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Abstract. A combination of block-Jacobi and deflation preconditioning is used to solve a high-order discontinuous
element-based collocation discretization of the Schur complement of the Poisson-Neumann system as arises in the
operator splitting of the incompressible Navier-Stokes equations. The ill-posedness of the Poisson-Neumann system
manifests as an inconsistency of the Schur complement problem, but it is shown that this can be accounted for
with appropriate projections out of the null space of the Schur complement matrix without affecting the accuracy
of the solution. The block-Jacobi preconditioner, combined with deflation, is shown to yield GMRES convergence
independent of the polynomial order of expansion within an element. Finally, while the number of GMRES iterations
does grow as the element size is reduced (e.g. h-refinement), the dependence is very mild; the number of GMRES
iterations roughly doubles as the element size is divided by a factor of six. In light of these numerical results, the
deflated Schur complement approach seems practicable, especially for high-order methods given its convergence
independent of polynomial order.

1. Introduction

1.1. Background. Domain decomposition methods have been recently applied to high-order, discon-
tinuous, discretizations of elliptic problems with good success [1, 2, 3, 4, 5]. These methods aim to build
preconditioning strategies for iterative Krylov-type solvers to obtain an accurate solution whose convergence
is independent of the parameters of the grid. These approaches have largely focused on the widely-used
discontinuous Galerkin class of numerical methods, and many leverage the symmetric positive-definite nature
of the DG discretization.

Analogous to the DG class of discretization methods, the Spectral Multidomain Penalty Method (SMPM)
is a high-order discontinuous variant of the spectral element method that uses spectral differentiation matrices
to compute derivatives [6]. Because spectral differentiation matrices are themselves unsymmetric [7] the
operator matrices resulting from SMPM are unsymmetric and not self-adjoint. Nevertheless, the SMPM
discretization has been used to solve complex, large-scale, environmental fluid mechanics problems on hundreds
of processors and with hundreds of millions of unknowns [8, 9, 10].

1.2. Spectral multi-domain penalty method. In this work, we describe a method for solving the
2D Poisson-Neumann system that arises within the time-splitting of the 2D incompressible Navier-Stokes
equations [11], and is given on a domain 2 C R? as

V2u=fon§
(1) n-Vu = g on .
1 is discretized into an m,, X m,, cartesian quadrilateral element grid with elements §;;, where ¢ = {1,...,m,}

and j = {1,...,m;}. Within each element is a 2D Guass-Lobatto-Legendre (GLL) grid with n GLL points
per direction for a total of n? grid points per element. Since the discretization is discontinuous, function
values are allowed to differ along the 2n grid points on the boundary of each pair of elements, and thus the
full grid has a total of r = n*m,m,, grid points.

Now we define the SMPM element matrices and inter-element continuity conditions. Let Lu = f represent
the discrete Poisson-Neumann system on  C R? a domain discretized into an m, x m,, element mesh with
each element V; smoothly and invertibly mapped from the master element [—1, 1] X [—1,1]. On each element a
two-dimensional Gauss-Lobatto-Legendre (GLL) grid with n points in each direction is constructed and used
to evaluate the Lagrange interpolant basis and their derivatives by way of spectral differentiation matrices|7].
Thus each element contains n? grid points. If V; and V; share the n GLL points along one of their four
boundaries, then each element owns a copy of those n GLL nodes in order maintain the discontinuous nature
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F1GURE 1. A depiction of the logical arrangement of a 2 x 2 element spectral multi-domain
penalty method (SMPM) grid with 10 x 10 Gauss-Lobatto-Legendre points in each element
denoted Vj for j = 1,2, 3,4. The inter-element continuity fluxes are represented with R;;
with i # j.

of this method. Thus as a matrix, L € R"*" is of dimension r = ngmwmy, where r denotes the total number
of nodes in the grid €.

In the SMPM the weak inter-element continuity condition is of Robin type, and is enforced by the flux
R;j : 0V; — 0V; from element V; into V; for V;, V; with an adjacent boundary 0V; N 0V; consisting of n
grid points. R;; is defined as

(2) Rij=1I+;-V

where 7; : 9V; — R? is the outward pointing normal vector of OV; and I is the identity operator. A depiction
of a 2 x 2 element grid with the inter-element fluxes is shown in Fig. 1, in which the elements V7, V5, V3, Vy
have been separated to emphasize the discontinuous nature of the SMPM.

