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Abstract. We present a new iterative method for computing f(A)b, derived from a relationship between
the standard Lanczos method and a Gauss-Radau quadrature rule. We show that this method, called the Radau-
Lanczos method, converges when A is Hermitian positive definite and f is a Stieltjes function. We also show that
the restarted version of this method converges and present numerical results showing this method performing better
than the standard Lanczos method in terms of attainable error norm and iteration count.

1. Introduction. A problem of increasing importance in scientific computations is the evaluation of
f(A)b, where f is a scalar function, A ∈ Cn×n, and b ∈ Cn. Frequently A is large and sparse, making the
direct computation of f(A) infeasible, but not f(A)b.

The main contribution of this paper is a new method, which we call the Radau-Lanczos method, for
computing f(A)b. We show it converges when A is Hermitian positive definite (HPD) and f is a Stieltjes
function. Furthermore, this method improves upon the standard restarted Lanczos method for functions of
HPD matrices [1, 2, 3, 4, 11].

An outline of the paper is as follows. We begin by establishing properties of the standard method and
of the Lanczos relation. In section 2, we describe the Radau-Lanczos method for linear systems, including
a variational characterization that yields error bounds similar to those for the conjugate gradients (CG)
method. In section 3, we apply the Radau-Lanczos method to Stieltjes functions of HPD matrices and show
that the restarted version converges by providing convergence bounds. Finally, in section 4, we illustrate
how our method compares to the standard Lanczos method with numerical experiments.

1.1. The standard Lanczos method. We begin by considering the unrestarted standard Lanczos
method for A ∈ Cn×n HPD and f(z) = z−1, also known as CG. Consider the linear system

Ax = b. (1.1)

Let x∗ be the exact solution to (1.1); x0 the starting approximation; xm the iterates; em = x∗ − xm the
errors; and rm = Aem = b − Axm the residuals. We also let Km(A, r0) denote the m-th Krylov subspace
and Πm the space of all polynomials of degree at most m. Then Km(A, r0) = {p(A)r0 : p ∈ Πm−1}. We
refer to the following as the Lanczos relation:

AVm = VmTm + tm+1,mvm+1ê
H
m, (1.2)

where the columns of Vm ∈ Cn×m form an orthonormal basis of Km(A, r0); Tm = V H
m AVm ∈ Cm×m is the

restriction and projection of A onto Km(A, r0); and êm is the m-th standard unit vector with appropriate
dimension. Since A is HPD, Tm is tridiagonal and real.

Following the more general framework of the Lanczos method, we write xm as

xm = x0 + VmT−1
m V H

m r0 = x0 + Vmqm−1(Tm)V H
m r0,

where qm−1 ∈ Πm−1 is the Hermite interpolating polynomial of f(z) = z−1 at the eigenvalues of Tm. Indeed,
T−1
m = qm−1(Tm); see, e.g., [10, Ch. 1].

We also know that xm = x0 + p(A)r0, for some polynomial p ∈ Πm−1. The fact that xm has a unique
representation in x0 + Km(A, r0), plus the following lemma [13, Lemma 3.1], ensures that p and qm−1 are
in fact the same.

∗This version dated January 14, 2016.
†Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal, Germany

({frommer,schweitzer}@math.uni-wuppertal.de).
‡Department of Mathematics, Temple University (038-16), 1805 N. Broad Street, Philadelphia, Pennsylvania 19122-6094,

USA ({lund-nguyen,szyld}@math.temple.edu). Supported in part by the U.S. National Science Foundation grant DMS-1418882

1



Lemma 1.1 (Lanczos polynomial relation). For all q ∈ Πm−1,

Vmq(Tm)V H
m r0 = q(A)r0. (1.3)

Since A is HPD, we can introduce the following inner product (·, ·) on Πm:

(p, q) = 〈q(A)r0, p̄(A)r̄0〉 = (p(A)r0)
Hq(A)r0.

