16 3.8 6 2 1/256 1/32 4.01 5 3
1/64  1/8 49 12 2 1/64 1/32 7.0 11 3
1/16 1/4 6.7 12 3 1/16 1/32  10.01 17 4
14 1/2 9 13 5 1/4 1/32 128 16 8
1 1 7.5 12 5 1 1/32 11.7 15 8

(a) Full spatial Coarsening (b) No spatial Coarsening

Table 1: Baseline iteration counts for Newton solver using the sequential method.

presented here use the standard V-cycle, corresponding to Algorithm 1 with the “Solve” step
turned into a single recursive call. The recursion ends when a trivially sized grid is reached, at
which point a sequential solver is used.

The chosen implementation of MGRIT is XBraid [14], an open source package developed
at Lawrence Livermore National Laboratory (LLNL). The key computational kernel is the
time-stepping routine, but all the specifics are opaque to XBraid and done in user code. This
allows the user to add temporal parallelism to existing time stepping routines with minimal
modifications. For more details, see [4] and [14].

3. Strategy for efficient MGRIT.

3.1. Numerical parameters. The forcing function, Neumann boundary conditions, and
initial conditions of the model problem (3) were chosen to prescribe an exact solution of
u(z,y) = sin(kx) sin(ky) sin(rt), where kK = m and 7 = (2 + 1/6)m. Unless otherwise stated,
the p-Laplacian with p = 4 was used. The spatial discretization was computed with standard
linear quadrilateral elements using MFEM [11]. Time stepping was completed using Backward
Euler, with Newton as the nonlinear solver.

The numerical testing parameters (unless otherwise mentioned) were as follows. An absolute,
residual based, Newton tolerance of 10~7 was used. The spatial solver for each Newton iteration
was BoomerAMG [8].

The test problem size was a (64)? x 4096 space-time grid on the domain [0,2]? x [0,4] with
1 processor in space and 64 processors in time. MGRIT used V-cycles, FCF-relaxation, and a
fixed stopping criteria of 107°/(v/dtéx). The coarsening factor was m = 4.

3.2. Sequential time-stepping baseline for efficiency. To establish a baseline for
efficiency, experiments using standard sequential time-stepping were completed. The previous
time-step value was used as the initial guess for the Newton solve.

Table 1 gives the average, maximum and minimum Newton solver iteration counts over
several space-time grids. On the left, the grids used by MGRIT when applying full spatial
coarsening are mimicked. On the right the iteration counts for grids associated with no spatial
coarsening are given.

These baseline results make it clear that the average cost of a nonlinear solve is highly
dependent on the grid, with there being a distinct advantage to coarsening in both space and
time.

The dependence on dx (i.e, spatial coarsening) is explained by considering a standard back-
ward Euler time step,

<I — (i;A(UkH)) = f(uk),

where A is some nonlinear diffusion integrator. As dt/dz? increases, the nonlinear operator
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Iteration 6t =9.77e-4 3.91e-3  1.56e-3  6.25e-2  2.50e-1 1.0

0 5.45 5.60 6.62 9.71 14.15 14.75
1 3.59 4.10 6.93 10.94 14.78 15.75
2 3.44 4.04 7.01 10.35 14.42 16.50
3 3.44 4.01 7.18 10.32 14.52 16.25
4 3.44 4.01 7.18 10.35 14.40 16.50

Table 2: The average number of Newton iterations per time step (ay) across each temporal level and MGRIT
iteration

moves away from the identity, becoming more expensive to solve. Coarsening in space and
time bounds this ratio, making the nonlinear inversion of ® cheaper on the coarse grid.

Despite this, the iteration counts continue to grow with the time step size. This is likely
attributed to our choice of initial guess. On coarse time levels, where 6t is large, the previous
time step is clearly a poor approximation to the current solution, and as such, more iterations
are required for convergence.

3.3. Strategy for naive MGRIT. Our strategy is to minimize the average cost of a
Newton solve, ¢,. The cost of a Newton solve depends on both the number of iterations
required for convergence, and the cost of a linear solve. Let a be the average number of
Newton iterations per time step over all levels, and let ¢; be the average computational cost of
a single time step for the linear solve. Then ¢, x a ¢;. Here, ¢; is an absolute measure that
decreases with the spatial grid size.