The physical boundary conditions are Neumann, and are given on dV; N 0N} as n; - V where n; is again
the outward pointing normal vector. Given a function u, on an element V; the residual in the spectral multi
domain penalty method is given by the sum of the Laplacian, the inter-element continuity mismatch, and the
boundary condition mismatch as

(3) Liu; = Vu; + 77 | Riu; — Z Rij“j‘avimavj + Tif; - Vui‘a‘/imag = fi + 7ig:-
JEN(3)

Here, g; is the boundary value of the Neumann boundary condition restricted to element V;, and N (%) is the
index set of elements adjacent to V;. The inter-element continuity, external boundary conditions, and the
PDE are all satisfied weakly, since the residual is the sum of these three components. The penalty parameter
T; represents the degree to which the inter-element continuity and boundary conditions are weighted in the
residual relative to the PDE, and the optimal choice of 7; is determined by stability criteria for hyperbolic
problems[12, 6], and a heuristic for the Poisson problem [11].

1.3. Construction of the Schur complement problem. As shown in Figure 2 the domain  is
discretized with a collection of elements Vj, each invertibly mapped from the master element [—1,1] x [—1,1].
(2 is decomposed into mgm, many sub-domains §);, with each sub-domain corresponding to a single element
in the mesh. Since the SMPM is a high-order method, each element represents large, local, and dense linear
algebraic operations. Thus, it makes sense from a domain decomposition perspective for the elements and
sub-domains to coincide.

Along each of the (m, — 1)(m,, — 1) interfaces between the sub-domains/elements are 2n GLL nodes
(n nodes on either side of each interface). Denote as k the number of interfacial nodes in the domain
decomposition, and this set of k interface nodes as I'. The discrete Poisson operator L (Eq. 3) is decomposed
into a local term and an inter-subdomain flux term which is used to construct the Schur problem. This
operator decomposition comprises three operators which are defined below.
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First, denote as F : I' — () the inclusion map that maps from the interfacial grid I" to 2. As a matrix,
E € R™* and is composed of zeros and ones, E7 is the restriction from the full grid to the interface grid T,
and ETE = I € R*** the identity matrix. Naturally EET is not an identity matrix.

Second, define an operator B : {2 — I that consists of the inter-subdomain Robin boundary fluxes. B
represents all of the the inter-element fluxes R;;. As a matrix, B € RF*7 since it computes I + 7 - V within
a subdomain using spectral differentiation matrices and assigns it to the interface of its neighbor.

Finally, define the operator A :  — 2, which represents the part of L that is entirely local to one
subdomain. A consists of the Laplacian part of L, the boundary condition mismatch, and the R;; terms in
Eq. (3). Since A is entirely local to each subdomain, as a matrix A € R"*" is block-diagonal. A represents
mgm, decoupled homogenous Poisson-Robin boundary value problems, and as such is invertible and block
diagonal.

These three operators are defined so that their combination yields the SMPM Poisson-Neumann operator

(4) Lu=Au+ EBu = f.

Notice that the action of E'B couples the subdomains only weakly since its action is combined with A in
the residual (A + EB)u = f. This weak enforcement of inter-subdomain continuity in the SMPM allows
for decoupling the subdomains by decoupling the action of B from that of A. To accomplish this, we seek
a vector v € R¥ on the interfacial nodes, ; 99, such that the solution to A;u; = f; — Ev; on each
subdomain also solves Lu = f. By writing

(5) Au = f — EBu

it is clear that v = Bu, the image of the solution under the inter-subdomain flux operator. Because B is a
contraction (mapping from the full grid to the interfacial grid), finding the image Bu is easier than finding u
itself; its value is given by the solution to the system

© 5 2] =[e)

As is evident, any [u,v]T that solves this system also solves Lu = f, and satisfies v = Bu; this system
represents splitting the range of A and B in obtaining a solution of L. Taking one step of block Gaussian
elimination of A in this matrix to result in the upper triangular system

(7) I ATE u | A7Lf

0 —I—-BA'E v | | —BA7Yf |’
we then obtain v as the solution to the following system,
(8) (I+BA'E)yv=BA™'f,

which represents the Schur complement system of A in Eq. (6). A back-substitution of v into Eq. (7),
(9) u:Ail(f_Ev)a

results in w the solution of Lu = f. Because the SMPM is a discontinuous element discretization, A is block
diagonal and invertible, and so all divisions of A are easily parallelized; the expensive part of the above is
obtaining the solution of the Schur complement system. In the rest of this paper, the focus is on efficiently
obtaining this solution.

