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Abstract. We consider the numerical solution of the large systems of linear equations obtained
from the stochastic Galerkin formulation of stochastic partial differential equations. We propose
an iterative algorithm that exploits Kronecker product structure of the linear systems. Solutions
in such settings often have a special low-rank structure, and Krylov subspace methods have been
developed to take advantage of this property by truncating various terms constructed during the
course of the iteration [3]. We show here that the costs of truncation can be reduced by identifying
an important subspace in the stochastic domain and compresses tensors of high rank on the fly
during the iterations. The proposed reduction scheme is a multilevel method in that the important
subspace can be identified in a coarse spatial grid setting. In addition, we construct preconditioners
for the linear operators in tensor product format that accelerates the convergence of the low-rank
iterative algorithms. The efficiency of the proposed method is illustrated by numerical experiments
on benchmark problems.

1. Introduction. Consider the stochastic elliptic boundary value problem, to
find a random function, u(xxx, ξ) : D̄ × Γ → R that satisfies

(1.1) L(a(xxx, ξ))(u(xxx, ξ)) = f(xxx) in D × Γ,

where L is a linear elliptic operator and a(xxx, ξ) is a positive random field parameterized
by a set of random variables ξ = {ξ1, . . . , ξM}. The problem is posed on a bounded
domain D ⊂ R

2 with appropriate boundary conditions. Such problems arise, for
example, from fluid flow where the coefficient is modeled as a random field [8].

As the solution method for (1.1), we consider the stochastic Galerkin method
[1, 8], which after discretization, leads to a large coupled deterministic system

(1.2) Au = f,

for which computations will be expensive for large-scale applications. When the coeffi-
cient a(xxx, ξ) has an affine structure depending on a finite number of random variables,
the system matrix A can be represented by a sum of Kronecker products of smaller
matrices. Matrix operations such as matrix-vector products that take advantage of
the tensor format can be performed efficiently, which makes the use of iterative solvers
attractive. In this study, we develop a new efficient iterative solver for systems repre-
sented in the Kronecker product structure.

In recent years, many authors started to explore the Kronecker product structure
of such problems and developed iterative algorithms that exploit the structure to re-
duce computational efforts [2, 10, 11, 13]. In addition, it has been shown that the
solution of (1.1) in the stochastic Galerkin setting can be approximated by a tensor
of low rank, which further reduces computational effort [3]. If Krylov subspace meth-
ods are used to compute such a solution, however, it may happen that approximate
solutions or other auxiliary terms obtained during the course of an iteration do not
have low rank, and rank-reduction schemes are required to keep costs under control.

∗Department of Computer Science, University of Maryland, College Park, MD 20742
(klee@cs.umd.edu).

†Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (elman@cs.umd.edu)

1

mailto:klee@cs.umd.edu
mailto:elman@cs.umd.edu


2 K. LEE AND H.C. ELMAN

In this study, we will explore a variant of the generalized minimum residual (GM-
RES) method combined with a rank-reduction strategy that exploits specific features
of the stochastic Galerkin solution. The strategy we propose is a multilevel scheme
that first identifies a low-dimensional subspace, obtained from a coarse-grid spatial
discretization, on which a low-rank coarse-grid tensor solution is computed. This so-
lution can be used to estimate the rank of the tensor solution for the desired fine-grid
solution. Moreover, this information is used to define a strategy for rank reduction
to be used with iteration on the fine grid space. We show that this strategy enhances
the efficiency of preconditioned GMRES for computing the solution.

An outline of the paper is as follows. In section 2, we review the stochastic
Galerkin method and present the Kronecker product structure of Galerkin systems.
In section 3, we present a preconditioned projection method for computing approx-
imate solutions in low-rank tensor format. In section 4, we review the conventional
approaches and propose a multilevel rank-reduction scheme, which is the main con-
tribution of this work. In section 5, we illustrate the effectiveness of the low-rank
projection method combined with the proposed truncation scheme by numerical ex-
periments on benchmark problems. Finally, in section 6, we draw some conclusions.

