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SUMMARY

The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated
porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient
multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to
a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is
employed in multigrid, which is a decoupled procedure based on symmetric Gauss-Seidel smoothing for velocity components
and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, Local
Fourier Analysis (LFA) is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported,
and, moreover, the algorithm performs well for small values of the hydraulic conductivity and fluid viscosity, that are relevant
for applications.

KEY WORDS: Darcy equation, Porous medium, Stokes equation, Free flow, Coupling, interface
conditions, Multigrid method, Uzawa smoother, local Fourier analysis

1. INTRODUCTION

Coupling of free flow and a saturated porous medium models has received considerable attention due to its application
in environmental and industrial context, such as in flood simulation, filtration, contamination, and so on. It is
challenging to deal with a coupled system, since each part is based on a different model and an appropriate coupling
at the interface is required. Flow in the saturated porous medium is modeled by the conventional Darcy equation
here (the solid framework is assumed to be rigid and there is no interaction between the fluid and solid matrix in the
porous medium), while the Newtonian flow through a channel is modeled by the incompressible Stokes equations.
Appropriate interface conditions are based on the principles of mass conservation, equilibrium of normal stresses
across the interface and a special condition called the Beavers-Joseph-Saffman [16, 25] describing the relation
between the shear stress and the tangential velocity. The coupled problem is discretized by the finite volume method
on a staggered grid, which also results in a symmetric system of linear equations of saddle point form. Many
researchers have studied the coupled problem theoretically, see [1, 7, 19, 21]. We focus on an efficient numerical
technique for the discrete coupled problem. Related literature can be found in [2, 6, 8, 9, 10, 11, 15, 18, 23, 24].

There are several ways to solve a coupled system. A popular technique is based on domain decomposition (DD)
[17, 26]. The main idea is then to update the subdomain problems iteratively, until convergence [6, 9, 11]. In this
paper, we consider a monolithic multigrid strategy. The multigrid method is an efficient solution technique for linear
and nonlinear systems of equations, and we employ it for solving the discretized Darcy-Stokes coupled problem. The
choice of smoother plays an important role on the performance of multigrid. Basically, there are two major categories
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of smoothers for saddle point problems: coupled and decoupled smoothers, see [12, 13, 22]. Coupled smoothers,
like the Vanka smoother, or box relaxation, was introduced in [28] for incompressible flow problems and has been
often used since then for various saddle point type problems. Decoupled smoothers are popular because of their
convenient implementation. In this paper, an equation-wise, decoupled smoother called the Uzawa smoother is taken
into consideration for the coupled Darcy/Stokes system.

The discretized Darcy and Stokes problems on staggered grids all have a saddle point form [3], where a zero block
appears on the diagonal of the system matrix. The Uzawa smoother, studied in a PhD thesis, as well as in a conference
proceedings paper by P. Nigon [20], can be applied for this kind of system. This smoother has been enhanced for the
Stokes equations in [14]. For the problem here, the velocities in the Darcy and Stokes equations are updated first, after
which the pressures for both subsystems are updated. We deal with a so-called multiblock multigrid algorithm which
is decoupled based on the idea of grid partitioning. Boundary updates are communicated between the two blocks
within the algorithm on each multigrid level.

The Uzawa smoother is based on a Richardson iteration in which a relaxation parameter occurs. Local Fourier
analysis is applied to choose such a suitable relaxation parameter. LFA is a powerful tool for the quantitative analysis
of the convergence of multigrid, introduced by Brandt [4] in 1977 and then developed in [5]. A general introduction
can be found in [27] and software is available [29]. As the optimal relaxation parameter for the Stokes problem has
already been determined in [14], we are concerned with the selection of an optimal parameter for the Darcy problem
through LFA in the present paper. Here, LFA is also used to confirm the convergence obtained from the monolithic
multigrid method. LFA is applied to both Darcy and Stokes subproblems separately, and it is shown that the worst of
these factors results to be the global convergence of the multigrid for the coupled problem.

The paper is organized as follows. The equations in free flow and porous media, together with the interface
conditions are introduced in Section 2. Section 3 deals with the discretization of the coupled Darcy-Stokes system. We
give the discrete formulas for the coupled system including the discretization at the interface. The solution method,
the Uzawa smoother and its analysis by means of LFA, are presented in Section 4. In Section 5, several numerical
experiments are performed to show the algorithm’s efficiency. Conclusions are drawn in Section 6.