Given the expansion r0 =
∑n

i=1 βiui in terms of the unit eigenvectors ui of A with corresponding
eigenvalues λi, we can express this inner product as

(p, q) =

n∑

i=1

|βi|2q(λi)p̄(λi) =:

∫ λmax

λmin

q(z)p̄(z) dα(z),

where λmin and λmax denote the smallest and largest eigenvalue of A, respectively; and the measure dα is
defined by the function α(z) =

∑n
i=1 |βi|2 H(z − λi), where H is the Heaviside function.

If p is a polynomial with p(0) 6= 0, then we denote p̃ = 1
p(0)p as its normalized variant, so that p̃(0) = 1.

We denote by pm the sequence of orthogonal polynomials with respect to (·, ·). It is known that the zeros
of pm are the eigenvalues of Tm, as well as the nodes of the m-point Gauss quadrature rule with respect to
dα on [λmin, λmax]; see [7, 8]. These orthogonal polynomials are unique up to a scaling factor, and we call
the corresponding normalized p̃m the CG polynomials because of the following well-known result; see, e.g.,
[12, Ch. 8].

Theorem 1.2. The CG iterates xm satisfy
(i) em = p̃m(A)e0, rm = p̃m(A)r0.
(ii) ‖em‖A = min{‖x∗ − x‖A : x ∈ x0 +Km(A, r0)}.

1.2. Rank-one modifications. In [3], the authors consider a particular rank-one modification of the
standard method to broaden the class of matrices for which convergence properties can be derived. Their
modified method is based on the Arnoldi relation rather than the Lanczos relation (1.2), as it is defined and
shown to converge for positive real matrices. We only show how the modification works for A HPD (which
is also positive real), to serve as motivation for our new method.

Define T̃m := Tm +
(
tm+1,mT−1

m êm
)
êHm. Also define a new iteration

x̃m := x0 + VmT̃−1
m V H

m r0.

By the following lemma [15, Lemma 3], we can conclude, just as with CG, that

x̃m = x0 + h(A)r0,

where h ∈ Πm−1 is the Hermite interpolating polynomial of f(z) = z−1 at the eigenvalues of T̃m, and

h(T̃m) = T̃−1
m . The eigenvalues of T̃m are termed the harmonic Ritz values of A. Then x̃m ∈ x0+Km(A, r0)

as well, and as is shown in [3], x̃m is in fact the GMRES approximation to Ax = b.
The following lemma also shows that there are further rank-one modifications for which (1.3) holds.

Lemma 1.3. Let u ∈ Cm be a nonzero vector. Denote T̂m := Tm + uêHm. Then for any q ∈ Πm−1,

Vmq
(
T̂m

)
V H
m r0 = q(A)r0. (1.4)

It is worth mentioning that the only such modifications for which (1.4) can be preserved must be rank-
one with nonzero entries only in the last column, as stated in the following lemma. The proof this lemma
can be found in the forthcoming, longer version of this paper [5].

Lemma 1.4. Let M ∈ Cm×m, and denote T̂m := Tm+M . If for all q ∈ Πm−1, Vmq
(
T̂m

)
V H
m r0 = q(A)r0,

then there exists u ∈ Cm such that M = uêHm.

We are therefore motivated to look for such rank-one modifications that may lead to improved conver-
gence properties.
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2. The Radau-Lanczos method for linear systems. In section 1, we saw that the standard Lanczos
method for a HPD matrix is related to the CG polynomials, as well as an m-point Gauss quadrature rule
with respect to the measure dα and with nodes at the eigenvalues of Tm. In this section, we show how a
particular m+1-point Gauss-Radau quadrature rule for a modified measure is related to a rank-one update
of the tridiagonal matrix Tm+1.

In an m-point Gauss quadrature rule, the quadrature nodes are determined so that the rule is exact
for polynomials up to degree 2m− 1. A Gauss-Radau quadrature rule is a Gauss rule in which one node is
fixed. We fix θ0 > λmax, and consider the m+ 1-point Gauss-Radau rule on the interval [λmin, λmax] for a
new measure dαR defined as dαR(t) = (θ0 − t) dα(t). Following the work of [7, 8], we then seek a matrix
related to Tm+1 whose eigenvalues are the nodes of this rule.

First we write Tm explicitly as

Tm =




ω1 γ1
γ1 ω2 γ2

. . .
. . .

. . .