1.4. Inconsistency of the Poisson-Neumann system. Prior to obtaining the solution to Schur
complement system, there remains the important point of dealing with the rank-deficiency of the Poisson-
Neumann operator L. The Poisson-Neumann equation is ill-posed in the continuous sense, and so the SMPM
operator L is rank-deficient and has non-trivial left and right null spaces of dimension one. In symmetric
discretizations, the kernel vector is the constant vector, but since L is unsymmetric its left and right null
spaces are different and only the right null space is constant vector. To ensure consistency and solvability the
right-hand-side vector f is projected out of the left null space of L [13] and instead of Lu = f, the regularized
system solved is

(10) Lu=f
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where f = f — urul f is f projected onto the range space of L and u € R" is the unique vector with
unit norm that satisfies HUEL’ ’ 5 = 0. The solution u then is only known up to an indeterminant additive
constant vector. The rank deficiency of L is inherited by the Schur complement system, and thus another
regularization is required to project the Schur right hand side bg = BA™! f out of the left null space of the
Schur complement system. Thus the Schur complement system,

(11) Sl‘s = bs,
is modified to read
(12) Srg =bg — usugbs.

To summarize, the method for obtaining the solution v to Lu = f is shown in Algorithm 1. The statement
GMRES(S, bg) in Step 4 is meant to represent the solution of the linear system Szg = bg with the Generalized
Minimum Residual Method (GMRES).

Algorithm 1 Schur complement method with null space projections.

Input: f,up,us
Output: u

cf— f—upulf

bg := BA™Lf

bS «— bS — us(ugbs)
rs = GMRES(S, bs)
U A_l(f — Exs)

2. Deflated Schur complement method

FIGURE 2. A sample domain with m, = 4 and m, = 4 elements in = and y respectively. The
elements have been separated to emphasize the discontinuous nature of the discretization.
The interfaces that together form the Schur grid I' are highlighted in color, with the colors
signifying the blocks of the block-Jacobi preconditioner. Interior blocks of the block-Jacobi
preconditioner consist of eight interfaces; exterior blocks consist of six or four interfaces.

The iterative solution of the Schur complement system with GMRES requires an efficient preconditioner.
Many preconditioning techniques for the Schur complement system have been proposed [14, 15, 16, 17] with
most relying on two-level preconditioners: a local preconditioner that can be applied in parallel and a coarse
global preconditioner to speed across-grid communication of components of the residual. An example is
the two-level additive-Schwarz preconditioner in which overlapping block-diagonal components are solved in
parallel, augmented with a coarse grid correction to communicate information across the grid [18, 11]). In
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this work, a non-overlapping block-diagonal /block-Jacobi preconditioner is used, augmented with deflation,
to achieve Krylov subspace convergence rates independent of the polynomial order, p, and weakly dependent
on the element size, h.

First, note that for sparse matrices with non-zeros clustered around the diagonal, computing the inverse of
blocks along the diagonal separately can be a useful preconditioning technique. Block-Jacobi preconditioners
have been shown to be effective for the Schur complement of elliptic operators [19], especially when combined
with coarsened-grid preconditioners [20, 21, 22]. Here, for preconditioning the Schur matrix, S, a block-Jacobi
preconditioner is assembled in which a single block represents the coupling between the four interfaces
bounding one element, and their corresponding interfaces in neighboring elements (for a total of 8n grid
points in one block). The elements in the m, x m, grid are divided in a checkerboard pattern as can be seen
in Fig. 2, in which adjacent nodes are grouped together in blocks by color. The colors correspond to the
blocks of the block diagonal preconditioner for the Schur complement matrix. Denoting the block-Jacobi
preconditioner matrix as M, the preconditioned Schur complement system that is solved with GMRES is

(13) SM™'zly = bg
and the solution is obtained by a final division by M
(14) rg = M 'k

Since M is explicitly block-diagonal (i.e. any non-zeros of S coupling the blocks of M are ignored in the
factorization of M), divisions by M can be computed efficiently in parallel. The algorithmic summary of the
preconditioned Schur complement method is given in Algorithm 2.