2. PROBLEM FORMULATION

We consider the coupled Darcy/Stokes problem on a bounded domain Ω ⊂ R2. We assume that Ω is subdivided into
two disjoint subdomains Ωd and Ωf , corresponding to the porous medium and free flow regions, respectively. Let Γ
denote the interface between the two subregions, that is, Γ = ∂Ωd ∩ ∂Ωf . The geometry of the problem is represented
in Figure 1, where we also display nf and nd, denoting the unit outward normal vectors on ∂Ωf and ∂Ωd, respectively.
Note that nf = −nd at the interface Γ.

Γ

ΩΩf

Ωd
?n?nf

6n
d

Figure 1. Geometry of the coupled Darcy/Stokes problem. Subdivision of the domain Ω into a free flow subregion Ωf and a
porous medium subdomain Ωd, by an internal interface Γ.

The fluid flow through a rigid and saturated porous medium Ωd is described by Darcy’s law. The mixed formulation
of the Darcy problem reads

K−1ud +∇pd = 0 in Ωd ,

∇ · ud = fd in Ωd ,
(1)

where ud = (ud, vd) describes the velocity and pd the fluid pressure inside the porous medium. K is the hydraulic
conductivity tensor. Here, only the case K = KI, K > 0 is considered. Sinks and sources are described by the force
term fd.
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The free flow subproblem is modeled by using the Stokes equations for a viscous, incompressible, Newtonian fluid.
The motion of the Stokes flow in the region Ωf is described as

−∇ · σf = ff in Ωf ,

∇ · uf = 0 in Ωf ,
(2)

where uf = (uf , vf ) is the fluid velocity, ff = (ff1 , f
f
2 ) represents a prescribed force, and the fluid stress tensor

σf :=

(
σxx σxy
σyx σyy

)
is given by σf = −pfI + 2νD(uf ), with pf denoting the fluid pressure, ν representing the

fluid viscosity and where D(uf ) = (∇uf + (∇uf )T )/2 is the strain tensor.
The Darcy and Stokes systems must be coupled across the internal interface Γ by adequate interface conditions. To

describe such interface conditions, we fix the normal vector to the interface to be n = nf = −nd and we denote τ as
the tangential unit vector at the interface Γ. Across the interface Γ the continuity of fluxes and normal stresses must
be imposed. This gives rise to the following two standard coupling conditions on Γ:

• Mass conservation:
uf · n = ud · n on Γ . (3)

• Balance of normal stresses (g the gravitational acceleration):

− n · σf · n = gpd on Γ. (4)

As third coupling condition, the so-called Beavers-Joseph-Saffman interface condition is widely used, which is
supported by experimental findings. This condition relates the tangential velocity along the interface with the fluid
stresses, that is,

αuf · τ + τ · σf · n = 0 on Γ , (5)

where α is a dimensionless parameter which needs to be experimentally determined and depends on the properties of
the porous medium.

An alternative to this third interface condition neglects the second term in (5), giving rise to a no-slip interface
condition,

uf · τ = 0 on Γ . (6)

3. DISCRETIZATION

The finite volume method on a staggered grid is considered as the discretization scheme for the coupled Darcy/Stokes
problem. By using this discretization we ensure that spurious oscillations do not appear in the numerical solution, and
we obtain a mass conservative algorithm for the whole system. The computational domain is partitioned into square
blocks of size h× h, so that the grid is conforming at the interface Γ. For notational convenience, we choose equal-
sized blocks but the description in the more general case would be straightforward. Different control volumes are
defined depending on which variable is considered. In Figure 2, we represent in different colors the control volumes
corresponding to the primary variables ud/f , vd/f and pd/f .