2. Model problems with random inputs. Consider the steady-state stochas-
tic diffusion equation with homogeneous Dirichlet boundary conditions,

(2.1)
−∇ · (a(xxx, ω)∇u(xxx, ω)) = f(xxx, ω) in D × Ω,

u(xxx, ω) = 0 on ∂D × Ω,

where the diffusion coefficient a(xxx, ω) is a random field and ω is an elementary event
in a probability space. The gradient operator ∇ only acts on the physical domain D.
The weak form of (2.1) is to find u in V = H1

0 (D) ⊗ L2(Ω)

(2.2)

〈
∫

D

a(xxx, ω)∇u(xxx, ω) · ∇v(xxx, ω)dxxx
〉

=

〈
∫

D

fv(xxx, ω)

〉

, v(xxx, ω) ∈ V.

If a(xxx, ω) is bounded and strictly positive (i.e., 0 < amin ≤ a(xxx, ω) ≤ amax < +∞),
then the Lax-Milgram lemma can be applied to establish existence and uniqueness of
a solution u(xxx, ω) ∈ V of the variational problem (2.2). For a(xxx, ξ) with mean a0 and
variance σ2, we consider a truncated Karhunen-Loéve expansion [12],

(2.3) a(xxx, ω) = a0 + σ

M
∑

i=1

√

λiai(xxx)ξi(ω),

where (λi, ai) is an eigenpair of the covariance kernel C(xxx, yyy) of the random field. In
the following, we use the notation a(xxx, ξ) for the random field.

2.1. Stochastic Galerkin method. The stochastic Galerkin method [1, 8]
seeks a finite-dimensional solution usg(xxx, ξ) ∈Wh = Xh ⊗ SM such that

(2.4)

〈
∫

D

a(xxx, ξ)∇usg(xxx, ξ) · ∇v(xxx, ξ)dxxx
〉

ρ

=

〈
∫

D

fv(xxx, ξ)

〉

ρ

, v(xxx, ξ) ∈ Wh

where Xh = span{φr(xxx)}nx

r=1 and SM = span{ψs(ξ)}nξ

s=1 are finite-dimensional sub-
spaces of H1

0 (D) and L2
ρ(Γ), and u

sg(xxx, ξ) =
∑nξ

s=1

∑nx

r=1 ur, sφr(xxx)ψs(ξ). Here, {φr}
are standard finite element basis functions and {ψs} are basis functions for the gener-
alized polynomial chaos expansion(PCE) [19]. The stochastic basis functions {ψ} are
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orthonormal with respect to the joint probability density function ρ(ξ). We consider
the total degree space where the maximal degree of {ψi}nξ

i=1 is defined by p, and the

number of PCE basis functions is nξ =
(M+p)!
M !p! .

2.2. Stochastic Galerkin formulation in tensor notation. It follows from
(2.4) that the linear system (1.2) can be represented in tensor product notation [14],

(

G0 ⊗K0 +

M
∑

l=1

Gl ⊗Kl

)

u = g0 ⊗ f0(2.5)

where ⊗ is the Kronecker product, {Ki} are weighted stiffness matrices defined via

[K0]ij =

∫

D

a0∇φi(xxx)∇φj(xxx)dxxx, [Kl]ij =

∫

D

ãl(xxx)∇φi(xxx)∇φj(xxx)dxxx, l = 1, . . . , M,

where ã(xxx) = σ
√
λl al(xxx), {Gi} are “stochastic” matrices defined via

[G0]ij = 〈ψi(ξ)ψj(ξ)〉ρ , [Gl]ij = 〈ξl ψi(ξ)ψj(ξ)〉ρ , l = 1, . . . , M,(2.6)

and the vectors f0 and g0 are defined via [f0]i =
∫

D
fφi(xxx)dxxx, [g0]i = 〈ψi(ξ)〉ρ . Note

that {Gl}Ml=0 of (2.6) are highly sparse because of the orthogonality properties of the
stochastic basis functions [7].

We will make use of an isomorphism between R
nxnξ and R

nx×nξ determined by the
operators vec(·) and mat(·): u = vec(U), U = mat(u) where u ∈ R

nxnξ , U ∈ R
nx×nξ .