Algorithm 2 Preconditioned Schur complement method

Input: b,ur,us,uc

Output: =
1: b—b— uLugb
2: bg := BA 1
3: bg +— bgs — us(ugbs)
4: ¥ ;== GMRES(SM~1,bs)
5. ¢ +— M1z
6: v +— AY(b— Ex)

Working in tandem with other preconditioners, deflation methods aim to accelerate the convergence of
Krylov methods by eliminating (or “deflating”) components of the residual within a chosen subspace. The
subspace is usually chosen to be a span of approximate eigenvectors of the operator corresponding to slowly
converging eigenvalues. Thus, the problematic eigenvalues are solved directly using a coarsened version of
the operator, and the remaining components of the residual are eliminated by a Krylov solver. Here, to
augment the block-Jacobi preconditioner described in the previous section, a deflation method is used as the
coarse-grid correction method, following the procedure in Ref. [23]. The deflation vectors are chosen to be a
set of d column vectors Z € R¥*? where d < k, and k = dim(S). These deflation vectors are chosen to be
discrete indicator vectors, equal to 1 on each pair of interfaces between two elements and zero everywhere
else. Denoting as I'; an interface between two elements, the i-th entry in the j-th deflation vector is given by

(15) eo={ o Lhmer |

thus each vector is active on one pair of interfaces in the Schur grid. The matrix of these vectors Z =
[21, 29, - , zq] defines a coarse version of the Schur problem, C' = Z7SZ € R?*“ and two projections

(16) P=I1-Szc~'z"

(17) Q=I1-2zC"'7"8

each of size R¥**. As a matrix Z7 € R?** is a contraction operator that maps grid functions on the Schur

grid to the coarse grid, and its transpose is a prolongation operator. The intuition behind the projections P

and @ is that they project out of the subspace on which ZC~'Z7 is a good approximation of the left (in
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the case of @) or right (in the case of P) inverse of S. Thus the projections map onto the complement of
the subspace on which the coarse matrix C' approximates the Schur matrix S well. Finally, note that all
applications of C~! require their own regularization since C' inherits rank deficiency from S; denote as u¢c the
left null space of C in the following. Deflation proceeds by noting that the solution of the Schur complement
problem Szg = bg can be decomposed into

(18) rs = (I —-Q)xs+ Qus.

Then, the first term is just ZC\(Z7 — uculZ")(bs — usulbs), which can be computed directly since C
is small. The second term is obtained by way of GMRES on the deflated and right-preconditioned system
PSM~'zs = P(bs — usukbg) and then post-multiplying by @, finally assembling the solution as

rs — ZC\(ZT — ucugZT)(bs — usugbs)
(19) + QM 'GMRES(PSM !, P(bs — ususbs)).

Because P projects out of the coarse space, the GMRES solution of PSM ~'zg = P(bs — usulbs) minimizes
only the component of the residual that cannot be well-approximated by the coarse solution. This formulation
of deflation-augmented right-preconditioning is an extension of the work in Ref. [23] to a rank-deficient
matrix. For completeness, Algorithm 3 depicts the algorithmic summary of the deflation method in which
the notation GMRES(A, b) is intended to represent the solution of a linear system Az = b with GMRES.

Algorithm 3 Deflated and preconditioned Schur complement method

Input: b,ur,us,uc
Output: z
cb+—b—urulb

bs ;== BA~'b

bg «— bg — us(ugbg)

x1 := GMRES(PSM 1, Pbg)
€Tl < QM71$1

T = ZTbS — ucugZTbS
To < ZC\{EQ

T =1+ T2

r+— A Yb— Ex)

3. Performance

To study the performance of the deflated Schur complement method, the domain Q = [0, L] x [0, L,]
is discretized with n =5 (4th order polynomials), m, = 4 and m, = 4. On this grid the following Poisson
problem was solved,

V2u = cos(A\rx/Ly) cos(Ary/Ly)
(20) n-Vu=0,
with A € N, which has the analytic solution

L. L
(21) ug(z,y) = — 2)\271_3 cos(Amz/Ly) cos(Amy/Ly).

Besides evaluating the performance of the deflated Schur complement method with respect to GMRES
convergence, comparing against an analytic solution makes it clear whether the discretization is exhibiting
spectral convergence with respect to a known solution. In the following subsections, we evaluate the GMRES
convergence properties of the deflated Schur complement method as the initial grid is refined in both p, the
polynomial order, and h, the element edge size (L,/m,). The error e is computed as the L? norm difference
of the numerical solution, u, against the analytic solution, u,,