The discretizations for the mixed formulation of the Darcy problem and the Stokes equations have no particular
difficulties. In this section, we mainly describe how we deal with the interface conditions. Our proposal is to obtain a
special discrete equation for the unknowns at the internal interface, that is, for the vertical components of the velocity,
see Figure 3. For this purpose, we integrate the momentum equation of the Stokes system over a half volume as
displayed in red color in Figure 3, giving rise to the following equation

−
(

(σxy)e − (σxy)w
h

+
(σyy)n − (σyy)s

h/2

)
= (ff2 )i,j+ 1

2
, (7)

where, as can be seen in Figure 3, e and w denote locations at the interface, whereas n and s denote the locations of
pfi,j+1 and vd/f

i,j+ 1
2

, respectively. The approximation of (σyy)n is easily obtained as

(σyy)n = −pfi,j+1 +
2ν

h
(vf
i,j+ 3

2

− vf
i,j+ 1

2

), (8)
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Figure 2. Staggered grid location of unknowns for the
coupled model, and corresponding control volumes.
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Figure 3. Staggered grid location of the unknowns for the
interface conditions.

whereas the approximation of the other components of the stress tensor require more work by using the interface
conditions. To approximate the component (σyy)s, we directly apply the interface condition (4), obtaining

(σyy)s = −gpds . (9)

The pressure pds is not known at the interface, but it can be approximated by using the Darcy problem. By integrating
the corresponding equation over a half volume as displayed in yellow in Figure 3, we obtain,

K−1vdi,j+ 1
2

+
pds − pdi,j
h/2

= 0. (10)

Using this equation in (9), the approximation reads,

(σyy)s = −gpdi,j +
gh

2K
vdi,j+ 1

2
. (11)

To approximate the remaining components of the stress tensor, we need to use the no-slip or the Beavers-
Joseph-Saffman interface condition. Here, we consider the latter since it is the most involved case. The standard
approximation of the Beavers-Joseph-Saffman condition (5) at the location denoted by e reads

αufe − ν

uf
i+ 1

2 ,j+1
− ufe

h/2
+
vf
i+1,j+ 1

2

− vf
i,j+ 1

2

h

 = 0 . (12)

Here, ufe can be obtained from (12) and substituted into the standard approximation of the stress (σxy)e, resulting in

(σxy)e = ν

uf
i+ 1

2 ,j+1
− ufe

h/2
+
vf
i+1,j+ 1

2

− vf
i,j+ 1

2

h

 =
2νm

h
uf
i+ 1

2 ,j+1
+ νm

vf
i+1,j+ 1

2

− vf
i,j+ 1

2

h
, (13)

where m =
(
1− 2ν

hα+2ν

)
. The approximation of (σxy)w can be calculated in a similar way. The discrete equation for

the vertical velocities for the Stokes problem at the interface is thus obtained by substituting (8), (11) and (13) into
equation (7), giving

2νm

h2
uf
i− 1

2 ,j+1
− 2νm

h2
uf
i+ 1

2 ,j+1
− νm

h2
vf
i+1,j+ 1

2

− νm

h2
vf
i−1,j+ 1

2

− 4ν

h2
vf
i,j+ 3

2

+(
2νm

h2
+

4ν

h2
+

g

K
)vf
i,j+ 1

2

+
2

h
pfi,j+1 −

2g

h
pdi,j = (ff2 )i,j+ 1

2
,

(14)

where we have used the interface condition vd
i,j+ 1

2

= vf
i,j+ 1

2

.
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4. NUMERICAL METHOD

This section is devoted to the design of a monolithic geometric multigrid for the coupled Stokes/Darcy problem.
For this purpose, we will study the application of multigrid methods based on Uzawa smoothers to the Darcy and
Stokes problems separately. In this analysis we will take into account the development of an LFA technique to obtain
suitable parameters for these methods. These algorithms will form the basis to construct a monolithic multigrid for
the coupled problem. This will be possible since the individual Stokes and Darcy systems, as well as the fully coupled

problem, lead to saddle point linear systems of the form
(
A BT

B 0

)(
u
p

)
=

(
g
f

)
, by choosing an adequate

arrangement of the unknowns. For both problems BT and B represent the discrete gradient and the minus discrete
divergence operators, respectively, and A is the discrete representation of the Laplace-type operator −ν∆ for the
Stokes equations, or K−1I for the Darcy equation. For the coupled problem, rearranging the vector of unknowns
to order first the velocities for both problems and thereafter the pressure unknonws, we obtain the following linear
system, 

Ad 0 (Bd)T 0
0 Af 0 (Bf )T

Bd 0 0 0
0 Bf 0 0




ud

uf

pd

pf

 =


0
ff

fd

0

 , (15)

where the system matrix in (15) has the saddle point structure as well. Due to this structure of the coupled problem,
a geometric multigrid method together with an Uzawa smoother can be applied for the whole system. Regarding the
multigrid, geometric grid coarsening is chosen here, as we will deal with regular Cartesian grids. The sequence of
coarse grids is obtained by doubling the mesh size in each spatial direction. As we will see, the choice of adequate
relaxation parameters for the Uzawa smoother on each subproblem will be crucial for excellent multigrid convergence.