A single MGRIT V cycle, using FCF relaxation, and no spatial coarsening, completes &7 =
(2m/(m—1)+41)N; calls to the linear solve routine, where m is the coarsening factor and Ny is
the total number of time steps. In [4] it was shown that, for a linear problem, the computational
model for MGRIT’s cost, ¢, is essentially defined by the number of calls to the linear solve
routine. Thus, ¢, < ¢; 7. In a nonlinear setting, the cost of a MGRIT V cycle is

Ccn X ac O x ¢, Or.

By minimizing ¢, we can greatly reduce the cost of a MGRIT V cycle. Our heuristic is that
this minimization of ¢,, (through reductions in both a and ¢;) will yield a nearly optimal solver.

As a baseline, MGRIT was applied in a naive fashion, as one might apply MGRIT initially to
an existing sequential implementation of the model problem. Table 2 gives the average number
of Newton iterations per time step (ag), on each temporal level, with no spatial coarsening.
Each 4t (column) value corresponds to a temporal level, while the rows represent different
XBraid iterations.

As mentioned above, when using a multigrid solver, the cost of a linear solve, ¢;, is indepen-
dent of the time step size. This is clearly not the case for a nonlinear solve. Newton iteration
counts grow steadily across temporal grids, with 3-5 times as many Newton iterations taking
place on the coarsest grids. One might initially guess that increased Newton iteration counts
on the coarse grid are irrelevant. After all, for this example we took around 900 Newton itera-
tions on the coarsest grid, compared to 200000 on the fine grid. However, in a highly parallel
setting, where concurrency is key, increased iteration counts on coarse grids can substantially
reduce performance.

Consider the case where each MPI process owns m points in time on the finest level, i.e.,
one CF-interval. On the coarsest level, each process owns, at most, one point in time. Due
to synchronization, the slowest processor determines the cost of each solve. In the example
above, on iteration 3, the cost of FCF-relaxation on the coarsest grid is approximately 33¢;
(each point is relaxed twice), compared to 8¢; on the second time grid ( 6t = 3.91e-3). In this
case, the coarse grid is definitely not free, it is the most expensive part of a V cycle.
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Initial guess  Spatial Level ~MGRIT iter. Total Wall-clock time  Wall-clock time/iter. a

PTS 1 12.00 11269.82 939.15 4.19
PTS 3 12.00 9602.59 800.22 4.18
PTS 4 12.00 8504.12 708.68 4.15
PTS 6 40.00+ 17470.33+ 436.76 4.14
PMI 1 12.00 7121.18 593.43 2.82
PMI 4 12.00 5692.31 474.36 2.82

Table 3: Overall run-times, total iteration counts and average time per iteration for our various solver options,
with a (64)2 x 4096 space-time grid.

4. Efficient MGRIT for the model nonlinear problem. In this section a variety
of approaches designed to make MGRIT efficient, for our chosen model nonlinear parabolic
problem (3), are investigated. The goal is to achieve a similar efficiency as that seen for a
corresponding linear problem.

4.1. MGRIT with spatial coarsening. Motivated by the results seen in Section 3.2,
the naive solver from Section 3 was updated with spatial coarsening. In general, the user’s code
defines the separate spatial interpolation and restriction functions P, and R,. The natural finite
element restriction operator (and its transpose) was used to move between regularly refined
grids. This operator was provided by MFEM. The previous time step was used as the initial
guess for the Newton solver.

Using coarse spatial grids, on the coarse time levels, drastically reduces the cost per iteration
(c1). The trade-off is that the coarse grid solves are less accurate, which, in turn, can reduce
the MGRIT convergence rate. One benefit of MGRIT is that, given the exact solution on the
coarse grid, interpolation yields the exact solution on fine grid. Error introduced by restriction
and interpolation between spatial meshes removes this property. Without this exactness, any
error modes introduced, specifically error modes in the null space of the restriction operator,
must be damped solely by FCF-relaxation. In many cases this also causes a degradation of the
MGRIT convergence rate.

Table 3 shows the effect of spatial coarsening on MGRIT run times (called wall-clock time).
Here, “initial guess” corresponds to the initial guess for the Newton solver with “PTS” referring
to the previous time step, and “PMI” referring to the previous MGRIT iteration (see section
4.2). “Spatial levels” represents the number of different spatial grids used. The value of
1 corresponds to no spatial coarsening, i.e. one fixed spatial grid for all time levels, while 6
represents a different spatial grid on every temporal level. In the case where 4 spatial grids were
used, full spatial resolution was kept on the 2 largest temporal grids, with spatial coarsening
used on time grids 3 — 6. A similar approach was used for the case where 3 spatial grids were
used.