γm−2 ωm−1 γm−1

γm−1 ωm



.

Then we solve for d ∈ Cm satisfying (Tm − θ0I)d = γ2
mêm and define

TR
m+1 :=

[
Tm γmêm

γmêHm dm

]
,

where dm is the m-th component of d. Note that TR
m+1 can also be expressed as a rank-one modification

of Tm+1, satisfying Lemma 1.3: TR
m+1 = Tm+1 + (dm − ωm+1)êm+1ê

H
m+1. Furthermore, the eigenvalues of

TR
m+1 are in fact the nodes of our m+1-point Gauss-Radau rule, with one node fixed at θ0. We denote the

eigenvalues of TR
m+1 different from θ0 by θRi , i = 1, . . . ,m.

As with CG, there is a connection to a particular set of orthogonal polynomials, given the appropriate
inner product. According to Gautschi [6], this inner product is

(p, q)R =

n∑

i=1

|βi|2(θ0 − λi)q(λi)p̄(λi) =:

∫ λmax

λmin

q(z)p̄(z) dαR(z), (2.1)

which we refer to as the Radau inner product, with dαR as the Radau measure defined earlier. We let pRm
denote the polynomials orthogonal with respect to this inner product, whose roots are θRi , i = 1, . . . ,m.
Note that θ0 is not a root of pRm for any m.

We finally define the m+ 1-st Radau-Lanczos approximation as

xR
m+1 := x0 + Vm+1

(
TR
m+1

)−1
V H
m+1r0.

As in section 1, we now explore polynomial relations amongst the approximations xR
m+1, the errors

eRm+1, and the residuals rR
m+1. Let qRm denote the Hermite interpolating polynomial of degree m through

f(z) = z−1 at the eigenvalues of TR
m+1. By Lemma 1.3,

xR
m+1 = x0 + Vm+1q

R
m

(
TR
m+1

)
V H
m+1r0 = x0 + qRm(A)r0.

Then

eRm+1 = e0 − qRm(A)r0 = e0 −AqRm(A)e0 = πR
m+1(A)e0,

where πR
m+1(z) = 1− zqRm(z) and πR

m+1 ∈ Πm+1. Consequently, r
R
m+1 = πR

m+1(A)r0. Note that

πR
m+1(z) =

1

θ0
(θ0 − z)p̃Rm(z), where p̃Rm(z) =

1

pRm(0)
pRm(z), (2.2)

since the roots of πR
m+1 are the eigenvalues of TR

m+1, and πR
m+1(0) = 1.
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2.1. Variational characterization. We now derive a variational characterization of the Radau-
Lanczos method. We begin with a useful orthogonality property.

Lemma 2.1. For any q ∈ Πm−1, 〈e0 − qRm(A)r0, q(A)r0〉A = 0.
Proof. The proof follows from the definition (2.1) and the polynomial equivalence (2.2):

0 = (q̄, θ0
−1p̃Rm)R =

n∑

i=1

θ0
−1p̃Rm(λi)q(λi)(θ0 − λi) |βi|2

= 〈(θ0I −A)θ0
−1p̃Rm(A)r0, q(A)r0〉2 = 〈πR

m+1(A)r0, q(A)r0〉2
= 〈A(e0 − qRm(A)r0), q(A)r0〉2 = 〈e0 − qRm(A)r0, q(A)r0〉A.

By definition, qRm interpolates z−1 at the eigenvalues of TR
m+1, and in particular, at θ0. In fact, for every

m, qRm interpolates z−1 at θ0. Then for some sRm−1 ∈ Πm−1

qRm(z) = (θ0 − z)sRm−1(z) +
1

θ0
, (2.3)

for all m. We therefore regard qRm, a polynomial of degree m, as being completely determined by the m− 1-
degree polynomial sm−1. It is precisely this fact that leads to the following variational characterization of
the Radau-Lanczos method.

Theorem 2.2. The approximation xR
m+1 is such that the error eRm+1 = x∗ − xR

m+1 satisfies

∥∥eRm+1

∥∥
A(θ0I−A)−1 = min

y∈(θ0I−A)Km(A,r0)

∥∥∥∥e0 −
1

θ0
r0 − y

∥∥∥∥
A(θ0I−A)−1

.