A solution u can be represented by a sum of vectors of tensor structure, or equivalently
U = mat(u) can be represented by a sum of rank-one matrices,

u =

κu
∑

k=1

zk ⊗ yk ⇔ U =

κu
∑

k=1

ykz
T
k = Yκu

ZT
κu

(2.7)

where yi ∈ R
nx , zi ∈ R

nξ , and Yκu
= [y1, . . . , yκu

] ∈ R
nx×κu and Zκu

= [z1, . . . , zκu
]

∈ R
nξ×κu . If κu is the rank of U , then we use κu to refer to the rank of u given in

tensor structure; thus, u is the sum of terms of rank-one tensor structure. With this
notation, the stochastic Galerkin solution usg(xxx, ξ) can be represented as

usg(xxx, ξ) = Φ(xxx)TYκu
ZT
κu
Ψ(ξ) =

(

Y T
κu
Φ(xxx)

)T (
ZT
κu
Ψ(ξ)

)

(2.8)

where Φ(xxx) = [φ1(xxx), . . . , φnx
(xxx)]T and Ψ(ξ) = [ψ1(ξ), . . . , ψnξ

(ξ)]T . Note that as
shown in [18], (2.8) corresponds to a separated representation usg(xxx, ξ) =

∑κu

i=1 ŷi(xxx)ẑi(ξ)
[4] where ŷi(xxx) = (Φ(xxx))T yi and ẑi(ξ) = (Ψ(ξ))T zi. We will use this representation
to construct a new rank-reduction operator. In the discrete model (2.8), the rank of
the solution is typically κu = min(nx, nξ).

In [3, 9], it was shown that the solution to (2.5) can be approximated well by a
quantity ũ of rank κũ ≪ min(nx, nξ). Thus, we seek a low-rank approximation to the
solution to (2.5),

Aũ =

(

M
∑

l=0

Gl ⊗Kl

)(

κũ
∑

k=1

zi ⊗ yi

)

≈ g0 ⊗ f0, .(2.9)
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2.3. Basic operations in tensor notation. We point out here a feature of the
basic operations required by Krylov subspace methods in the setting we are consider-
ing, where the operators and data of interest have tensor format. Themth step of such
methods results in the Krylov subspace, Km(A, v1) = span{v1, Av1, . . . , Am−1v1},
which is generated using matrix-vector products and addition of vectors.

The matrix-vector product in (2.9) can be represented as a sum of rank-one tensors

by exploiting the properties of the Kronecker product: Aũ =
∑M

l=0

∑κũ

k=1Glzk ⊗
Klyk =

∑(M+1)κũ

i=1 z̃i⊗ ỹi. The later here suggests that in tensor notation, the matrix-
vector product typically results in a vector with a higher rank. Similarly, the addition
of two vectors u and v of rank κu and κv in tensor notation gives u+ v =

∑κu

i=1 zi ⊗
yi+

∑κv

j=1 ẑj⊗ ŷj =
∑κu+κv

i=1 zi⊗yi, where yi+κu
= ŷi and zi+κu

= ẑi, i = 1, . . . , κv, so
that the resulting sum may have rank as large as κu+κv. Thus, although the goal is to
find an approximate solution to (2.5) of low rank, two of the fundamental operations
used in Krylov subspace methods tend to increase the rank of the quantities produced.
Following [2], we will address this point in the next section.

3. A preconditioned projection method in tensor format. As is well
known, the generalized minimum residual method (GMRES) [16] constructs an ap-
proximate solution um ∈ u0 + Km(A, v1) where u0 is an initial vector with residual
r0 = f −Au0, v1 = r0/‖r0‖2, and Km is the Krylov space. This is done by generating
Vm = [v1, . . . , vm], where {vj}mj=1 is an orthogonal basis for Km, and then computing
um whose residual rm is orthogonal to Wm = AVm. In this section, we discuss a
variant of this method based on low-rank projection, where advantage is taken of the
tensor format of the matrix A and low-rank structure of the solution u.

3.1. Low-rank projection method with restarting. As we observed in Sec-
tion 2, matrix-vector products and vector sums in tensor structure tend to increase
the rank of the resulting objects. Thus, although we seek a solution of low rank,
straightforward use of the GMRES method may lead to approximate solutions of
higher rank than the desired solutions. This complication can be addressed using
truncation operators [2, 10, 11, 13], whereby vectors of high rank are replaced by ones
of low rank. The truncation is inserted into the GMRES algorithm and is interleaved
with the basic operations such as matrix-vector product and addition so that the
ranks of the vectors used in the algorithm are kept low.

