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Abstract

We present an approach to improve the convergence of a multilevel Monte Carlo method using a high-
order discretization scheme for elliptic partial differential equations with random coefficients. We describe
in detail a multilevel estimator which utilizes a fourth-order accurate solution of the elliptic PDEs. The
superiority of this fourth-order estimator is reflected by fewer multilevel Monte Carlo levels and samples
compared to the existing methods. Numerical experiments with small correlation length and high variance
are reported.
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1 Introduction

Numerical simulation of a complex fluid flow process in a porous media is an important aspect of petroleum
reservoir engineering and modeling of contaminant transport through aquifers. The outcome of these simulations
becomes uncertain when the parameters involved in the mathematical models are not known deterministically.
To deal with such uncertainty, we rely on sampling of these parameters based on some mean, variance and
correlation structure and solving the model for each of those realizations. In order to get a reliable estimate
of quantities, we need to consider a large number of samples as well as a very fine computational grid. This
makes the problem computationally expensive. Recently, multilevel Monte Carlo (MLMC) methods have been
developed to solve these types of problems efficiently [T}, 2, [I0]. Unlike direct methods, MLMC solves the problem
on a hierarchy of grids such that most of the computations are done on relatively coarse grids and fewer on the
finer grids.

The objective of this paper is to improve the convergence results for MLMC methods in [2] which employs
a second-order accurate discretization to solve the elliptic PDE used to model the Darcy flow problem. We
apply a fourth-order accurate finite volume (FV) scheme to the same problem. The advantage of using this
high-order scheme is that the same accuracy can be achieved on a much coarser grid compared to low-order
schemes resulting in fewer MLMC levels. Further, the MLMC estimator based on the fourth-order method
shows convergence rates approximately twice that of the second-order estimator. Therefore, if an efficient solver
for the fourth-order discretization is available, a large gain in computing time can be achieved over the existing
method. This reasoning forms the main motivation for this work.

The layout of this paper is as follows. We begin by reviewing the subsurface flow problem and explain the
quantity of interest in section [2] In section [3] we briefly explain the procedure to generate a Gaussian random
field. In section [4} we describe in detail a second- and fourth-order accurate finite volume spatial discretization
on a 2D Cartesian grid. Section [5|is devoted to the construction and analysis of MLMC estimators using the
high-order finite volume scheme. In section [6 we provide some numerical experiments to test accuracy of our
discretization and observe the convergence of multilevel methods for different test cases.

2 Problem setting

The mathematical model which determines the subsurface pressure distribution as a function of space is given
by

~V.(aVu)=f, in DCRY  d=1,2,3, (2.1)
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where w is fluid pressure, a is the permeability (hydraulic conductivity), aVu together is called the Darcy
velocity and f is the external rate of the flow. The boundary conditions are taken to be

U =gp in TP (2.2)
ou .
% =gnN 11 FN (23)

where I'” and T'V represent boundaries for Dirichlet and Neumann boundary conditions, respectively, and n
denotes the outward normal to I'V. In the context of fluid flow problems, the Dirichlet boundary conditions
represent the pressure values at inflow and outflow heads whereas the Neumann boundary conditions define the
pressure gradient at the boundaries perpendicular to the main flow direction.

In order to numerically solve , we require the permeability at all locations in the computational domain.
These permeability values are usually measured from borehole data at selected locations. Also, the heterogeneity
in porous media restricts the extrapolation of these known values to nearby spatial locations. Therefore, a
stochastic model is adapted to adequately represent these spatial variations. A realistic representation of a
permeability field in any naturally occurring heterogeneous porous medium can be obtained by modeling it as
a log normal random field [5]. This also ensures a positive permeability throughout the domain,

a(x,w) = eZx) xe D, (2.4)

where Z(x,w) is a zero mean Gaussian random field on D, w is an event in the probability space (2, F,P). For
Z(x,w) we can define a covariance function C : D x D — R via:

C(x,y) = Cov(Z(x,w), Z(y,w)) = E[Z(x,w)Z(y,w)], x,y € D. (2.5)

In this paper, we will work with the Gaussian covariance functions:

C(x,y) = 026_(”L/\3’H)27 (2.6)

where parameters 02 and A denote the variance and correlation length, respectively. The regularity of a random
field is determined by the regularity of the covariance function. The Gaussian covariance function is C*° as a
function of ||x — y|| and results in a random field which is C>°(D), D = [0,1]¢. We will discuss the techniques
for sampling of random field in the next section.