Proof. By Lemma 2.1 and (2.3), we have for all q ∈ Πm−1 that

0 = 〈e0 − qRm(A)r0, q(A)r0〉A = 〈e0 −
1

θ0
r0 − (θ0I −A)sRm−1(A)r0, q(A)r0〉A

= 〈e0 −
1

θ0
r0 − (θ0I −A)sRm−1(A)r0, (θ0I −A)q(A)r0〉A(θ0I−A)−1 .

Since (θ0I − A)sRm−1(A)r0 ∈ (θ0I − A)Km(A, r0), and since (θ0I − A)q(A)r0 describes all the elements of
(θ0I −A)Km(A, r0), the desired minimization property holds.

Corollary 2.3. The error eRm+1 further satisfies

∥∥eRm+1

∥∥
A(θ0I−A)−1 =

1

θ0
min

p(0)=1
p∈Πm

‖(θ0I −A)p(A)e0‖A(θ0I−A)−1 .

Proof. By Theorem 2.2, we have

∥∥eRm+1

∥∥
A(θ0I−A)−1 =

∥∥∥∥e0 −
1

θ0
r0 − (θ0I −A)sRm−1(A)r0

∥∥∥∥
A(θ0I−A)−1

≤
∥∥∥∥e0 −

1

θ0
r0 − (θ0I −A)q(A)r0

∥∥∥∥
A(θ0I−A)−1

,

for all q ∈ Πm−1. Note that

e0 −
1

θ0
r0 − (θ0I −A)q(A)r0 =

(
I − 1

θ0
A− (θ0I −A)q(A)A

)
e0

=
1

θ0
(θ0I −A) (I − θ0Aq(A)) e0

=
1

θ0
(θ0I −A)p(A)e0,
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where p(z) is any polynomial in Πm with p(0) = 1. Then, in fact,

∥∥eRm+1

∥∥
A(θ0I−A)−1 ≤ 1

θ0
‖(θ0I −A)p(A)e0‖A(θ0I−A)−1 ,

for all p ∈ Πm with p(0) = 1. In particular, from (2.2) we have that

eRm+1 =
1

θ0
(θ0I −A)p̃Rm(A)e0,

so the minimum is attained.

2.2. Convergence for linear systems. We can further show that the Radau-Lanczos method con-
verges and provide a convergence bound related to that of CG. Define the following quantities:

κ :=
λmax

λmin
, c :=

√
κ− 1√
κ+ 1

, and ξm :=
1

cosh(m ln c)
. (2.4)

If κ = 1, then we set ξm = 0.

Theorem 2.4. The error for Radau-Lanczos approximation xR
m+1 can be bounded as

∥∥eRm+1

∥∥
A(θ0I−A)−1 ≤

(
1− λmin

θ0

)
ξm ‖e0‖A(θ0I−A)−1 ≤ 2

(
1− λmin

θ0

)
cm ‖e0‖A(θ0I−A)−1 .

Proof. Since A is HPD, A
1
2 (θ0I −A)−

1
2 commutes with (θ0I −A)p(A), and we have

‖(θ0I −A)p(A)‖A(θ0I−A)−1 =
∥∥∥A 1

2 (θ0I −A)−
1
2 (θ0I −A)p(A)A− 1

2 (θ0I −A)
1
2

∥∥∥
2
= ‖(θ0I −A)p(A)‖2 .

Then along with Corollary 2.3, we have the following:

∥∥eRm+1

∥∥
A(θ0I−A)−1 =

1

θ0
min

p(0)=1
p∈Πm

‖(θ0I −A)p(A)e0‖A(θ0I−A)−1

≤ 1

θ0
min

p(0)=1
p∈Πm

‖(θ0I −A)p(A)‖A(θ0I−A)−1 ‖e0‖A(θ0I−A)−1

=
1

θ0
min

p(0)=1
p∈Πm

‖(θ0I −A)p(A)‖2 ‖e0‖A(θ0I−A)−1

≤ 1

θ0
min

p(0)=1
p∈Πm

max
[λmin,λmax]