Uzawa smoother. The Uzawa smoother is obtained by splitting the discrete operator. Therefore, from a given
approximation of the solution to the system (u, p)T , the relaxed approximation (û, p̂)T is computed according to the
decoupled Uzawa smoother in the following way(

MA 0
B −ω−1 I

)(
û
p̂

)
=

(
MA −A −BT

0 −ω−1 I

)(
u
p

)
+

(
g
f

)
. (16)

where MA is a typical smoother for A and ω is some positive parameter. MA makes the approach less costly because
of the inexact solve for velocities at each iteration. The symmetric Gauss-Seidel method consists of one forward and
one backward sweep for all velocities in the computational domain. Numerical experiments in [14] revealed that, for
essentially the same cost, the convergence associated with the symmetric Gauss-Seidel operator MA is most efficient.
So, this variant is the one that we extend to the Darcy equation.

4.1. Local Fourier analysis

Basis of LFA. To perform LFA, all discrete operators are assumed to be defined on an infinite gridGh, and boundary
conditions are neglected. The basic idea of LFA is that all occurring multigrid components, the discrete approximation
and its corresponding error or residual can be represented by formal linear combinations of Fourier modes ϕh(θ,x)

(see [14]), which form a unitary basis of the space of infinite grid functions. Here θ ∈ Θ := (−π, π]
2 and x denotes

the nodes location. For the analysis, we distinguish high and low frequency components on Gh as Θ2h
low := (−π2 ,

π
2 ]2

and Θ2h
high := Θ\Θ2h

low. To study how efficiently high frequency error components are eliminated, smoothing factor
µ is defined as: µ := sup

θ∈Θ2h
high

ρ(Sh(θ)), where Sh(θ) represents the Fourier symbol of the relaxation operator. In

particular, the iteration operator of the two-grid method is given by Mh,2h. Since the representation of Mh,2h on
the Fourier space has a block-diagonal structure, it is possible to efficiently calculate the LFA two-grid convergence
factor as ρ = ρ(Mh,2h).

LFA for the Uzawa smoother A detailed study of the Uzawa smoother in the framework of LFA was already
done in [14]. An analytic bound of the smoothing factor of the Uzawa smoother was given for a family of Stokes
problems, showing a satisfactory approximation of the exact smoothing factor. In that work, it was proved that
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µ ≤ µ̄ = max
(
(µA)1/2, µS

)
, where µA is the smoothing factor of MA and µS can be interpreted as the smoothing

factor of the Richardson iteration for the Schur complement, i.e., µS := sup
Θ2h
high

ρ
(
I − ω

(
BA−1BT

))
. There are no

particular difficulties to obtain bounds for µA, since LFA results for many scalar elliptic PDEs are available in
the literature, see for example [29]. However, to estimate µS is somewhat involved since information about the
eigenvalues of the Schur complement is needed. In particular, the bound of µS is determined by the maximum and
minimum eigenvalues on the high frequencies, that is,

max
θ∈Θ2h

high

(
B̃(θ)Ã−1(θ)B̃T (θ)

)
≤ βmax, min

θ∈Θ2h
high

(
B̃(θ)Ã−1(θ)B̃T (θ)

)
≥ βmin, (17)

with B̃(θ), Ã−1(θ) and B̃T (θ) the symbols or Fourier representations of operators B, A−1 and BT for a fixed
frequency θ. We define κβ = βmax

βmin
, and by choosing a positive real number τ such that τ < 2 (to ensure that µS < 1),

the bound for µS is obtained as µS ≤ max
(
τ − 1, 1− τ

κβ

)
. By choosing a value of τ to minimize the expression of

µS , we obtain an optimal relaxation parameter for the Uzawa smoother as ω = τ
βmax

. Next, we apply this analysis to
obtain approximations of the smoothing factor of the Uzawa smoother for our problem, as well as optimal relaxation
parameters for the Richardson iteration involved in the relaxation process.