The reader will first note that the case of 6 yielded an MGRIT algorithm that did not
converge in the allowed amount of time. This severe degradation of MGRIT convergence
is still a subject of active research, but likely relates to the discussion above regarding the
information lost when moving to coarse levels. For practical purposes, this solver is unusable.
Delaying spatial coarsening until the third or fourth temporal level limited any degradation in
the MGRIT convergence rate, while still allowing for dramatic reductions in ¢;.

Moreover, replicating results seen in Section 3.2, spatial coarsening slightly reduced a, the
average number of Newton iterations required per time step. Table 4 explores this idea by
comparing a, on each temporal level and iteration. The values for a, increase with temporal
level in Table 4, but considerably less than in Table 2.

In conclusion, if spatial coarsening is not possible on all temporal levels, as is the case here,
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Iteration 6t =9.77e-4 3.91e-3  1.56e-3  6.25e-2  2.50e-1 1.0

0 5.45 5.63 6.74 8.93 11.42 10.25
1 3.60 4.09 6.92 8.93 11.43 10.75
2 3.44 4.04 7.02 8.82 11.43 10.50
3 3.44 4.01 7.18 8.84 11.43 10.50
4 3.44 4.01 7.18 8.84 11.43 10.50

Table 4: The average number of Newton iterations per time step (ay) with spatial coarsening across each
temporal level and MGRIT iteration. Four levels of spatial coarsening are used. c.f. table 2.

keeping full spatial resolution on the finest grids, but coarsening after that, is a good way
to balance both the accuracy and the cost of a MGRIT V-cycle. By reducing the size of
the coarse grids, spatial coarsening reduces ¢;. Furthermore, by minimizing 0t/dx?, a, was
drastically reduced on the coarse grids. Even so, these a, values are still higher than those for
the same 6t and dx in Table 1, leaving room for improvement.

4.2. MGRIT with an improved initial guess for Newton’s method. In Section
3.2, it was suggested that the dependence of a; on time step size was due to our choice of
initial guess. Recall that using the previous time step as the initial guess for the nonlinear
solver is a common approach, and that on coarse time grids, this is a poor approximation to
the solution. After MGRIT has completed one iteration, the user has two choices, the previous
time step, and the solution from the previous MGRIT iteration (PMI). As MGRIT converges,
the solution from the previous iteration becomes an ever improving initial guess.

Table 5 shows ay over 5 iterations, using the PMI as the initial guess, for the case of no spatial
coarsening. Large reductions in a, were seen, but primarily at the finer levels. Compared with
Table 2, a large reduction in a, across all temporal grids was achieved. Furthermore, reductions
were seen during the later MGRIT iterations. By iteration three ay, was comparable, across all
grids, with those from the sequential solver in Table 1. Similar trends were seen when using
spatial coarsening (4 levels) in conjunction with PMI.

Tteration 6t =9.77e-4 3.91e-3  1.56e-3  6.25e-2  2.50e-1 1.0

0 6.99 6.85 6.89 6.97 8.97 12.00
1 4.34 3.77 4.14 5.42 8.47 12.50
2 3.18 3.01 3.32 5.53 7.02 10.75
3 2.41 2.19 2.90 5.39 7.07 10.25
4 2.00 2.00 291 5.44 7.00 10.50

Table 5: Comparison of the average number of Newton iterations per time step (ag), across each temporal
level and MGRIT iteration, when using the PMI as the initial guess to the nonlinear solver.

Table 3 further validates our heuristic. By using the PMI as the initial guess we almost
halved a¢, and, in doing so, drastically reduced overall run times.

In conclusion, these results indicate that using the PMI as the initial guess, after the first
MGRIT iteration, is very beneficial. During the first MGRIT iteration, no value but the
previous time step exists, and thus, it must be used as the initial guess.

5. Numerical results. Previous sections focused on producing the most efficient Newton
solver as a proxy for MGRIT efficiency. Parallel scaling studies were completed to validate those
findings. Let SC stand for spatial coarsening.

5.1. Weak scaling. In this subsection, a domain refinement study for MGRIT, using the
above strategies, is presented. The space-time domain was held fixed ([0,2]? x [0,4s]), while
the spatial and temporal resolution were scaled up, holding 6t/dx? fixed. In all cases 16 time
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N2 x Ny 642 x16 1282 x 64 2562 x 256 5122 x 1024 10242 x 4096

PTS 4 9 11 - -
PMI 4 9 11 11 11
PMI + SC 4 9 11 11 11

Table 6: Weak scaling study for nonlinear MGRIT algorithm. MGRIT iteration counts are bounded inde-
pendently of the problem size. The PMI was used at all points and 4 levels of spatial coarsening (SC) were
used.