(θ0 − λ) |p(λ)| ‖e0‖A(θ0I−A)−1

≤ θ0 − λmin

θ0
min

p(0)=1
p∈Πm

max
[λmin,λmax]

|p(λ)| ‖e0‖A(θ0I−A)−1 . (2.5)

By a classical result on Chebyshev polynomials (see, e.g., [14, Section 6.11]) and the relation cosh−1(z) =

ln
(
z +

√
(z + 1)(z − 1)

)
, we have that

min
p(0)=1
p∈Πm

max
[λmin,λmax]

|p(λ)| ≤ ξm ≤ 2cm. (2.6)

Combining (2.5) and (2.6), we arrive at the desired conclusion.
Convergence follows since ξm goes to 0 as m increases.

5



3. The Radau-Lanczos method for Stieltjes functions of matrices. Let f be a Stieltjes function
of the form

f(z) =

∫ ∞

0

1

t+ z
dµ(t), (3.1)

where µ is monotonically increasing and nonnegative on [0,∞) with the property
∫∞
0

1
t+1 dµ(t) < ∞. Define

the Radau-Lanczos approximation to f(A)b as

fR
m+1 := Vm+1f(T

R
m+1)V

H
m+1b,

where the columns of Vm+1 form the Lanczos basis of Km+1(A, b). Note that f(TR
m+1) = q∗(T

R
m+1), where

q∗ ∈ Πm is the Hermite interpolating polynomial of f at the eigenvalues of TR
m+1. By Lemma 1.3, fR

m+1 =
q∗(A)b ∈ Km+1(A, b).

To show that fR
m+1 converges to f(A)b, we will take advantage of the integral form (3.1) of f in the

expressions of f(A)b and fR
m+1,

f(A)b =

∫ ∞

0

(A+ tI)−1b dµ(t) and fR
m+1 =

∫ ∞

0

Vm+1(T
R
m+1 + tI)−1V H

m+1b dµ(t). (3.2)

We therefore need shifted versions of the results in section 2.

Lemma 3.1. Let T̂m and r0 be as in Lemma 1.3. Then for all t ∈ C and for all q ∈ Πm−1,

Vmq(T̂m + tI)V H
m r0 = q(A + tI)r0. (3.3)

Proof. It is easily verified that the Lanczos relation (1.2) is shift invariant, i.e., AVm = VmTm +
tm+1,mvm+1ê

H
m implies (A+ tI)Vm = Vm(Tm + tI) + tm+1,mvm+1ê

H
m, so that the columns of Vm are also a

basis of K(A + tI, r0). Applying Lemma 1.3 to A+ tI and T̂m + tI gives the desired result.
We also define the following shifted quantities for t ≥ 0:

x∗(t) := (A+ tI)−1b

xR
m+1(t) := Vm+1(T

R
m+1 + tI)−1V H

m+1b

eRm+1(t) := x∗(t)− xR
m+1(t) (3.4)

rR
m+1(t) := (A+ tI)eRm+1(t).

Note that xR
m+1(t) is not the m+1-st Radau-Lanczos approximation to the shifted system A+ tI. However,

the shifted residuals are collinear with rR
m+1(0).

Lemma 3.2. Assume that the initial shifted residuals are all collinear with rR
0 (0), i.e., rR

0 (t) =
ρ0(t)r

R
0 (0) with ρ0(t) ∈ C. Then

(i) the shifted residuals rR
m+1(t) are collinear with rR

m+1(0) in the following sense:

rR
m+1(t) = ρm+1(t)r

R
m+1(0),

where ρm+1(t) :=
ρ0(t)

πR
m+1

(−t)
; and

(ii) ρm+1(t) ≤ ρ0(t).
Proof. To show (i) we first apply Lemma 3.1 and relations from section 2 to A + tI and TR

m+1 + tI to
obtain that

rR
m+1(t) = πR

m+1,t(A+ tI)rR
0 (t),

where πR
m+1,t(z) = 1− zqRm,t(z), and qRm,t ∈ Πm interpolates z−1 at the eigenvalues of TR

m+1 + tI, which are

θ0 + t and θRi + t, i = 1, . . . ,m. We can write πR
m+1,t explicitly as

πR
m+1,t(z) =

(θ0 + t− z)
∏m

i=1(θ
R
i + t− z)

