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ABSTRACT. In this paper, we analyze the preconditioned GMRES method with block tri-
angular preconditioners. We improve the existing analysis of preconditioned GMRES
method in literature in the sense of removing the scaling parameters in front of the di-
agonal blocks. In this paper, we first investigate the convergence theories for an abstract
saddle-point problem. Then we apply this technique to two linear systems, which come
from multi-physics systems after linearization and finite element discretization.

1. INTRODUCTION

Preconditioned GMRES method is one of the most widely used Krylov solvers for lin-
ear systems. No requirement on symmetric or positive definite property makes it impor-
tant to solving linear systems, especially to those come from multi-physics problems after
linearization and discretization [4, 3, 2, 1, 13, 14, 5, 11]. It is well-known that in terms of
number of iterations, block triangular preconditioners for GMRES method always give
satisfactory performance. However, not much work exists to justify this theoretically.
Loghin and Wathen [8] introduced an important framework to analyze the performance
of such preconditioners, which is know as Field-of-values- (FOV-) analysis.

Our analysis is motivated by that of [10]. Carrying out the analysis from the perspec-
tive of functional analysis and PDEs, we are able to improve the estimates of Loghin
and Wathen in [8] in the sense that we can remove the scaling parameters in front of the
diagonal blocks. By choosing appropriate norms in the analysis, we are able to get rid
of these scaling parameters, which is consistent with the practical implementation and
observations.

The rest of this paper is organized as follows. In §2, we consider a generic saddle-point
problem and carry out convergence analysis for the preconditioned GMRES method.
Then we apply the analysis technique to two linear systems, which come from the lin-
earization and finite element discretization of multi-physics systems in §3.

2. CONVERGENCE ANALYSIS FOR THE PRECONDITIONED GMRES METHOD

In this section, we recall the abstract framework for designing the FOV-equivalent pre-
conditioners, following [8]. We design block triangular preconditioners for the GMRES
method, and justify their performance theoretically.

Consider a model problem Ax = F , where A is a general operator. We use another
general operatorML : H∗ → H to denote the preconditioner. Based on the inner prod-
uct (·, ·)M−1 and the norm ‖·‖M−1 , we can estimate the convergence rate of the precondi-
tioned GMRES. It is proved [6, 12] that if xm is the m-iteration of GMRES method and x
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is the exact solution, then

‖MLA(x− xm)‖M−1

‖MLA(x− x0)‖M−1
≤
(

1− γ2

Γ2

)m/2

,

where

(2.1) γ ≤ (x,MLAx)M−1

(x, x)M−1
,
‖MLAx‖M−1

‖x‖M−1
≤ Γ.

According to the theory, we conclude that as long as we find an operator ML and a
proper inner product (·, ·)M−1 such that condition (2.1) is satisfied with constants γ and Γ
independent of the physical and discretize parameters,ML is a uniform preconditioner
for the GMRES method. Such preconditioners are usually referred to as FOV-equivalent
preconditioners.

We carry out the convergence analysis of the preconditioned GMRES method for a
saddle-point problem. Application to other finite element discretization is discussed
later. Assume that Ax = F is in the form(

A1 −B∗

B 0

)(
x1

x2

)
=

(
F1

F2

)
,(2.2)

where A1 is a SPD operator. Based on the partition of the system, we assume that a
splitting of the Hilbert space H is H1 ×H2 such that x1 ∈ H1, x2 ∈ H2. Assume that
the problem (2.2) is well-posed with respect to norm ‖·‖M−1 , which is induced byM =
diag (H1,H2)

−1. And we further assume that H1 = A1. Therefore, the well-posedness
implies that there exists a constant ζ > 0, independent of physical and discretization
parameters (depending on the problem) such that

inf
x2∈H2

sup
x1∈H1

(Bx1,x2)
‖x1‖A1‖x2‖H2

≥ ζ > 0.(2.3)

Theorem 2.1. If the condition (2.3) holds, there exist constants γ and Γ such that for all x 6= 0,
the operator A defined in (2.2) and the operator

ML =

(
A1 0
B H2

)−1

satisfy condition (2.1) with the norm ‖·‖M−1 induced byM = diag (A1,H2)
−1.