The next task is to estimate statistics of certain functional @ := X'(u) of the solution. In this paper, we
consider as quantity of interest, @, the expected value of outflow through the boundary I,

Q=E [ /F —a(x,w)Vu(x,w)ndS| . (2.7)

The integral in above equation is also referred to as effective permeability. In physical terms, effective perme-
ability is the permeability which gives the same flow through a homogeneous block as the flow through the
heterogeneous block, D, when the boundary condition is constant pressure on inflow and outflow sides and no
flow through the other sides of the block.

3 Sampling of the random field

In this section we describe a method for sampling of random field Z on a spatial grid. For a set of points
{x;}M, € D, where M is the total number of points on the grid, we define vector Z € RM as

Z = [Z(Xl,UJ),Z(X27W),...,Z(XMyw)]T, (31)
and an M x M positive definite covariance matrix
C =E[ZZ"] = {C(xi,y;)}j=1- (3.2)

We can factorize covariance matrix C to generate samples of Z. This can be done by using a proper orthogonal
decomposition :
C=UAUT, (3.3)

where A is a diagonal matrix of ordered eigenvalues {A11 > Aoo > ... > Ay} and U = [ug,ug, ..., up) is
an M x M matrix whose columns u; are eigenvectors of C. The discrete Gaussian random field can now be
formulated as

Z=UA?¢  cef&, . &ul,  &eN(O,). (3.4)

The above method gives an exact point-wise representation of the random field on an M point grid. The
factorization is expensive, requires O(M?) operations. Faster methods for factorization of C are also available
which require only O(M log M) operations, see [0, [12] for details.



4 Finite volume discretization

In subsurface flow modeling, finite volume methods are usually preferred over the finite element due to the local
conservation property [4]. In this section we derive a finite volume approximation of the problem using a
second- and fourth-order discretization scheme in a 2D cell-centered grid.
We begin by dividing the domain D into control volumes or cells, that are squares of size h2, with cell centers
at points
Dp={(z,y):z=z;i=(i—Hhy=y; =G —3hi,j=12...mh=21} (4.1)

The cell with center (z;,y;) is denoted as D; ; and its boundary as 0D; ; = Uizl 0D; ;- In each of the finite

volumes D; ;, the integral formulation of (2.1) has the form

/D —V.(aVu)dD = /D fdD. (4.2)

Using the Gauss divergence theorem, the left-hand side of the above integral is reformulated as a boundary
integral for boundary 0D; ;. and n, is the unit normal vector to that boundary

/D —V.(aVu)dD Z /8 N aVu.n,dsS,. (4.3)

2% VI

For cell ABCD in Fig. [I] the boundary integrals are given by

ou ¢ ou Do A4 du
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We define the normal flux as F'* = aVu.n, and the so-called face-average normal flux as (F") = + f op, . FrdS.
Now, we can rewrite the integral form of the PDE in terms of face-averaged fluxes at face centers of cell ABCD,

h [(FABY — (FBOY — (FOP) + (FP4)] / fab. (4.5)

The above relation is called fluz-balance equation per volume which we discretize to second- and fourth-order
accuracy in sections [4.1] and [£.2] respectively.
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Fig. 1: A volume D; ; and face-averaged normal fluxes at face centers

4.1 Second-order discretization

To approximate (4.5) to second-order accuracy, we use a central difference scheme to compute the gradient
Vu.n,. For the face BC, we find