(22) e = l[ug —ull,.
In all of the examples below, A = 7.
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FIGURE 3. Left: The error decay as the initial grid with p = m, = m, = 4 is refined in
both i and p. Notice the decay of error is polynomial in A but exponential in p. Middle: h
refinement of the initial grid in which p = m, = m,, = 4, with the analytic L? error plotted
against the number of GMRES iterations required to achieve a relative tolerance of 1071,
h is gradually reduced as m, and m, are increased from 4 to 32. Right: p refinement of
the initial grid in which p = m, = m, = 4, with the analytic L? error plotted against the
number of GMRES iterations required to achieve a relative tolerance of 10719, p is gradually
increased from 4 to 24.

3.1. Spectral convergence. First, note that as shown in Fig. 3(a),the Schur complement approach to
solving the SMPM discretization converges to the true solution as a polynomial of & and as an exponential of
p. This is made clear by the relatively gradual decay of the error in h as compared with that in p, and is a
hallmark of high-order methods like the spectral multi domain penalty method [11]. For the smallest values
of h and largest values of p the error does not decay monotonically to zero; this may be an artifact of the
ill-conditioning of the spectral differentiation matrices, which only worsens as p grows and h decreases.

3.2. h-refinement. Having established that the Schur complement method converges to the analytic
solution at a rate equal to a polynomial of h, we now examine how the convergence of GMRES is affected as
h is refined. Starting again with a grid p = m, = m, = 4 on a domain Q = [0, L,] x [0, L, ], the number of
elements m, and m,, is iteratively grown, yielding a refinement in h = L, /m,. The results of this refinement
study are shown in Fig. 3(b) for values of m,, m, = {4,8,12,16, 20,24, 28,32}. The Schur complement is
assembled exactly as before, with decomposition along all internal element boundaries, and so the dimension
of the Schur complement problem grows as O(mgm,,).

The GMRES algorithm is employed to reduce the residual to a relative tolerance of 10710, at which
point the rest of the Schur complement algorithm is employed to reconstruct the full solution (c.f. Step 5
in Algorithm 1). The number of GMRES iterations required to achieve this tolerance is depicted along the
horizontal axis in Fig. 3(b). In the vertical axis of the same figure is shown the analytic error ||up — ||y
in the resulting solution. In all cases, the number of GMRES iterations grows as h is refined. This is first
because the conditioning of the element stiffness matrices degrades as the element size goes to zero [7], and
second because the dimension of the Schur complement matrix grows as m, and m, grow.

However, deflating the Schur complement in the GMRES solver tempers the growth of the number of
iterations as h is refined. At the finest grid, in which m, = m, = 32, the unpreconditioned Schur complement
method takes nearly 110 Krylov iterations to converge; the deflated Schur complement method takes just over
30. Furthermore, asymptotically, the number of iterations required to obtain a solution grows much more
mildly in the deflated Schur complement approach. Thus, it is observed that deflation, while not eliminating
the dependence on h, strongly mitigates the growth in GMRES iterations as h is reduced. Finally, note that
all of the Schur complement approaches shown in Fig. 3(b) are very efficient. For example, the number of
grid points 7 in the systems solved in Fig. 3(b) is r = anImy. Since n = 5 and m, and m, grow to be 32
each, the total number of grid points grows to over 25,000, which is greater by several orders of magnitude
than the number of GMRES iterations required to obtain a solution that is correct to ten decimal places.
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3.3. p-refinement. The results of a refinement study in p are shown in Fig. 3(c) for values of p =
{4,6,8,10,12,14}, and m, = m, = 4. As p is increased, the size of the Schur complement matrix grows
as p?, and its conditioning properties worsen due to the AP conditioning of the spectral differentiation
matrices embedded within it [7]. Nevertheless, it is observed in Fig. 3(c) that the convergence properties of
GMRES are essentially unaffected by p-refinement when the block-diagonal preconditioner is applied to the
Schur complement matrix. Even the unpreconditioned Schur complement method only shows mild growth in
GMRES iteration count as p grows. While it may seem that this p-independent convergence may depend on
smoothness of the right-hand-side, this result has been confirmed for random white-noise right-hand-side
vectors as well [24]. It appears that GMRES convergence of the preconditioned Schur complement method is
robust to refinements in p, which is particularly useful given that the error in the solution decays exponentially
with p. Finally, note again that the all variants of the Schur complement method shown in Fig. 3(c) are
exceedingly efficient. Since the grid grows as p?, for the largest value of p, the number of grid points is
r = 3600; yet, GMRES converges to ten digits of accuracy in less than 40 iterations in all cases, and in under
15 iterations in the preconditioned/deflated cases.