Algorithm 1 summarizes the restarted low-rank projection method in tensor
format [2]. A new vector wj is constructed and then made orthogonal to an m-
dimensional space exactly as for GMRES. The resulting vector is truncated to a
vector ṽj+1 of low rank and normalized to vj+1, which is then added to the set
of basis vectors. The truncation operator Tκ truncates a tensor of higher rank to
one of rank κ. Thus, all the basis vectors {vi}mi=1 are of the same rank, κ, and
Vm = span{v1, . . . , vm} is not a Krylov subspace because of truncation . However,
it is still possible to project the residual onto the subspace Wm = span{w1, . . . , wm}
to find out whether the residual can be decreased by forming a new iterate ũk +Vmβ.
Note that all the vectors used in the entire iteration process are stored as the product
of two matrices in the form like that shown in the right side of (2.7). The ranks of
these vectors will be discussed below.

3.2. Preconditioned low-rank projection method. As always for Krylov
subspace methods, preconditioning can be used to speed convergence. For the stochas-
tic diffusion problem, we choose M = G0 ⊗K0 as the precondtioner, which is known
as the mean-based preconditioner [14]. For the practical application of the precon-
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Algorithm 1 Restarted low-rank projection method in tensor format

1: set the initial solution ũ0
2: for k = 0, 1, . . . do
3: rk := f −Aũk
4: if ‖rk‖/‖f‖ < ǫ then
5: return ũk
6: end if

7: ṽ1 := Tκ(rk)
8: v1 := ṽ1/‖ṽ1‖
9: for j = 1, . . . , m do

10: wj := Avj
11: solve (V T

j Vj)α = V T
j wj

12: ṽj+1 := Tκ
(

wj −
∑j

i=1 αivi

)

13: vj+1 := ṽj+1/‖ṽj+1‖
14: end for

15: solve (WT
mAVm)β =WT

mrk
16: ũk+1 := Tκ(ũk + Vmβ)
17: end for

ditioner, we employ algebraic multigrid methods [15], where the action of K−1
0 is

replaced by K̃−1
0 , an application of a single V-cycle of an algebraic multigrid method.

We use a right-oriented preconditioner, so that the preconditioned matrix-vector prod-
uct is AM−1û =

∑M
l=0

∑κû

k=1Glẑk⊗KlK̃
−1
0 ŷk, and û =Mũ =

∑κû

i=1 ẑi⊗ ŷi. Note that
G−1

0 is the identity matrix because of the orthonormality of the stochastic basis func-
tions. With right preconditioning and this preconditioner, the strategy for handling
tensor rank is largely unaffected by preconditioning.

4. Truncation methods. As discussed in Section 3.1, in the low-rank projec-
tion method, truncation of tensors is essential for the efficient computation of approx-
imate solutions. In this section, we discuss the conventional approach for truncation
and we introduce a new multilevel truncation method based on a coarse-grid solution.

4.1. Truncation based on singular values. Given a matricized vector U =
Yκ′ZT

κ′ of rank κ′, a standard approach for truncation [2, 13] is to compute the singular
value decomposition (SVD) of U and compress U into an approximation of desired
rank κ ≪ κ′. This can be done efficiently by computing QR factorizations of Yκ′

and Zκ′ : Yκ′ = QYRY ∈ R
nx×κ′

, Zκ′ = QZRZ ∈ R
nξ×κ′

. Then, one can compute

the SVD RY R
T
Z = Ûκ′Σ̂κ′ V̂ T

κ′ =
∑κ′

k=1 σ̂kûkv̂
T
k and truncate the sum with κ terms

to produce Ỹκ = QY ÛκΣ̂κ ∈ R
nx×κ, Z̃κ = QZ V̂κ ∈ R

nξ×κ. The truncated approx-
imation of U is then Ũ = ỸκZ̃

T
κ . The computational complexity of the truncation

is O((nx + nξ + κ)(κ′)2), which grows quadradically with respect to κ′. In the next
section, we introduce a new truncation method that avoids this computation.