1 /¢ ou 1 Ujs] i — Wi 5
FBC\®) _ ,/ ~ o Uitl,j — Winj . 4
=0 fy a5 | %k h h (4.6)

Fluxes at other faces are approximated similarly. If the coefficient field is smooth, we can approximate a. 1
it+5.]
2
with the mean of a;; and a;11,;. In case of discontinuous coefficients, a harmonic average EL,+1 of a;; and
i+5.]
2

a;41,; works well [8]. The right-hand integral in (4.5]) is approximated using a midpoint rule f p. . fdD = h? fig-
2V}
Finally, we get the discrete equation for volume D; ; as

Wij_1—a,  1Uije1 = h2fij, (4.7)

—a, 1 U1 —a, 1 Ui+ XU —a,
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where ¥;;, =a 1 +a 1. +a 1 +a 1 . For Dirichlet boundary conditions, i.e. u = gp, we use a
’ 1=5,J i+35,] Li—5 L,j+5

one-sided difference instead of central difference in Eq. (4.6). A Neumann boundary condition is applied by
directly using gy in place of the finite difference approximation.

4.2 Fourth-order discretization

We describe a fourth-order scheme for a regular 2D spatial grid. This approach can be extended to other
more complex grid systems such as in mapped coordinates and locally-refined grids [3} @]. To compute the
face-averaged normal fluxes defined in Eq. , we use a fourth-order accurate quadrature rule. We will now
explain in detail the computation of the face-averaged normal flux for the face BC:

h2 82FBC

FBOYW _ pBC e O(h? 48
< > i+%,j 24 Oy? i+%,j+ (h), (4.8)
where 32;; l;c , s the transverse Laplacian of the flux at the center of face. We can write above formula as
i+§,j
ou h? [8%a Ou da 8%u &u
pBo\® _  gU L T Y T o). 4.9
{ ) ¢ ox i+3. 24 8y28x+ 8y8y8w+a8y283: i+%j+ (%) (4.9)

Thus, the face-averaged flux is expressed in terms of a point-wise value of a and % and their derivatives at the
center of face. As the expansion in Eq. (4.8)), one can also write

h? 9%
a) 1.=a 1 +— = +0O(hY), 4.10
< >1+%»J i+34 24 Oy? i+1 () (4.10)
h2 3
<3“> - @ 5 5'2u +O(n*). (4.11)
Ox i+d ox i+1 24 0y?0x .y

Using (4.10) and (4.11]), we can reduce (4.9) to

+O(h%). (4.12)
o1
it+5,7

ou h2 da O%u
pBOV@® ou Lo g
( >i+%,j <a>i+%,j Or /. 1, " 120y dyow

The above form has a smaller stencil size compared to Eq. (4.9)).

2

4.2.1 Computation of <a>i+1j and g—;
27

i+%,j

Assuming that the coefficient field is smooth and is sampled at cell-centered locations, we first interpolate the
coefficient values at the face-centered location using a centered fourth-order finite difference, i.e.

1
a1 =19+ air1) = (ai-1; + aisa )] + O(Y), (4.13)
1+2J ].6
%a 1
— =— —2 h?). 4.14
A {aw;j—l Gpl; Tl | T O (4.14)
We can compute (a) 1 . using (4.10). The term % , only needs to be computed with O(h?) accuracy.
+3d v i+35,]
Therefore,
Oa | |+ O(h?) (4.15)
— =—Ja —a . .
dylipl, 2k ittt Yt
: Ou
4.2.2 Computation of <&>i+%7j

Using the same relation as Eq. (4.8)), one can write

ou ou h? 83w
Ox oz " 2400202 : 4.16
<8x>i+;,j [8:1: o ay2ax]i+;. (4.16)