(θ0 + t)
∏m

i=1(θ
R
i + t)

.
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Then

πR
m+1,0(−t) =

(θ0 + t)
∏m

i=1(θ
R
i + t)

θ0
∏m

i=1 θ
R
i

and πR
m+1,0(z − t) =

(θ0 + t− z)
∏m

i=1(θ
R
i + t− z)

θ0
∏m

i=1 θ
R
i

,

implying

πR
m+1,t(z) =

πR
m+1,0(z − t)

πR
m+1,0(−t)

=
πR
m+1(z − t)

πR
m+1(−t)

.

Therefore,

rR
m+1(t) = πR

m+1,t(A+ tI)rR
0 (t) =

1

πR
m+1(−t)

πR
m+1(A)r

R
0 (t) =

ρ0(t)

πR
m+1(−t)

rR
m+1(0),

where the last equality holds by the collinearity assumption rR
0 (t) = ρ0(t)r

R
0 (0) and by the equality

πR
m+1(A)r

R
0 (0) = rR

m+1(0).
As for part (ii), since t ≥ 0 we can easily deduce the following bound:

ρm(t) =
ρ0(t)

πR
m+1(−t)

=
θ0

∏m
i=1 θ

R
i

(θ0 + t)
∏m

i=1(θ
R
i + t)

≤ ρ0(t).

At this point, we have all the necessary tools to show that the Radau-Lanczos method converges for
Stieltjes functions of HPD matrices. Note that the norm for this convergence bound is the A−1(θ0I −A)−1-
norm, which is different from the norm used for the bounds in section 2.

Theorem 3.3. The following error bound holds for the Radau-Lanczos method:

∥∥f(A)b− fR
m+1

∥∥
A−1(θ0I−A)−1 ≤ C

(
1− λmin

θ0

)
ξm ≤ 2C

(
1− λmin

θ0

)
cm,

where c and ξm are as in (2.4), and C = 1√
λmin(θ0−λmax)

‖b‖2 f(λmin).

Proof. We begin by looking at the integral expression for the error (3.2):

f(A)b− fR
m+1 =

∫ ∞

0

[
x∗(t)− xR

m+1(t)
]

dµ(t) =

∫ ∞

0

eRm+1(t) dµ(t).

Applying Lemma 3.2 to the shifted residuals rR
m+1(t), we obtain the following:

∥∥f(A)b− fR
m+1

∥∥
A−1(θ0I−A)−1 ≤

∫ ∞

0

∥∥eRm+1(t)
∥∥
A−1(θ0I−A)−1 dµ(t)

=

∫ ∞

0

∥∥(A+ tI)−1rR
m+1(t)

∥∥
A−1(θ0I−A)−1 dµ(t)

=

∫ ∞

0

∥∥(A+ tI)−1ρm+1(t)r
R
m+1(0)

∥∥
A−1(θ0I−A)−1 dµ(t)

≤
∫ ∞

0

∥∥(A+ tI)−1ρ0(t)r
R
m+1(0)

∥∥
A−1(θ0I−A)−1 dµ(t)

=

∫ ∞

0

|ρ0(t)|
∥∥(A+ tI)−1rR

m+1(0)
∥∥
A−1(θ0I−A)−1 dµ(t). (3.5)

Since A, its inverse, and the shifted matrices A+ tI, t > 0, are all HPD, we have the following relation:

∥∥(A+ tI)−1rR
m+1(0)

∥∥2
A−1(θ0I−A)−1 = 〈(A+ tI)−1AeRm+1(0), A

−1(θ0I − A)−1(A+ tI)−1AeRm+1(0)〉

≤
(

1

λmin + t

)2 ∥∥eRm+1(0)
∥∥2
A(θ0I−A)−1 . (3.6)
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Then by applying (3.6) to the integrand of (3.5) and by Theorem 2.4, we have

∥∥f(A)b− fR
m+1

∥∥
A−1(θ0I−A)−1 ≤

∫ ∞

0

|ρ0(t)|
λmin + t

∥∥eRm+1(0)
∥∥
A(θ0I−A)−1 dµ(t)