4.2. Truncation based on mutlilevel rank-reduction. In this section, we
propose a multilevel rank-reduction strategy. We obtain insight into the rank structure
of the solution using a coarse spatial grid computation. Then, we define a truncation
operator based on the information obtained from this coarse-grid computation.

Let uc(xxx, ξ) represent a solution obtained on a coarse-spatial grid (i.e., nx is

small). As in (2.8), uc(xxx, ξ) can be represented as uc(xxx, ξ) = (Φc(xxx))
T
U cΨ(ξ) =
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(

(Y c)TΦc(xxx)
)T (

(Zc)TΨ(ξ)
)

. Here, we propose to use Zc to define a truncation oper-
ator in the projection method when we compute a solution for the problem on a finer
grid. That is, the truncation operator is defined such that, given a matricized vector
U = Yκ′ZT

κ′ of rank κ′, Tκ(U) ≡
(

Yκ′ZT
κ′Zc

κ

)

(Zc
κ)

T
= Ũ where the resulting quantity

Ũ = ỸκZ̃
T
κ is of rank κ (i.e., Ỹκ = Yκ′ZT

κ′Zc
κ ∈ R

nx×κ and Z̃κ = Zc
κ ∈ R

nξ×κ). The
desired rank κ is determined such that the relative residual ‖f c −Acuc, κ‖2/‖f c‖2 is
smaller than a certain tolerance where uc, κ is a κ-term approximation of uc. This
truncation operation requires two matrix-matrix products, and the computational
complexity of truncating a vector from κ′ to κ is O(κ′κ(nx + nξ)).

For efficient coarse-grid computation, we use the Proper Generalized Decomposi-
tion (PGD) method developed in [18], which computes the separated representation of
a coarse-grid solution: uc, κ(xxx, ξ) =

∑κ
i=1 ỹi(xxx)z̃i(ξ). With the stochatic Galerkin dis-

cretization, each function can be represented as ỹi(xxx) =
∑nx

k=1 ỹ
(i)
k φck(xxx) and z̃i(ξ) =

∑nξ

l=1 z̃
(i)
l ψl(ξ), and, as a result as in (2.8), uc, κ(xxx, ξ) =

(

(Ỹ c
κ )

TΦc(xxx)
)T (

(Z̃c
κ)

TΨ(ξ)
)

where Ỹ c
κ = [ỹ(1), · · · , ỹ(κ)] ∈ R

nx×κ and Z̃c
κ = [z̃(1), · · · , z̃(κ)] ∈ R

nξ×κ are coeffi-

cient matrices such that the ith elements of ỹ(j) and z̃(j) are ỹ
(j)
i and z̃

(j)
i , respectively.

Now, the solution U c is approximated by U c, κ = Ỹ c
κ (Z̃

c
κ)

T , and we can obtain Zc
κ by

computing the SVD of U c, κ (i.e., U c, κ = ÛΣ̂V̂ T = Y c
κ (Z

c
κ)

T ). We briefly explain how
the PGD method computes a κ-term approximation in the next section.

4.3. Proper Generalized Decomposition method. The PGD method incre-
mentally identifies the function pairs (ỹi(xxx), z̃i(ξ)) one at a time. Once i such pairs
have been computed, the next pair (ỹi+1, z̃i+1) is sought in Xh × SM by imposing
Galerkin orthogonality with respect to the tangent manifold of the set of rank-one
elements at ỹi+1z̃i+1, which is {ỹi+1ζ + υz̃i+1; υ ∈ Xh, ζ ∈ SM}: find ỹi+1z̃i+1 such
that ∀(υ, ζ) ∈ Xh × SM

〈
∫

D

a(xxx, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ζ + υz̃i+1)

〉

=

〈
∫

D

f(ỹi+1ζ + υz̃i+1)

〉

.

(4.1)

It follows from (4.1) that each component of a pair (ỹi+1, z̃i+1) can be com-
puted by solving two coupled problems: a deterministic problem and a stochas-
tic problem. The deterministic problem is as follows: given z̃i+1, find ỹi+1 ∈ Xh

such that
〈∫

D
a(xxx, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(φcj z̃i+1)

〉

=
〈∫

D
fφcj z̃i+1

〉

, j = 1, . . . , nc
x.