In [14], the following bound for the smoothing factor of the Uzawa smoother was obtained in the case of Stokes
equations, µ̄ = max(0.5, τ − 1), by choosing the optimal relaxation parameter ω = τν. Notice that µA = 0.25 for the
symmetric Gauss-Seidel for the Laplace operator, and therefore (µA)1/2 = 0.5. These results can be directly used for
our free flow problem.

Uzawa smoother analysis for Darcy equation. We work out the analysis for Darcy’s equation in order to
obtain a suitable parameter ω for the part corresponding to the Richardson iteration for the pressure, as well as
an approximation of the smoothing factor of the Uzawa smoother.

Following the general analysis in the previous section to obtain βmax and βmin, we will make use of the
equality B̃(θ)Ã−1(θ)B̃T (θ) = KB̃(θ)B̃T (θ) = −K∆̃(θ) . From this result, it is straightforward to obtain βmax =
8K

h2
and βmin =

2K

h2
, which implies κβ =

βmax

βmin
= 4 . Choosing τ = 1.6, which gives the lowest value of

max
(
τ − 1, 1− τ

κβ

)
, the smoothing factor is bounded by 0.6, independently of the value of K. This theoretical

bound for the smoothing factor µ̄matches perfectly with the value µ predicted by the local Fourier analysis. Moreover,

the relaxation parameter is given by the expression ω =
h2

5K
. Parameter ω depends on the grid size, and therefore it

will be different on each grid of the hierarchy used in the multigrid method.

4.2. Multigrid for the coupled Darcy/Stokes problem

Due to the saddle point structure of the coupled problem, a geometric multigrid method together with an Uzawa
smoother, can be applied for the whole system. For this purpose, in the smoothing process, all velocity unknowns are
relaxed before the pressure unknowns will be updated. The relaxation parameter ω for the Richardson iteration for the
Schur complement has to be chosen differently if we are updating pressure unknowns from the Darcy or the Stokes
problems. For the rest of the components, the same operators can be used at every grid point since the discretization
for both problems is performed with the same staggered arrangement of unknowns.

The proposed multigrid method for the coupled Darcy/Stokes problem can also be implemented as a multiblock
version in which the Darcy and Stokes domains are assumed to be two different blocks. This is appealing from
a practical point of view, for example when one has to solve the coupled problem by using two different codes.
Moreover, this multiblock approach is easily parallelizable. Next, we describe in detail how this implementation can
be done.

Multiblock multigrid algorithm. We divide our domain into two different blocks corresponding to the Darcy and
Stokes domains. In this way, the original staggered grid is split into two different sub-grids. Since in this version
of the algorithm it is necessary to transfer information between both blocks, the mesh corresponding to the Stokes
domain is extended by adding an overlap region of one cell length, as can be seen in Figure 4. Next, we explain in
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Figure 4. Communications between two partitioned subgrids.

detail the two-grid version of the multiblock algorithm. For simplicity in the presentation of the algorithm, we use
pre-smoothing but no post-smoothing. By recursion, the multigrid version follows straightforwardly.

Multiblock two-grid algorithm: (with pre-smoothing but no post-smoothing)

1. Relax velocity unknowns for both blocks.
2. Stokes to Darcy transfer: vertical Stokes velocity unknowns at the interface are transferred to the Darcy block

(see the red dots in Figure 4).
3. Update pressure unknowns by the Richardson iteration with the optimal relaxation parameters corresponding

to each block.
4. Darcy to Stokes transfer: Darcy pressure unknowns are transferred to the Stokes overlap region (see the blue

crosses in Figure 4).
5. Compute the residual.
6. Darcy to Stokes transfer: the residual of the vertical Darcy velocity unknowns is transferred to the Stokes

overlap region (see the green dots in Figure 4).
7. Restrict the residual.
8. Solve exactly the defect equation on the coarsest grid.
9. Stokes to Darcy transfer: vertical Stokes velocity unknowns at the interface are transferred to the Darcy block.

10. Interpolate the error and correct the approximation to the solution.

This multiblock algorithm requires only little data communication. In particular, each communication step involves
transfer of information in only one way. Moreover, each stage in the algorithm can be performed in parallel since the
data required for each operation is available in the same process. Finally, although this multiblock approach can be
cast into the class of domain decomposition (DD) methods, we wish to emphasize that in our case the communication
between both Darcy and Stokes problems is performed on each level in the hierarchy instead of only on the finest
grid as usual in the DD methods. This is crucial to achieve a highly efficient solver for this coupled problem, as we
will see in the numerical experiments section.