≤
(
1− λmin

θ0

)
ξm

∥∥eR0 (0)
∥∥
A(θ0I−A)−1

∫ ∞

0

|ρ0(t)|
λmin + t

dµ(t), (3.7)

Furthermore,

∥∥eR0 (0)
∥∥2
A(θ0I−A)−1 = 〈eR0 (0), A(θ0I −A)−1eR0 (0)〉

= 〈rR
0 (0), A

−1(θ0I −A)−1rR
0 (0)〉

≤ 1

λmin(θ0 − λmax)

∥∥rR
0 (0)

∥∥2

2
. (3.8)

Finally, by the definitions in (3.4), we implicitly have that xR
0 (t) = xR

0 (0) = 0, thus implying that rR
0 (t) =

rR
0 (0) = b; therefore ρ0(t) = 1. Combining this with (3.7) and (3.8), we then obtain the desired bound.

3.1. The restarted Radau-Lanczos method. In many practical situations where one wants to
approximate f(A)b, the available storage limits the number of Lanczos iterations that can be performed,
as one needs to store the entire basis Vm in order to form fR

m. Therefore, restarts are of vital importance
in this setting; see, e.g., [1, 2, 3, 4, 11]. The idea is as follows: after a (small) number m of Lanczos steps,

one forms a first approximation f
(1)
m for f(A)b. If this approximation is not accurate enough, one uses m

further Lanczos steps to obtain an approximation a
(1)
m for the error f(A)b− f

(1)
m , which is then used as an

additive correction to form f
(2)
m = f

(1)
m + a

(1)
m . Continuing like so, we obtain the sequences f

(k)
m and a

(k)
m ,

where k denotes the index of the restarted cycle, and m the length of the cycle.
We further note that, for every cycle, one must use a suitable representation of the error as the action of

a new matrix function e(k)(A) on a vector [2, 4]. Ultimately, it is crucial to find a representation for e(k)(z)
that can be evaluated in a numerically stable manner. Following [3, 4] we represent e(k)(z) as a Stieltjes
function with a new measure dµ(k) for the Radau-Lanczos method, allowing us to prove the following
theorem, which shows that a restarted variant of the Radau-Lanczos method is also convergent. Details will
be given in [5].

Theorem 3.4. Let k be the number of restart cycles, and m + 1 the length of each cycle. Let f
(k)
m+1

denote the restarted Radau-Lanczos approximation after k cycles. (We drop the superscript R for ease of
notation.) Then

∥∥∥f(A)b− f
(k)
m+1

∥∥∥
A−1(θ0I−A)−1

≤ C

(
1− λmin

θ0

)k

ξkm,

where C = 1√
λmin(θ0−λmax)

‖b‖2 f(λmin).

Proof. We only give a sketch. As with f
(k)
m+1, let the superscript (k) denote all the corresponding

restarted quantities. Following the proof of Theorem 3.3, we again note that

∥∥∥f(A)b − f
(k)
m+1

∥∥∥
A−1(θ0I−A)−1

=

∫ ∞

0

∥∥∥(A+ tI)−1r
(k)
m+1(t)

∥∥∥
A−1(θ0I−A)−1

dµ(t).

Assuming the restarted initial residuals are collinear, i.e., r
(k)
0 (t) = ρ

(k)
0 (t)r

(k)
0 (0), then by Lemma 3.2(i),

we have that r
(k)
m+1(t) = ρ

(k)
m+1(t)r

(k)
m+1(0).

Furthermore,
∥∥∥(A+ tI)−1r

(k)
m+1(0)

∥∥∥
A−1(θ0I−A)−1

≤ 1

λmin + t

∥∥∥e(k)m+1(0)
∥∥∥
A(θ0I−A)−1

≤ 1

λmin + t

(
1− λmin

θ0

)
ξm

∥∥∥e(k)0 (0)
∥∥∥
A(θ0I−A)−1

,
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where the last inequality holds by Theorem 2.4 for a particular restart cycle k.