Strong Scaling —- 16 Processors in Space Strong Scaling —— 32 Processors in Space

e @
[ 5}
£ E
K —— p=2 with PMI T —— p=2 with PMI
2 10° 2 10°
107 —s—PMmI 10| —w— PMI
—t— PTS —tt— PTS
—#— PMI + SC —— PMI + SC
=~ Sequential ——— Sequential
10* 10 10° 10° 10* 10°

Processors Processors

Fig. 4: Strong scaling study for a (128)2 x 16385 space-time grid, Left: 16 processors in space, Right: 32
processors in space.

steps, and 4096 spatial unknowns per processor were used. For runs using spatial coarsening,
the number of levels of spatial coarsening was increased on each subsequent test, resulting in
4 levels of spatial coarsening on a (1024)? x 4096 space-time grid.

Results are shown in Table 6. For the PTS case, the final two grid sizes are omitted because
the run-times became excessive given our machine privileges. The PMI and PMI + SC cases
both showed optimal iteration counts, bounded independently of problem size.

5.2. Strong scaling. Both MGRIT and classical time stepping are O(N) optimal meth-
ods, but the constant for MGRIT is larger. On the other hand, MGRIT allows for temporal
parallelism. This leads to a crossover point, after which MGRIT is beneficial. To illustrate this,
a strong scaling study of MGRIT, for the space-time grid of (128)% x 16384, was completed.
Figure 4 shows the results. The plot for “p=2" corresponds to the linear heat equation with
p = 2 in equation (3). This allows us to compare MGRIT for the nonlinear problem to a
corresponding linear problem. For this experiment no optimizations, other than setting p = 2,
were made, e.g., the spatial matrix and solver were rebuilt during each application of @, as was
required in the nonlinear case, so that the comparison is fair.

From this, a number of conclusions can be made. For small processor counts, sequential
time stepping is both faster and uses less memory. However, on larger numbers of processors
MGRIT is faster. The crossover point at which using MGRIT was beneficial, for 16 processors
in space, was at about 1024 processors, or 64 processors in time. At it’s maximum the speedup
was about a factor of 10 at 130K cores and 32 processors in space.

The results in Figure 4 are not as good as those presented in Figure 1. The behavior of
the linear heat equation (p = 2) is similar to that for the nonlinear p-Laplacian (p = 4),
which indicates the difference may be due to: (1) using linear finite elements, on a regular
grid in space, as opposed to finite differencing, (2) using the BoomerAMG solver in hypre , as
opposed to the more efficient geometric-algebraic solver PFMG in hypre, and (3) the spatial
discretization and spatial multigrid solver being built every time step. Improving the scaling
of MGRIT will require addressing these differences, with (2) and (3) the more likely culprits.
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This is a topic for future research.

6. Conclusions. The MGRIT algorithm effectively adds temporal parallelism to existing
sequential solvers and has been shown to be effective for linear problems. However, when
moving to the nonlinear setting, the relatively large time-step sizes on coarse grids make the
application of MGRIT nontrivial.

In summary, it was shown that, after the first iteration, the user should always use the
solution from the previous MGRIT iteration as the initial guess to the nonlinear time-stepping
routine (here, a Newton solver). Moreover, spatial coarsening should be used whenever possible.
For the linear example, presented in Figure 1, spatial coarsening was implemented on all levels
effectively. For the p-Laplacian this was not the best strategy. However, keeping full spatial
resolution on the second, and possibly the third, time grid, but coarsening after that, was very
effective. This approach dramatically reduced the cost of a Newton solve on the coarse grid,
whilst also limiting degradation of the MGRIT convergence rate.

Weak scaling results showed that MGRIT is a scalable algorithm for nonlinear problems,
with iteration counts bounded independently of problem size. Strong scaling showed benefits
of MGRIT, with 10x speedups seen over sequential time stepping in some parameter regimes.
The performance is not as ideal as in [4], but with the modifications given here, we were able
to match performance for the comparable linear problem.

Future work will involve addressing some of the efficiency issues in the MFEM finite-element
matrix construction routines and BoomerAMG setup-phase, as well as varying the nonlinear
solver tolerance, in a level and iteration based way, in an attempt to further reduce ay.
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