Proof. By simple computation, we get

MLA =

(
I1 −A−1

1 B
∗

0 H−1
2 BA

−1
1 B

∗

)
.

Then for any x = (x1,x2)T, we have

(x,MLAx)M−1 = (x1 −A−1
1 B

∗x2,x1)A1 + (BA−1
1 B

∗x2,x2)

= ‖x1‖2
A1
−(B∗x2,x1) + ‖B∗x2‖2

A−1
1

≥ ‖x1‖2
A1
−‖x1‖A1‖B

∗x2‖A−1
1

+‖B∗x2‖2
A−1

1

=

(
ξ1

ξ2

)T (
1 −1/2
−1/2 1

)(
ξ1

ξ2

)
,
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where ξ1 = ‖x1‖A1 , ξ2 = ‖B∗x2‖A−1
1

. Since the matrix in the middle is SPD, there exists
γ0 > 0 such that

(x,MLAx)M−1 ≥ γ0

(
‖x1‖2

A1
+‖B∗x2‖2

A−1
1

)
.

Moreover,

‖B∗x2‖A−1
1

= sup
x1∈H1

(Bx1,x2)
‖x1‖A1

≥ ζ‖x2‖H2 ,

we get

(x,MLAx)M−1 ≥ γ0‖x1‖2
A1

+γ0ζ2‖x2‖2
H2
≥ min

{
γ0, γ0ζ2} (x,x)M−1 ,

which leads to the lower bound γ. The upper bound Γ follows directly from the bound-
edness of each term. �

Applying ML defined in Theorem 2.1 as preconditioner means inversing each diag-
onal block exactly. In implementation, we need to call direct solvers for each diagonal
block, which can be expensive and time-consuming. Therefore, we replace the diagonal
blocks by their spectral equivalent SPD approximations. The following theorem states
that under certain assumptions, such a preconditioner is still robust.

Theorem 2.2. If the condition (2.3) holds, there exist constants γ and Γ such that for all x 6= 0,
the operator A defined in (2.2) and the operator

M̂L =

(
Q−1

1 0
B Q−1

2

)−1

satisfy condition (2.1) with the norm ‖·‖M−1 induced byM = diag (Q1,Q2) provided that

(1) c2,i (Qix,x) ≤
(
H−1

i x,x
)
≤ c1,i (Qix,x), i = 1 or 2,

(2) ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 1.

Proof. By simple computation, we get

M̂LA =

(
Q1A1 −Q1B∗

Q2B(I1 −Q1A1) Q2BQ1B∗

)
.

Then for any x = (x1,x2)T, we have

(x, M̂LAx)M−1 = ‖x1‖2
A1
−(B∗x2,x1) + (B(I1 −Q1A1)x1,x2) + ‖B∗x2‖2

Q1

= ‖x1‖2
A1
−(Q1A1x1,B∗x2) + ‖B∗x2‖2

Q1
.

As ‖I1 −Q1A1‖A1≤ ρ implies that

(1− ρ)(x1,x1)A−1
1
≤ (x1,x1)Q1 ≤ (1 + ρ)(x1,x1)A−1

1
,

(1 + ρ)−1(x1,x1)A1 ≤ (x1,x1)Q−1
1
≤ (1− ρ)−1(x1,x1)A1 ,

we have

−(Q1A1x1,B∗x2) ≤ ‖A1x1‖Q1‖B
∗x2‖Q1≤ (1 + ρ)‖A1x1‖A−1

1
‖B∗x2‖Q1

= (1 + ρ)‖x1‖A1‖B
∗x2‖Q1 ,
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Therefore,