Local Fourier analysis results. In this section, we confirm that the asymptotic convergence factor of the monolithic
multigrid based on the Uzawa smoother for the coupled problem can be estimated with a high accuracy by means
of the worst of the two-grid convergence factors predicted by LFA for the individual Darcy and Stokes subproblems.
In Table I, we display the two-grid convergence factors predicted by the LFA for the Darcy problem varying the
hydraulic conductivity K, and for the Stokes equations for different values of the viscosity ν. These results are
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obtained for different numbers of smoothing steps, ν1 + ν2. From this table, we can observe the robustness of the
multigrid method based on Uzawa smoother for each subproblem, separately. In Table II, we show the asymptotic

Darcy Stokes
ν1 + ν2 K = 1 K = 10−3 K = 10−6 ν = 1 ν = 10−3 ν = 10−6

2 0.600 0.600 0.600 0.304 0.304 0.304
3 0.360 0.360 0.360 0.143 0.143 0.143
4 0.216 0.216 0.216 0.081 0.081 0.081

Table I. Two-grid convergence factors, ρ predicted by LFA for Darcy and Stokes subproblems, separately, for different values
of the parameters K and ν and different numbers of smoothing steps, ν1 + ν2.

convergence factors experimentally obtained by using the monolithic multigrid method based on Uzawa smoother
for the Darcy/Stokes coupled problem. These values have been computed on a fine-grid of size h = 1/128, and by
using a random initial guess and zero right-hand side in order to avoid round-off errors. Comparing Tables I and
II, we observe that these factors match perfectly with the worst of the two-grid convergence factors predicted by
LFA for both separate subproblems. This means that the treatment of the discretization at the interface as well as the
implementation of the Uzawa smoother for the whole coupled problem have been performed in the most efficient
way.

K 1 10−3 10−6

ν 1 10−3 10−6 1 10−3 10−6 1 10−3 10−6

ν1 + ν2

2 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
3 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
4 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.22 0.21

Table II. Asymptotic convergence factors, ρh, for the multigrid based on Uzawa smoother for the coupled Darcy/Stokes
problem, for different values of the physical parameters K and ν and different numbers of smoothing steps ν1 + ν2.

Remark. Due to the fact that the Uzawa smoother for the coupled problem is performed as a relaxation for the whole
domain, it is not possible to reduce the number of smoothing steps for one of the subproblems, which would be very
appealing in order to balance the computational work needed to smooth the two different problems. This strategy
can be used if the smoother for the coupled problem is implemented as an Uzawa for the porous medium subdomain
combined with an Uzawa for the free flow region, instead of the Uzawa in the whole domain that we propose here.
However, although this strategy results in a good balance of the computational cost, it gives rise to a deterioration of
the convergence of the multigrid algorithm for the coupled problem when small values of the physical parameters are
considered, and it provides very good results only when these parameters remain big enough.

5. NUMERICAL EXPERIMENT

We present a numerical test in order to study the accuracy of the discrete scheme and the convergence and robustness
of the proposed multigrid method based on the Uzawa smoother with respect to different values of the kinematic
viscosity ν and the hydraulic conductivity K. For the implementation, we will consider the optimal relaxation
parameters for the Richardson iteration defined in Section 4, with values of τ = 1 for Stokes and τ = 1.6 for the
Darcy problem. For Stokes it follows that ω = ν, that is, the relaxation parameter is fixed on all grids and equal to the

viscosity of the fluid; and ω =
h2

5K
in the Darcy domain, so ω depends on K which is the hydraulic conductivity of

the porous media and on the size of the grid (different on each mesh in the hierarchy).
In the numerical experiment, the initial solution is chosen to be zero, and the stopping criterion is to reduce the

maximum initial residual by a factor of 10−10 in maximum norm. Moreover, for simplicity we consider uniform
meshes with grid-size h in both directions on each subdomain.