Next, using the Tayler’s expansion, we define

1
Pind ;= g Ty = wig) = (uiga —uici)], (4.17)
see Fig. [2 (Left) for the stencil. We can now use Pl for computing the elements in (4.16) as
1 5,
Ju pi-&-%,j
— = —2- 4+ O(n* 4.18
Ox |, 1 h +O(R), ( )
i+,
O _ 1 2 + +O(h?) (4.19)
OPox |1, B Pivl i1 TPl TPl i : '
4.2.3 Computation of 63;5; 1
1T95)
For this term, we use
0%u 1 9
= — - . 4.2
Jydx H%j 2h2 |:pi+é,j+1 pi+;,j1] +0O(h%) (4.20)

This completes the fourth-order accurate face-averaged flux computation for face BC. Averaged fluxes at other
faces are computed analogously. Finally, we obtain a 21-point stencil in a 5 x 5 block which is centered at the
cell on which flux divergence is computed. In case of 1D problems, we do not have any transverse derivatives
and we obtain a 5-point stencil. Regarding the right-hand side of the Eq. , we again use the fourth-order
quadrature rule on the cell D, ;, i.e.

2
/ fdD ~ h? [f + ;Af} , (4.21)
D; ; %7

where A is the Laplacian operator computed with a second-order accuracy.
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Fig. 2: Left Grid points at cell-centers required to compute <8u/8:c)i+1/2 ; using (4.17). We get a 21-point stencil centered around
cell ABCD. Right Points near or at the boundary which require stencil modification to incorporate boundary conditions.

4.2.4 Dirichlet boundary conditions

For Dirichlet boundary conditions, we use cubic polynomial interpolation. This results in a reduced accuracy
at the boundaries while the overall order is still maintained due to elliptic regularity. Therefore, for the grid
point labeled D1 in Fig. [2 (Right) we have

1
pm—i—%,j = % [1849Dm+é,j - 225um,j + 50Um,15]‘ - 9um2’j‘| . (422)
Using the same cubic interpolation for the point D2 in Fig. |2| (Right), we get
1
P 1. == —8gp 1 + 75um3 — 70um_17j + 3Um_2j . (423)
m—35,j 60 m+5 .9 ? ?



Furthermore, for the point D3 in Fig. E (Right), we compute the transverse gradient term %{;‘y , using a
m,j+§
one-sided second-order accurate formula, as follows,
0%u
=— —4 h?). 4.24
drdy| .1 2n2 |:3pm7j+% Pr1ged TPyt | T O(n%) (424)
m,j+3

4.2.5 Neumann boundary conditions

In case of Neumann boundary conditions, we know the exact point-wise values of the flux at the face centers,
ie. I'= ag—;. Therefore, we can use the formula in (4.8)) directly. For the point labeled N1 in Fig. (Right)
3

. 2 N1 . . . . . 2
the transverse Laplacian 88% , is computed with one-sided differences, whereas for point N3, 83%

m,§
is computed with the central difference operator. To construct the stencil for point N2, we first determine the

m—1,§

value of ., % using the stencil provided in (4.22)) and gy 1 = %Z ) as
m5 m,5
1o} p?’n,l 1
871:; = 2 _ o [184um 1 — 225Uy, 1 + 50U, 2 — 9um,3:| . (4.25)
m, 5 ’2
2

Now we can use u_ 1 in the stencil given in (4.23]) to compute P, 3 This completes the discretization in 2D.
2

m,§

5 Monte Carlo estimators

We will now briefly discuss the standard Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods.
Readers are referred to [2, [7] for a more detailed derivation of these techniques.

Our computational goal is to compute the expected value of the outflow through the boundary as defined in
which depends on the solution of the Darcy flow equation. Thus, using the methods outlined in section
we approximate u on a mesh and compute @y, := X (uy). Further, we make an assumption that the discretization
error in E[Q),] decays w.r.t to mesh width as O(h?), i.e.

IE[Qn — Q]| = O(h?), a >0, (5.1)

where « can be obtained empirically by linear regression. We denote the decay rate obtained from second- and
fourth-order schemes o and (¥, respectively. For a smooth solution, we expect a(?) < o*, which we will
confirm through our numerical results in the next section.