(x, M̂LAx)M−1 ≥ ‖x1‖2
A1
−(1 + ρ)‖x1‖A1‖B

∗x2‖Q1+‖B∗x2‖2
Q1

=

(
ξ1

ξ2

)T (
1 −(1 + ρ)/2

−(1 + ρ)/2 1

)(
ξ1

ξ2

)
,

where ξ1 = ‖x1‖A1 , ξ2 = ‖B∗x2‖Q1 . We can verify that the matrix in the middle is SPD
when 0 ≤ ρ < 1. Therefore, there exists a constant γ0 > 0 such that

(x, M̂LAx)M−1 ≥ γ0
(
‖x1‖2

A1
+‖B∗x2‖2

Q1

)
≥ γ0(1− ρ)‖x1‖2

Q−1
1

+γ0(1− ρ)ζ2‖x2‖2
H2

≥ min
{

γ0(1− ρ), γ0(1− ρ)ζ2c−1
1,2

}
(x,x)M−1 ,

which leads to the lower bound γ. The upper bound Γ follows directly from the fact that
each term is bounded. �

To implement the preconditioner M̂L, we can use iterative solvers for each diagonal
block with a relative big tolerance. We further comment that the second assumption in
Theorem 2.2 is reasonable as in practice we can achieve it by performing one or several
steps of V-cycle multigrid method. We refer readers to [9] for detailed implementation.

3. APPLICATIONS

In this section, we apply the analysis technique discussed in the previous section to
some other problems.

3.1. Application to a penalty formulation of the MHD system. In this section, we con-
sider a penalty formulation of a MHD system. After Picard linearization and finite ele-
ment discretization, the discrete problem we consider in this section is: Find (uh, ph,Bh) ∈
H1

0,h(Ω)3× L2
0,h(Ω)×H1

n,h(Ω)3 such that for any (vh, qh,Ch) ∈ H1
0,h(Ω)3× L2

0,h(Ω)×H1
n,h(Ω)3,

k−1(uh, vh) + Re−1(∇uh,∇vh) + k−1(∇ · uh,∇ · vh)− (ph,∇ · vh)

+s(∇×Bh, vh × b) = 〈f , vh〉 + k−1(a, vh)− (a · ∇a, vh),

(∇ · uh, qh) = 0,

sk−1(Bh,Ch) + α(∇Bh,∇Ch)− s(uh × b,∇×Ch) = 0,

(3.1)

where k is the time step size, α = s/Rm, a and b are the numerical solutions from the
last time step. We can prove that the problem (3.1) is well-posed. That is, it satisfies the
boundedness property and the inf-sup conditions under the following weighted norms

‖v‖2
H1

= k−1‖v‖2+Re−1‖∇v‖2+k−1‖∇ · v‖2,

‖q‖2
H2

= k‖q‖2,

‖C‖2
H3

= sk−1‖C‖2+α‖∇C‖2,

when the time step size is small enough, i.e. k ≤ k0, where

k0 =
1

8sRm
‖b‖−2

0,∞,(3.2)
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Here, ‖·‖0,∞ is the L∞ norm, which is defined by ‖v‖0,∞= ess sup
x∈Ω

|v(x)|. Moreover, Hi

(i = 1, 2, 3) is a symmetric positive definite operator (SPD) such that ‖x‖2
Hi

= (Hix,x).
The operator form of (3.1) is

Ax = F ⇒

A1 −div∗ −Z∗

div 0 0
Z 0 H3


u

p
B

 =

h1

g
h2

 ,(3.3)

where

A1u = k−1u− Re−1∆u + k−1div∗divu, ∀u ∈ H1
0,h(Ω),

Zu = s∇× (b× u), ∀u ∈ H1
0,h(Ω).

And A1 = H1. The following theorems analyze the block triangular preconditioners for
the A defined in (3.3).

Theorem 3.1. If k ≤ k0, which is defined by (3.2), there exists γ and Γ that are independent of
the mesh size h, time step size k, and physical parameters Rm and s, such that for all x 6= 0, the
operator A defined in (3.3) and the operator

ML =

A1 0 0
div kI2 0
Z 0 H3


−1

(3.4)

satisfy the condition (2.1) with the norm ‖·‖M−1 induced byM = diag (A1,H2,H3).