Since e
(k)
0 (0) = e

(k−1)
m+1 (0), we can apply Theorem 2.4 and Lemma 3.2(i) inductively to obtain that

∥∥∥e(k)0 (0)
∥∥∥
A(θ0I−A)−1

≤
(
1− λmin

θ0

)k−1

ξk−1
m |ρ(1)m+1(t) · · · ρ

(k−1)
m+1 (t)|

∥∥∥e(1)0 (0)
∥∥∥
A(θ0I−A)−1

.

Further note that ρ
(i)
m+1 ≡ ρ

(i+1)
0 ; therefore, by repeated application of Lemma 3.2(ii),

|ρ(1)m+1(t) · · · ρ
(k−1)
m+1 (t)| ≤ |ρ0(t)|k−1

= 1,

since ρ0 is as in Theorem 3.3. Combining all these pieces, we have that

∥∥∥f(A)b− f
(k)
m+1

∥∥∥
A−1(θ0I−A)−1

≤
∫ ∞

0

1

λmin + t

(
1− λmin

θ0

)k

ξkm

∥∥∥e(1)0 (0)
∥∥∥
A(θ0I−A)−1

dµ(t).

Using (3.8) again, we obtain the desired result.

3.2. Stable evaluation of the residual norms. For implementing the restarted method, which relies
on a quadrature-based evaluation of an integral representation of the error function, it is important to be
able to evaluate the residual norms stably, i.e. the collinearity factors ρm+1(t) from Lemma 3.2, to high
accuracy. The representation given in Lemma 3.2, while being important from a theoretical point of view, is
numerically less stable; but as we explain in the forthcoming paper [5], ρm+1(t) can alternatively and stably
be obtained by solving (triangular) HPD systems. The result is similar to a known result for the standard
Arnoldi method, see, e.g., [14, Proposition 6.7] or [4].

4. Numerical results. To demonstrate that our method is indeed an improvement over the standard
restarted Lanczos method, we present the following two examples. In both cases, we compute f(A)b, where
f(z) = 1√

z
and b is the normalized vector of all ones. The inverse square root is an important function in

lattice quantum chromodynamics computations; see, e.g., [4, 15]. Such f is also a Stieltjes function of the
form (3.1). In fact, for all σ ∈ (0, 1),

z−σ =
sin(σπ)

π

∫ ∞

0

t−σ

t+ z
dt

is a Stieltjes function; see, e.g., [9]. For the Radau-Lanczos method, we fix θ0 = λmax + λmin. As for the
cycle length, we fix m = 10.

4.1. A diagonal matrix with large condition number. We first consider a diagonal matrix A of
size n = 1000. Half of the eigenvalues of A are evenly distributed in the interval [10−2, 10−1], and the other
half lie in [102, 103], resulting in a condition number of 105.

As one can see in Figure 4.1, the Radau-Lanczos method converges well before the standard one, which
cannot even attain a competitive error as it stagnates around cycle 1500. Furthermore, the Radau-Lanczos
method requires fewer iterations than the standard method.

4.2. The two-dimensional Laplacian. We next examine how our method performs on the discretized
two-dimensional Laplacian operator of dimension n = 1600 with condition number O(102). This example
shows that, again, the Radau-Lanczos methid is capable of attaining a significantly lower error norm than
the standard one, and in fewer iterations, as seen in Figure 4.2.

5. Conclusions and future work. We have presented a new method for computing f(A)b and derived
convergence bounds for this method in the case when A is an HPD matrix and f is a Stieltjes function. We
developed these results in analogy to CG, even using classical CG results to obtain error bounds for when
f(z) = z−1. We demonstrated that our method improves upon the restarted standard method with two
supporting numerical experiments.
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Fig. 4.1. Convergence curves of example 4.1, where A

is a diagonal matrix.
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Fig. 4.2. Convergence curves of example 4.2, where A

is the discretized two-dimensional Laplacian operator.

As noted throughout the paper, we plan to provide more detail on various aspects of the Radau-Lanczos
method in the forthcoming paper [5]. In particular, we will present an algorithm which accounts for the
stable and efficient computation of the residual norms and error matrix functions, which are essential for
the restarted version of our method. We will further examine the behavior of our method in comparison to
the standard one when applied to other matrices and functions.
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