The finite element discretization of ui+1 yields a linear system of order nc
x. Anal-

ogously, the stochastic problem starts with ỹi+1 and finds z̃i+1 ∈ SM such that
〈∫

D
a(xxx, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ψj)

〉

=
〈∫

D
f ỹi+1ψj

〉

, j = 1, . . . , nξ. Since z̃i+1

is approximated by the PCE, nξ unknowns have to be determined by solving a linear
system of order nξ.

Solutions of these sets of κ systems of order nc
x and κ systems of order nξ pro-

duce the κ-term approximation to the solution. The PGD method seeks solution
pairs until the relative residual of the computed solution satisfies a given tolerance,
‖f c − Acuc, κ‖2/‖f c‖2 < ǫ. The accuracy of the κ-term approximation can also be
improved by solving a set of κ coupled equations: given {ỹi}κi=1, find {z̃i}κi=1 such
that

〈∫

D
a(xxx, ξ)∇(u(κ)) · ∇(ỹiψj)

〉

=
〈∫

D
f ỹiψj

〉

, i = 1, . . . , κ, j = 1, . . . , nξ. The
update problem requires a linear system of order κnξ to be solved.

With the proposed truncation strategy, Algorithm 2 summarizes the entire pro-
cedure to compute a solution on a finer grid.
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Algorithm 2 Preconditioned low-rank projection method with the multilevel rank-
reduction

1: Compute uc, κ which satisfies ‖fc−Acuc, κ‖2

‖fc‖2

< ǫ using the PGD method

2: Compute Zc
κ such that U c, κ = Y c

κ (Z
c
κ)

T and define Tκ(U) ≡ (UZc
κ) (Z

c
κ)

T

3: Run Algorithm 1 with L = AM−1, f , and Tκ

5. Numerical experiments. In this section, we present the results of numerical
experiments in which the proposed iterative solver is applied to some benchmark prob-
lems. The implementation of the spatial discretization is based on the Incompressible
Flow and Iterative Solver Software (IFISS) package [17]. Example problems are posed
on a square domain and ℓ is the spatial discretization parameter (i.e., nx = (2ℓ+1)2).

For a(xxx, ξ) in (2.3), we consider independent random variables {ξi}Mi=1 uniformly
distributed over [−

√
3,

√
3], a0 = 1 and σ = 0.05. As the covariance kernel, we use

C(xxx, yyy) = σ2 exp
(

− |x1−y1|
c

− |x2−y2|
c

)

where c is the correlation length. The number

of terms M in (2.3) is decided such that 95% of the total variance is captured by

M terms (i.e.,
∑M

i=1 λi/
∑nx

i=1 λi > 0.95). We use bilinear Q1 elements to generate
the standard finite element basis and Legendre polynomials as the stochastic basis
functions. The default setting of the maximal polynomial degree p is 3.

5.1. Stochastic diffusion problem. We consider the steady-state stochastic
diffusion equation in (2.4) with forcing term f(xxx) = 1.

Coarse spatial grid computation. We compute κ-term approximations using
the PGD method on a coarser spatial grid. We choose the refinement level ℓc for the
coarse grid such that ℓc is the smallest integer for which nc

x = (2ℓ
c − 1)2 ≥ nξ; here

nc
x is the number of degrees of freedom in the spatial domain excluding boundary

nodes. Table 5.1 shows the rank κ of solutions that satisfy the tolerance ǫ for varying
correlation lengths c and M and the corresponding computation time tc.