Proof. By simple computation, we get

MLA =

I1 −A−1
1 div∗ −A−1

1 Z
∗

0 k−1divA−1
1 div∗ k−1divA−1

1 Z
∗

0 H−1
3 ZA

−1
1 div∗ I3 +H−1

3 ZA
−1
1 Z

∗

 .

Noticing that

‖Z∗B‖A−1
1

=
(Z∗B,u)
‖u‖A1

≤
√

sRm‖B‖H3

‖u× b‖
‖u‖A1

≤ 1
2
√

2
‖B‖H3 ,

for any x = (u, p,B)T, we have

(x,MLAx)H = ‖u‖2
A1
−(div∗p,u)− (Z∗B,u) + ‖div∗p‖2

A−1
1

+2(A−1
1 div∗p,Z∗B)

+ ‖B‖2
H3

+‖Z∗B‖2
A−1

1

≥ ‖u‖2
A1
−‖div∗p‖A−1

1
‖u‖A1−

1
2
√

2
‖B‖H3‖u‖A1+‖div∗p‖2

A−1
1

− 1√
2
‖div∗p‖A−1

1
‖B‖H3+‖B‖2

H3

=

ξ1

ξ2

ξ3


 1 −1/2 −1/4

√
2

−1/2 1 −1/2
√

2
−1/4

√
2 −1/2

√
2 1


ξ1

ξ2

ξ3

 ,
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where ξ1 = ‖u‖A1 , ξ2 = ‖div∗p‖A−1
1

, ξ3 = ‖B‖H3 . Since the matrix in the middle is SPD,
there exists γ0 > 0 such that

(x,MLAx)H ≥ γ0

(
‖u‖2

A1
+‖div∗p‖2

A−1
1

+‖B‖2
H3

)
≥ min

{
γ0, γ0ζ2} (x,x)H,

which leads to the lower bound γ. The upper bound Γ follows directly from the fact that
each term is bounded. �

To reduce the computation cost ofML, we replace its diagonal blocks by their spectral
equivalent SPD approximations.

Theorem 3.2. If k ≤ k0, which is defined by (3.2), there exists contants γ and Γ, which are
independent of the mesh size h, time step size k, and physical parameters Rm and s, such that for
all x 6= 0, the operator A defined in (3.3) and the operator

M̂L =

Q
−1
1 0 0

div Q−1
2 0

Z 0 Q−1
3

 .(3.5)

satisfy (2.1) with the norm ‖·‖M−1 induced byM = diag (Q1,Q2,Q3) provided that

(1) c2,i (Qix,x) ≤
(
H−1

i x,x
)
≤ c1,i (Qix,x), i = 1, 2, 3,

(2) ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 0.252.

Proof. By simple computation, we get

M̂LA =

 Q1A1 −Q1div∗ −Q1Z∗

Q2div(I1 −Q1A1) Q2divQ1div∗ Q2divQ1Z∗

Q3Z(I1 −Q1A1) Q3ZQ1div∗ Q3H3 +Q3ZQ1Z∗

 .

Therefore, for any x = (u, p,B)T,

(x,MLAx)M−1 = ‖u‖2
A1
−(div∗p,u)− (Z∗B,u) + (div(I1 −Q1A1)u, p) + ‖div∗p‖2

Q1

+ 2(Z∗B, div∗p)Q1 + ((I1 −Q1A1)u,Z∗B) + ‖B‖2
H3

+‖Z∗B‖2
Q1

≥ ‖u‖2
A1

+‖div∗p‖2
Q1

+‖B‖2
H3

+‖Z∗B‖2
Q1
−(Q1A1u, div∗p)

+ 2(Z∗B, div∗p)Q1 − (Q1A1u,Z∗B)