Table 1: Notation for (ML)MC-FV methods and respective mesh (hierarchy) width required to achieve a RMSE of €

MC2 Monte Carlo method with second-order FV scheme hf) = @(61/a<2))
MC4 Monte Carlo method with fourth-order FV scheme W = o/
MLMC2 multilevel Monte Carlo method with second-order FV scheme he = h(LQ)s(L_Z)
MLMC4 multilevel Monte Carlo method with fourth-order FV scheme he = h(L4) s(L=0)

Next, we perform an error analysis for the Monte Carlo estimators and develop an algorithm combining
the solutions from the FV schemes discussed in section {4 with the MC/MLMC method. Note that MC2 and
MLMC2 given in Table [I| are the same estimators described in [2] and MC4 and MLMC4 are the estimators
that we propose here.

5.1 Single level Monte Carlo method

We can define an unbiased Monte Carlo estimator, y fl” ]g, of E[@Qn] which uses N realizations of the solution on

a grid with mesh width h. Thus, the mean square error (MSE) of the MC estimator is given by
E(@Q1'N)? = E(@Q1N — E[Qn)?), (5.2)
separating the error due to finite sampling and spatial discretization, the above expression can be expanded as

E(QNS) = VIQYS) + ElQs - Q) = 12 4 (&lq, - Q) 5.3



where V[Q}] is the sample variance. In order to achieve an MSE of S(Q%(\’;)Q < €2, we need to choose a grid

h = O(¢'/*) and a number of samples N = O(e~2) assuming V[Q,] is constant, independent of the grid size.

We also note that the fourth-order scheme will converge to € on a coarser grid due to larger a, i.e. h(* > h(2),
Since the cost to compute one sample of @, grows as O(h~7), v > 1, the computational cost to achieve an

accuracy of e by MC method is given by

CMY = O(Nh™) = O(e27/). (5.4)

€

Putting these insights together we now provide the MC2/MC4 algorithms that consist of the following three
steps:

1. Sampling: We generate N independent samples of permeability field a(-,w®), w® € Q, i € {1,2,...,N},
on a suitable spatial grid h( = 1) from the FV discretization order v = {2,4}.

2. Finite Volume Solution: For each realization of a(-,w*), the PDE in (2.1)) is solved numerically by
the solver of order v. Then, we compute the quantity of interest (e.g. the effective outflow through the
boundary) and denote the samples obtained by Qz(y).

3. Estimate Statistics: We estimate the expectation of () by the sample mean
QS n = En[Qno] = ZQm ) (5.5)

It is important to note that the computational cost of the standard MC method scales with the mesh width
and sample size. So, a higher value of a can give the same accuracy on a coarser grid and can make the MC
simulation significantly cheaper. For example, in a deterministic setting, a discretization accuracy of O(h?)
on an 256 x 256 grid is essentially the same as that of the O(h*) discretization on 16 x 16 grid. But solving
the 16 x 16 problem with fourth-order accuracy is typically cheaper than solving the 256 x 256 problem with
second-order discretization. The fourth-order scheme may still be cheaper if its solver is slightly sub-optimal
compared to the second-order solver, i.e. 4% > 42 [I1]. For all our computations, we use the sparse direct
solver available with MATLAB to solve the linear system obtained from second- and fourth-order discretization.
This solver is optimal for 1D problems with v ~ (%) ~ 1. Multigrid solution are part of a forthcoming paper.

5.2 Multilevel Monte Carlo method

While single level MC methods are easy to implement they tend to "over-resolve" the problem. The improved
efficiency of the MLMC method comes from building the estimate of @) on a hierarchy of grids or levels, in a way
which minimizes the overall variance for a given computational cost. It exploits the linearity of the expectation
operator, i.e.