Table 5.1

Rank (κ) of coarse-grid solutions satisfying a specified tolerance ǫ for the PGD computation,
and CPU time (tc) for coarse-grid computation using the PGD method, for varying c and M

ǫ = 10−5 ǫ = 10−6

c 4 3 2.5 2 4 3 2.5 2

M , nξ 5, 56 7, 120 10, 286 15, 816 5, 56 7, 120 10, 286 15, 816

n
c
x (ℓc) 225 (4) 225 (4) 961 (5) 961 (5) 225 (4) 225 (4) 961 (5) 961 (5)

Rank(κ) 25 40 65 115 35 65 100 210

CPU time(tc) 2.49 3.47 8.35 45.08 2.93 5.04 14.83 162.71

Fine spatial grid computation. With the truncation operator Zc
κ obtained

from the coarse-grid solution, we solve the same stochastic diffusion problems on finer
spatial grids ℓ = {8, 9}. For the fine-grid low-rank solutions, we use the rank κ
obtained from the coarse-grid solutions. For example, the third column of Table 5.2
shows the time required to find solutions of rank 25 when the number of terms in the
KL-expansion is M = 5.

Comparison to a truncation operator based on singular values. We com-
pare the performance of the proposed solver to the preconditioned low-rank projection
method combined with the conventional truncation operator. Table 5.3 shows the
computation time required to compute approximate solutions using the conventional
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Table 5.2

CPU time to compute approximate solutions satisfying ǫ = 10−5, 10−6 using the preconditioned
low-rank projection method with the multilevel rank-reduction. Here, t is the total time and tf

excludes the time to compute the coarse-grid solution, tc

nx

(ℓ)
ǫ = 10−5 ǫ = 10−6

M 5 7 10 15 5 7 10 15

2572

(8)

tf 22.69 34.90 84.85 340.51 27.61 56.36 148.07 1014.97

t 25.17 38.37 93.20 385.59 30.55 61.41 162.90 1177.68

5132

(9)

tf 144.69 194.41 445.36 2809.54 163.31 310.14 1318.79 -

t 147.17 197.87 453.71 2854.62 166.24 315.18 1333.63 -

Table 5.3

CPU time to compute approximate solutions satisfying ǫ = 10−5 using the preconditioned low-
rank projection (LRP) methods with the multilevel rank-reduction and the singular value based trun-
cation on the level 8 spatial grid

Solver M 5 7 10 15 20

LRP-SVD t 55.04 108.11 284.27 1280.65 8270.58

LRP-Multilevel t 25.17 38.37 93.20 385.59 1943.49

and new truncation strategies.
PGD as a solver on a finer spatial grid. Note that the PGD method could

be applied directly to the fine-grid problems. We assess the performance of the PGD
method for computing fine-grid solutions. Table 5.4 shows the rank and the com-
putation time for computing approximate solutions that satisfy the tolerance 10−5

when the PGD method is used on a finer spatial grid. We compare the rank and
the computation time for computing solutions using the PGD method and the pro-
posed projection method. The proposed low-rank projection method runs faster and
requires somewhat smaller ranks than the PGD method.

Table 5.4

Computation time to obtain approximate solutions satisfying ǫ = 10−5 using the PGD method
and the preconditioned low-rank projection method on the level 8 spatial grid

Solver M 5 7 10 15 20

PGD
κ 25 45 65 125 195

t 43.78 109.72 228.73 940.69 3066.87

LRP-Multilevel
κ 25 40 65 115 180

t 25.17 38.37 93.20 385.59 1943.49

5.2. Stochastic convection-diffusion problem. For the next benchmark prob-
lem, we consider the steady-state convection-diffusion equation with non-homogeneous
Dirichlet boundary condition with the constant vertical wind ~w = (0, 1) and f = 0,

(5.1) ν∇ · (a(xxx, ξ)∇u(xxx, ξ)) + ~w · ∇u(xxx, ξ) = f(xxx, ξ) in D × Γ,

and the boundary condition is determined by u(x, −1) = x, u(x, 1) = 0, u(−1, y) ≈
−1, u(1, y) ≈ 1 where the latter two approximations hold except near y = 1, and ν
is the viscosity parameter. We consider the convection-dominated case (i.e., ν < 1)
and employ the streamline diffusion method for stabilization [5]. Here, we define the

element Peclet number Pk = ‖~wk‖2hk

2ν where ‖~wk‖2 is the ℓ2 norm of the wind at the
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element centroid and hk is a measure of the element length in the direction of the
wind. Note that the solution has an exponential boundary layer near y = 1 where the
value of the solution dramatically changes [6].