Since ‖I1 −Q1A1‖A1≤ ρ implies

(1− ρ)(v, v)A−1
1
≤ (v, v)Q1 ≤ (1 + ρ)(v, v)A−1

1
,

(1 + ρ)−1(v, v)A1 ≤ (v, v)Q−1
1
≤ (1− ρ)−1(v, v)A1 ,

and ‖Z∗B‖A−1
1
≤ 1

2
√

2
‖B‖H3 , we have

|(Q1A1u, div∗p)| ≤ ‖A1u‖Q1‖div∗p‖Q1≤ (1 + ρ)‖u‖A1‖div∗p‖A−1
1

,

|(Q1A1u,Z∗B)| ≤ ‖A1u‖Q1‖Z
∗B‖Q1≤ (1 + ρ)‖u‖A1‖Z

∗B‖A−1
1
≤ 1 + ρ

2
√

2
‖u‖A1‖B‖H3 ,

|(Z∗B, div∗p)Q1 | ≤ ‖Z
∗B‖Q1‖div∗p‖Q1≤ (1 + ρ)‖Z∗B‖A−1

1
‖div∗p‖A−1

1

≤ 1 + ρ

2
√

2
‖B‖H3‖div∗p‖A−1

1
.
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Hence,

(x,MLAx)M−1 ≥ ‖u‖2
A1

+(1− ρ)‖div∗p‖2
A−1

1
+‖B‖2

H3
−(1 + ρ)‖u‖A1‖div∗p‖A−1

1

− 1 + ρ

2
√

2
‖u‖A1‖B‖H3−

1 + ρ√
2
‖div∗p‖A−1

1
‖B‖H3

=

ξ1

ξ2

ξ3


T  1 −(1 + ρ)/2 −(1 + ρ)/4

√
2

−(1 + ρ)/2 1− ρ −(1 + ρ)/2
√

2
−(1 + ρ)/4

√
2 (1 + ρ)/2

√
2 1


ξ1

ξ2

ξ3

 ,

where ξ1 = ‖u‖A1 , ξ2 = ‖div∗p‖A−1
1

, and ξ3 = ‖B‖H3 . It is easy to verify that the matrix
in the middle is SPD when 0 ≤ ρ < 0.252. Therefore, there exists a constant γ0 > 0 such
that

(x,MLAx)M−1 ≥ γ0

(
‖u‖2

A1
+‖div∗p‖2

A−1
1

+‖B‖2
H3

)
≥ min

{
γ0(1− ρ), γ0ζ2c−1

1,2 , γ0c−1
1,3

}
(x,x)M−1 ,

which leads to the lower bound γ. The upper bound Γ follows from the boundedness of
each term.

�

3.2. Application to an incompressible MHD system. In this section, we consider a structure-
preserving discretization [7] of an incompressible MHD system. After Picard lineariza-
tion and finite element discretization, the problem we consider is: Find (uh,Bh,Eh) ∈
H1

0,h(Ω)3 × H0,h(div; Ω)× H0,h(curl; Ω) and ph ∈ L2
0,h(Ω) such that for any (vh,Ch,Fh) ∈

H1
0,h(Ω)3 × H0,h(div; Ω)× H0,h(curl; Ω) and q ∈ L2

0,h(Ω),

k−1 (uh, vh) + Re−1 (∇uh,∇vh) + k−1(∇ · uh,∇ · vh)− (ph,∇ · vh)

−s ((Eh + uh × b)× b, vh) = (fh, vh) + k−1(a, vh)− (a · ∇a, vh),

−k−1α
(

µ−1
r Bh,Ch

)
− α

(
µ−1

r ∇×Eh,Ch

)
= −k−1α

(
µ−1

r b,Ch

)
,

s (Eh + uh × b,Fh)− α
(

µ−1
r Bh,∇× Fh

)
= 0,

(∇ · uh, qh) = 0.