4. Conclusion

4.1. Summary. A preconditioned Schur complement technique for solving the spectral multi-domain
penalty method discretization of the Poisson-Neumann system was developed. The preconditioning method
relies on a local block-Jacobi preconditioner and subspace deflation to solve a coarse component of the
residual. By using both a local (block-Jacobi) and global (deflation) preconditioner, convergence of GMRES
only mildly dependent on the grid resolution, h, and independent of polynomial order, p, is possible. Since
the error in the SMPM decays exponentially with p, achieving GMRES convergence independent of p is very
useful in practice, as it allows for high-accuracy solutions by increasing p at minimal additional cost.

4.2. Three-dimensional problems. A natural and useful extension of this work is to generalize to
three-dimensional problems. We have shown already that if a periodic third dimension can be assumed, a
Schur factorization can be used to efficiently extend these preconditioned Schur methods to three-dimensional
problems [24]. Denoting as 2 C R? a two-dimensional domain, denote as ' = 2 x [0, L,] C R? the domain
on which the three-dimensional Poisson equation is to be solved. Assume that the boundary conditions in
the third dimension y € [0,1,] are periodic, implying a periodic solution u(z,y = 0,z) = u(x,y = Ly, ), and
write the Poisson problem as

V2u = f on
n-Vu=gondQx[0,L,],
(23) u(z,0,2) = u(z, Ly, z) on Q\OQ x {0, L,}.

This type of extension from two to three dimensions facilitates a Fourier discretization in the y dimension,
and has been used previously [25, 26] in the context of solving the Navier-Stokes equations on problems and
domains amenable to transverse periodicity of the solution.

4.3. Construction of the three-dimensional Schur problems. Starting with the problem in
Eq.(23), force periodicity of the solution u(z,y,z) in y by taking the expansion of v in the Fourier ba-
sis,

my /2—1

(24) u(z,y,z) = Z ﬁj(m,z)eikfy7
3=0

where k; = 2mj/h, is the transverse wavenumber, h, = L, /m,, spacing of the uniform grid in the transverse
direction, m,, the number of grid points in the transverse direction, and 4;(x, z) € C the Fourier coefficients.
Substituting this Fourier expansion into Eq. (23), for each k; wavenumber a two-dimensional Helmholtz
equation in z and z is obtained,

(25) V2i;(z, 2) — k;?-ﬂj (x,2) = fi(z, 2),
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where 4, f; are the k;-th wavenumber components of the Fourier transforms of u, f along the y direction,

(26) ’EL]‘ = ’lAl,(iC,kj,Z)

(27) fj :f(kajﬁz)a

and a(z, ky, z) = Fyu(z,y, z), f(x7ky7z) = Fyf(x,y,z), where F, is the discrete Fourier transform in y.
Write the discrete version of Eq. (25) for the j-th wavenumber as

(28) (L— KDy = f;

where now 4, fj € C* and L is the SMPM Poisson-Neumann operator as defined in Eq. (3). Using the
operator decomposition of L = A + EB, write

(29) (A - k3)i; + EBay = f;.

This is a Helmholtz equation for wavenumber k; with block-diagonal component A — k:?-[ and off-diagonal
component EB. Denoting the shifted block-diagonal matrix A(k;) = A — kJQ-I , the Schur complement problem
for wavenumber k; is given by

(30) S(k;) =1+ BA(k;) 'E.

To assemble and solve this Schur complement system for each wavenumber k;, it is necessary to solve linear
systems in A(k;). To do this efficiently, we appeal to the Schur factorization of A(0),

(31) A(0) = UTU*

where U is block unitary and T is block upper triangular. Since A(0) is a block-diagonal matrix, its Schur
factorization is also block-diagonal and thus can be computed in parallel and stored efficiently. Critically, the
Schur factorization of A(0) yields the Schur factorization of all operators A(k;) since

(32) A(k;) = U(T — k;1)U*.