Given a(xxx, ξ) in (2.3), we again discretize (5.1) using the finite element method
and the generalized PCE. After the discretization, we obtain a linear system in tensor
product notation

(

G0 ⊗ νK0 +

M
∑

l=1

Gl ⊗ νKl +G0 ⊗N +G0 ⊗ S

)

u = g0 ⊗ f0

where the convection term N and the streamline-diffusion term S can be defined via
[N ]ij =

∫

D
~w · ∇φi(xxx)φj(xxx)dxxx, and [S]ij =

∑ne

l=1 δl
∫

D
(~w · ∇φi)(~w · ∇φj)dxxx where ne

is the number of element in the finite element discretization and hk

2‖~w‖2

(

1− 1
Pk

)

if

Pk > 1. As the preconditioner, we choose M = G0 ⊗ (K0 +N +S), and the action of
(K0 +N + S)−1 is replaced by application of a single V-cycle of an AMG method.

Numerical results. To cope with the existence of the exponential boundary
layer in the solution, we use vertically stretched spatial grids. We examine the perfor-
mance of the low-rank projection method for varying viscosity parameter ν, and we
setm = 10 for Algorithm 1. Table 5.5 shows κ computed by the PGD method, coarse-
grid computation time tc, and fine grid computation time tf to compute approximate
solutions on fine spatial grids ℓ = {8, 9} satisfying 10−5 and 10−6. Underlined num-
bers in the spatial grid level indicates cases where streamline diffusion is not needed.

Table 5.5

CPU time and the number of projection cycles (k in Algorithm 1) to compute approximate
solutions with ǫ = 10−5 and 10−6 using the preconditioned low-rank projection methods with the
multilevel rank-reduction method for varying ν

ǫ = 10−5
ǫ = 10−6

ν ℓ M 5 7 10 5 7 10

1

20

4
κ 25 35 55 35 50 75

tc 2.56 4.83 26.34 3.31 9.17 60.51

8 tf 51.50 (1) 67.24 (1) 128.45 (1) 83.43 (2) 136.69 (2) 341.32 (2)

9 tf 424.17 (1) 489.96 (1) 929.74 (1) 559.78 (2) 871.88 (2) 3031.37 (2)

1

200

5
κ 20 25 45 25 40 60

tc 2.91 4.79 16.54 3.46 8.57 38.35

8 tf 52.51 (1) 61.29 (1) 99.14 (1) 74.33 (2) 120.39 (2) 254.95 (2)

9 tf 468.97 (2) 543.20 (2) 949.72 (2) 572.07 (3) 890.72 (3) 2972.20 (3)

1

600

6
κ 20 20 35 30 35 45

tc 9.79 13.20 34.47 17.99 22.03 47.44

8 tf 65.48 (2) 73.28 (2) 142.46 (2) 81.93 (2) 107.84 (2) 186.56 (2)

9 tf 473.52 (2) 505.27 (2) 849.07 (2) 625.07 (3) 803.89 (3) 1527.38 (3)

When the viscosity parameter is small (i.e., ν = 1/600), the coarse-grid compu-
tation requires the κ-term approximation on a relatively fine spatial grid (i.e., ℓ = 6).
The exponential boundary layer gets narrower as the viscosity parameter gets smaller,
which requires the use of a finer spatial grid for the coarse-grid computation. If the
coarse-grid computation is performed on coarser spatial grids, it fails to identify the
rank structure of solutions and to yield a proper truncation operator.
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6. Conclusion. We have studied iterative solvers for low-rank solutions of stochas-
tic Galerkin systems of stochastic partial differential equations. In particular, we
have explored low-rank projection methods in tensor format for linear systems of
Kronecker-product structure. For the computational efficiency of the projection meth-
ods, basis vectors and iterates in the projection methods are forced to have low rank,
which is achieved by a multilevel rank-reduction strategy. We have examined the per-
formance of this strategy with two benchmark problems: stochastic diffusion problems
and stochastic convection-diffusion problems. Numerical experiments showed that the
rank structure of the solution can be identified by an inexpensive coarse-grid com-
putation. Moreover, numerical results showed that the low-rank projection method
combined with the multilevel rank-reduction strategy outperformed methods for which
the truncation operator is based on singular values.
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