(3.6)

We can prove [7] that this formulation (3.6) is well-posed. That is, it satisfies the bound-
edness property and the inf-sup conditions under the following weighted norms

‖(v,C ,F )‖2
X= ‖v‖2

H1
+‖C‖2

H3
+‖F ‖2

H4
, ‖q‖Q= ‖q‖H2 ,

‖(v, q,C ,F )‖2
H= ‖v‖2

H1
+‖q‖2

H2
+‖C‖2

H3
+‖F ‖2

H4
,(3.7)

with

‖v‖2
H1

= k−1‖v‖2+Re−1‖∇v‖2+k−1‖∇ · v‖2+s‖v ×B−‖2
σr

,

‖q‖2
H2

= k‖q‖2,

‖C‖2
H3

= k−1α‖C‖2
µ−1

r
+α‖∇ ·C‖2

µ−1
r

,

‖F ‖2
H4

= s‖F ‖2
σr

+kα‖∇× F ‖2
µ−1

r
,
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when the time step size is small enough, i.e. k ≤ k0, where

k0 =
1
8s
‖
√

σrB
−‖−2

0,∞.(3.8)

Moreover, Hi (i = 1, 2, 3 or 4) is a symmetric positive operator (SPD) such that ‖x‖2
Hi

=
(Hix,x). The operator form of (3.6) is

Ax = F =⇒


A1 −div∗ 0 F ∗

div 0 0 0
0 0 αk−1µ−1

r I3 αµ−1
r curl

F 0 −αcurl∗µ−1
r sσrI4




u

p
B

E

 =


h1

g
h2

h3

 ,(3.9)

where

A1u = k−1u− Re−1∆u + k−1div∗divu− sσr(u×B−)×B−, ∀u ∈ Vh,

Fu = sσru×B−, ∀u ∈ Vh.

Notice that we have H1 = A1. The following theorems analyze the block triangular
preconditioners for the operator A defined in (3.9). For the sake of briefness, we only list
the results in this section. We refer the readers to [9] for detailed proof and discussion.

Theorem 3.3. If k ≤ k0, which is defined by (3.8), there exists γ and Γ that are independent of
the mesh size h, time step size k, and physical parameters Rm, s, µr and σr, such that for all x 6= 0,
the operator A defined in (3.9) and the operator

ML =


A1 0 0 0
div kI2 0 0
0 0 αk−1µ−1

r I3 0
F 0 −αcurl∗µ−1

r H4


−1

(3.10)

satisfy the condition (2.1) with the norm ‖·‖M−1 induced byM = diag (A1,H2,H3,H4).

As mentioned before, we replace the diagonal blocks ofML by their spectral equiva-
lent SPD approximations (except that of B) to reduce the time and computation cost. The
reason why we keep the diagonal block of B and the implementation issue are discussed
in [9] in detail.

Theorem 3.4. If k ≤ k0, which is defined by (3.8), there exists contants γ and Γ, which are
independent of the mesh size h, time step size k, and physical parameters Rm, s, µr and σr, such
that for all x 6= 0, the operator A defined in (3.9) and the operator

M̂L =


Q−1

1 0 0 0
div Q−1

2 0 0
0 0 αk−1µ−1

r I3 0
F 0 −αcurl∗µ−1

r Q−1
4


−1

(3.11)

satisfy (2.1) with the norm ‖·‖M−1 induced byM = diag
(
Q1,Q2,H−1

3 ,Q4

)
provided that

(1) c2,i (Qix,x) ≤
(
H−1

i x,x
)
≤ c1,i (Qix,x), i = 1, 2, 3, 4,

(2) ‖I1 −Q1A1‖A1≤ ρ, with 0 ≤ ρ < 0.289.
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4. CONCLUSIONS

The major contribution of this analysis is that we improve the of FOV-analysis of block
triangular preconditioners proposed in [8]. Their analysis requires scaling parameters in
front of the diagonal blocks in M̂L under certain constrains, which are usually difficult
to choose in practice. In our analysis, with the help of an appropriate norm (·, ·)M−1 , we
are able to remove those unnecessary scaling parameters, which makes the theoretical
results consistent with practical implementation and observations.
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