We consider a more complicated and realistic numerical test in which the Beavers-Joseph-Saffman interface
condition is prescribed. In this case, the domain Ω = (0, 1)× (−1, 1) is divided into a porous medium part Ωd =
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(0, 1)× (−1, 0) and a free-flow subdomain Ωf = (0, 1)× (0, 1) by the interface Γ = (0, 1)× {0}. The source terms
and the boundary conditions are chosen such that the analytic solution of the coupled Darcy/Stokes problem is as
follows,

ud(x, y) =

(
ud(x, y)
vd(x, y)

)
=

(
−Key cosx
−Key sinx

)
, pd(x, y) = ey sinx,

uf (x, y) =

(
uf (x, y)
vf (x, y)

)
=

(
λ′(y) cosx
λ(y) cosx

)
, pf (x, y) = 0,

(18)

where λ(y) = −K − g y

2ν
+ (− g

4ν2
+
K

2
)y2. At the outer boundaries of the free-flow domain, Dirichlet boundary

conditions for velocities are prescribed. In the case of the porous medium, the pressure is fixed at the bottom
(0, 1)× {−1}, whereas Dirichlet conditions for velocities are imposed at the lateral walls. Along the internal interface
Γ, the Beavers-Joseph-Saffman condition (5) is taken into account.

We begin by comparing the numerical solution with the given exact solution for fixed values of the parameters
ν = K = 1 and for different grid-sizes h = 1/2k for k = 5, 6, 7, 8. In Table III we display the maximum norm of the
error obtained for each variable, and it can be seen that second order accuracy is obtained for all variables except for
the pressure in the free-flow subdomain where we achieve first order accuracy.

32× 64 64× 128 128× 256 256× 512
ud 5.50× 10−5 1.42× 10−5 3.63× 10−6 9.19× 10−7

vd 1.47× 10−4 4.09× 10−5 1.19× 10−5 3.38× 10−6

pd 3.53× 10−5 9.11× 10−6 2.32× 10−6 5.84× 10−7

uf 4.68× 10−5 1.21× 10−5 3.06× 10−6 7.71× 10−7

vf 1.13× 10−4 2.97× 10−5 7.66× 10−6 1.95× 10−6

pf 9.38× 10−3 4.74× 10−3 2.38× 10−3 1.19× 10−3

Table III. Maximum norm errors of variables ud/f , vd/f pd/f for different grid-sizes, by considering fixed values ν = 1 and
K = 1, and prescribing the Beavers-Joseph-Saffman condition at the interface with α = 1.

Regarding the performance of the monolithic multigrid method for the coupled problem considered in this
numerical test, we display in Figure 5 (a) the history of the convergence of the algorithm by using a W (2, 2)−cycle
for different grids and ν = K = 1. It is clear that the convergence is independent of the mesh size and that the method
performs efficiently since only needs around 13 iterations to achieve the required stopping criterion. In Figure 5 (b)
and (c), the robustness of the proposed multigrid method is displayed, since for different values of ν and K and
different grid-sizes the convergence of the algorithm is highly satisfactory and independent of the parameters. We can

(a) (b) (c)

Figure 5. History of the convergence of the W (2, 2)−multigrid method when the Beavers-Joseph-Saffman interface condition
is considered for different values of the physical parameters:

(a) ν = 1, K = 1, (b) ν = 10−3, K = 1, and (c) ν = 10−6, K = 10−4 .

observe that with the more complicated Beavers-Joseph-Saffman condition at the interface Γ, the results provided by
the proposed multigrid method for the coupled Darcy/Stokes problem are highly satisfactory.
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6. CONCLUSIONS

In this paper, we investigated the multigrid convergence of a coupled system consisting of a porous medium and
incompressible flow. For this purpose, a coupled model based on the Darcy equation and the incompressible Stokes
equations with appropriate internal interface conditions is formulated. The model is discretized by finite volumes on a
staggered grid, and special care has been taken regarding the accurate discretization at the interface. We focused on an
efficient multigrid algorithm with a decoupled Uzawa smoother for the coupled problem. By Local Fourier Analysis
we have selected suitable relaxation parameters for both systems, and we have confirmed the global convergence of
the monolithic multigrid which results to be the worst of the convergence factors between both the individual Darcy
and Stokes subproblems. Numerical tests have shown a highly satisfactory convergence of our multigrid method
for the coupled system. The algorithm performed very well in numerical experiments for a wide range of physical
parameter values.
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