L
E[QL] = E[Qn ] + > _E[Qn, — Qn,_,); (5.6)
/=1

where hy = s thy_1, s € N/{1} and ¢ € {0,1,...,L}. Each of the expectations in the above expression is
independently computed with varying sample size N,. For small values of ¢, expectations are inexpensive to
compute accurately, because the PDE is solved on a very coarse grid. In turn, for large values of ¢, where the
numerical solution is expensive, only a few realizations are required assuming the variance of the correction
term converges as V[Qn, — Qn,_,] = O[hP] with 8 > 0. As the expectations are independently computed, the
MSE for the multilevel estimator can be quantified as

L

5(@2“)2—< Qo] +y Qh” Q’” 1]>+(E[Qh—QD2. (5.7)

=1

From the above expression it can be observed that the finest grid required in the case of the MLMC method is
the same as for the standard MC method. Further, as h*) > h(?)| we get a smaller overall number of levels, L,
for the fourth-order scheme keeping grid the multiplicity factor s from Eq. same for both methods.

The computational cost to achieve an accuracy € using an MLMC estimator is then given by

L
cML — 0 <N0h07 + S (Nehy T+ N“hg_m) : (58)
=1

Proofs for the asymptotic computational cost of the MLMC method can be found in the appendix of [2]. Next,
we provide the multilevel estimator for . The MLMC2/MLMC4 algorithms consist of following four steps:



1. Mesh Hierarchy: We consider a hierarchy of grids on D with mesh widths héy) that satisfy

W = s 1h{). (5.9)

2. Sampling: For each level of resolution ¢, we generate N, independent samples of a(-,w ) with i €
{1,2,..., N¢} on the grid with mesh width h{".

3. Finite Volume Solution: For each mesh hEV) and realization a(-,w(i))7 the elliptic PDE Is solved nu-
merically by solvers of order v. We denote the ith sample of the quantity of interest as Q;L(V). We also
2

generate the coarse grid version of a(-,w(®) using the same random sample w® € Q on level £ —1 (£ > 0)
and compute the coarse grid version Qz(” .
2—1

4. Estimate Statistics: We estimate the expectation of () using the following multilevel estimator:
L
QL =E[Qrw] = En, @yl + > En, [@uer = @y ] (5.10)
=1 4 (—1

with Ey, being the MC estimator defined in (5.5]) for level £.

Remarks: In the present implementation, we numerically solve the problem in two consecutive mesh levels by
adopting a suitable coarsening scheme for the random permeability field. For the 1D case, the coarsening of the
permeability field can be done by injection on the cell faces. Another efficient way of doing this is by using an
optimal multigrid solver such as Full Multigrid (FMG) with the same mesh hierarchy and utilizing the solution
on the last two finest grids.

6 Numerical results

In this section we provide some numerical results to analyze the effectiveness of the methods described in the
preceding sections. For all our results, we consider problem on D = (0,1) with f = 0 and boundary
conditions u(0) = 1 and u(1) = 0. We model permeability a as a continuous log normal field, such that log a
has a Gaussian covariance function .

We first start by testing the accuracy of our discretization method. We consider different choices of correlation
lengths A € {1/32,1/64,1/128} to study the impact of a decreasing spatial regularity on the solution error. To
compute the solution error we proceed in the following way. First we generate the permeability field on a
relatively fine grid h* = 1/2048, solve the PDE on that grid and use it as the reference. Next we solve the
corresponding PDE with the coarse grid version of the permeability field on grids h = {1/16,1/32,...,1/1024}
and evaluate the solution error with respect to the solution obtained on grid ~A*. Fig. 3. shows the convergence
results of the second- and fourth-order schemes in 1D. The expected value of the solution error increases with
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Fig. 3: Convergence of E[||up, — up=||2], h* = 1/2048 for second-order discretization (Left) and fourth-order discretization (Right)
with different choices of correlation lengths A and for o2 = 1.

decrease in the correlation lengths but the order of convergence is still preserved. For the case where h > )\, the
convergence order is slightly affected as coarser grids are unable to resolve the low correlation lengths.

Now we examine in detail the performance of the MLMC-FV methods to compute the expected value of the
quantity of interest, @ = a%’le from Eq. . Fig. shows the result for the case with o2 = 1, A = 0.2
and coarsest grid hyo = 1/8. The left-side plot shows the behavior of E[Qr, — Qp,_,] for MLMC2 and MLMC4.
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Fig. 4: Convergence rates for MLMC2 and MLMC4 methods with log normal permeability field generated using Gaussian covariance
function with 02 = 1, A = 0.2 and coarsest grid hg = 1/8. The quantity of interest is Q = —a(du/dz)z=1. Left For E[Qn, — Qh,_,]

the parameter a(?) =1.93 and o) = 4.22. Right For V[Qn, — Qn,_,] the parameter B =3.87 and Y = 8.65.
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Fig. 5: Plots for E[Qp,] and E[Qp, — Qn,_,] (Left) as well as V[Qp,,] and V[Qn, — Qn,_,] (Right) for the same test problem in
with A = 0.01, 02 = 3 and coarsest grid hg = 1/16.

The slope of the line obtained from the MLMC2 method is —1.93, or a(? ~ 1.93 and for MLMC4 is —4.22, or
a® =~ 4.22. We also observe that E[Qy,] is approximately constant for the MC2 and MC4 methods. In the
right-side plot we observe the convergence of V[Qp, — Qp,_,] for MLMC2 with slope -3.87, or 53 ~ 3.87 and
for MLMC4 with slope -8.65, or 3(*) ~ 8.65. Also the V[Qn,] is approximately constant for the MC2 and MC4
methods.

Plots in Fig. [p|show the convergence rates for a relatively more difficult test case. We use a small correlation
length A = 0.01 and a higher variance 0? = 3 with coarsest grid hg = 1/16. For both methods, MLMC2 and
MLMC4, we observe that V[Qn, — Qn,_,] > V[Qp,] for coarser grids A > A. In this case multilevel methods
will be more expensive compared to the standard methods. To benefit from multilevel methods the coarsest
grid should be chosen as hy =~ A. We also observe that on coarser grids both methods, MLMC2 and MLMC4,
exhibit similar convergence but MLMC4 outperforms MLMC2 when the problem is well resolved.

Now we compare the computational cost required to achieve the same accuracy e for the MLMC2 and
MLMC4 methods. Fig. [6]shows the number of MLMC levels and samples required to achieve different accuracy
levels. The left-side plot shows results for the easy test case (A = 0.2 and 02 = 1) from Fig. We can see
that the number of samples on the coarsest grid ho = 1/8 is almost the same, as V[Qp,]|(MC2) =~ V[Qp,](MCA4).
Further, we observe that the number of samples for MLMC4 decays more rapidly with the increasing grid size
and converges to € on a much coarser grid compared to MLMC2. The cost to compute one sample for both
methods grows at the same rate in 1D, i.e. 42 ~ ™) thus, making the fourth-order scheme more efficient.
The right-side plot shows the result for the harder test case (A = 0.01 and 0% = 3) from Fig. |5l We start with
ho = 1/64 in order to see some benefit from the MLMC method. The gain from the MLMC4 method only
becomes evident from finer grids onward. Both plots follow a similar trend as their respective variance plots.
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Fig. 6: Plot showing the number of samples and grid levels required to achieve a RMSE of ¢ using MLMC2 and MLMC4 methods.
Left plot shows the result for the case in Fig. with ho = 1/8. Right plot shows the result for the case in Fig. with ho = 1/64.

7 Conclusion

We have outlined a strategy for the construction of fourth-order MLMC-FV methods for uncertainty quantifica-
tion of subsurface flow problems. Our results indicate that the MLMC convergence rates for smooth coefficient
fields can be improved by a factor of 2 using these high-order schemes. Even for standard Monte Carlo meth-
ods, the size of computational grids can be reduced significantly by using a fourth-order method instead of the
second-order discretization. Our numerical results suggest that the high-order method also performs very well
for small correlation lengths and high variance scenarios.
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