Thus, by computing and storing U and T, divisions by A(k;) for all j can be solved in quadratic time. Namely,
divisions such as x = A(k;)\b are computable as

(33) z=U(T - k;)"'U"D,

where (T — k31)~! is a block back-substitution and multiplications by U and U* are block matrix-vector
multiplications. From the perspective of domain decomposition, this makes the Schur factorization a powerful
tool. Its use yields sparse factorizations of A(k;) for all k; while only requiring the Schur factorization
and storage of A(0). Thus, the Schur factorization provides a tractable way of extending the deflated
Schur complement algorithm into a third periodic dimension, and has been already shown to work for 1D
decompositions of problems on long domains [24].

References

[1] P.F. Antonietti and P. Houston, “A Class of Domain Decomposition Preconditioners for hp-Discontinuous
Galerkin Finite Element Methods,” Journal of Scientific Computing, vol. 46, pp. 124-149, 2010.

[2] P. F. Antonietti and B. Ayuso, “Schwarz domain decomposition preconditioners for discontinuous
Galerkin approximations of elliptic problems: non-overlapping case,” ESAIM: Mathematical modeling
and numerical analysis, vol. 41, no. 1, 2007.

[3] K. Brix, M. Campos Pinto, C. Canuto, and W. Dahmen, “Multilevel preconditioning of discontinuous
Galerkin spectral element methods. Part I: geometrically conforming meshes,” IMA Journal of Numerical
Analysis, vol. 35, pp. 14871532, 2015.

[4] C. Canuto, L. F. Pavarino, and a. B. Pieri, “BDDC preconditioners for continuous and discontinuous
Galerkin methods using spectral/hp elements with variable local polynomial degree,” IMA Journal of
Numerical Analysis, vol. 34, pp. 879-903, 2013.

[5] L. N. Olson, J. S. Hesthaven, and L. C. Wilcox, “Developments in Overlapping Schwarz Preconditioning
of High-Order Nodal Discontinuous Galerkin Discretizations,” in Domain Decomposition Methods in
Science and Engineering X VI, no. November 2004, pp. 1-8, 2004.

9



[6]

J. S. Hesthaven, “A Stable Penalty Method for the Compressible Navier—Stokes Equations: III. Multi-
dimensional Domain Decomposition Schemes,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp- 62-93, 1998.

B. Costa and W. S. Don, “On the computation of high order pseudospectral derivatives,” Applied
Numerical Mathematics, vol. 33, pp. 151-159, 2000.

P. J. Diamessis and L. G. Redekopp, “Numerical Investigation of Solitary Internal Wave-Induced Global
Instability in Shallow Water Benthic Boundary Layers,” Journal of Physical Oceanography, vol. 36,
pp- 784-812, 2006.

A. M. Abdilghanie and P. J. Diamessis, “The internal gravity wave field emitted by a stably stratified
turbulent wake,” Journal of Fluid Mechanics, vol. 720, pp. 104-139, 2013.

P. J. Diamessis, G. R. Spedding, and J. A. Domaradzki, “Similarity scaling and vorticity structure in
high-Reynolds-number stably stratified turbulent wakes,” Journal of Fluid Mechanics, vol. 671, pp. 52-95,
2011.

J. Escobar-Vargas, P. Diamessis, and T. Sakai, “A spectral quadrilateral multidomain penalty method
model for high Reynolds number incompressible stratified flows,” International Journal for Numerical
Methods in Fluids, vol. 75, no. March, pp. 403-425, 2014.

J. S. Hesthaven, “A Stable Penalty Method for the Compressible Navier—Stokes Equations: II. One-
Dimensional Domain Decomposition Schemes,” SIAM Journal on Scientific Computing, vol. 18, no. 3,
pp. 658-685, 1997.

C. Pozrikidis, “A Note on the Regularization of the Discrete PoissonNeumann Problem,” Journal of
Computational Physics, vol. 172, pp. 917-923, 2001.

I. Yamazaki and X. S. Li, “On techniques to improve robustness and scalability of the Schur complement
method,” in Proceedings of the 9th International VECPAR Conference, no. 2, 2010.

J.-M. Cros, “A preconditioner for the Schur complement domain decomposition method,” 14th Interna-
tional Conference on Domain Decomposition Methods, pp. 373-380, 2002.

L. M. Carvalho, L. Giraud, and P. Le Tallec, “Algebraic Two-Level Preconditioners for the Schur
Complement Method,” SIAM Journal on Scientific Computing, vol. 22, pp. 1987-2005, 2001.

I. Yamazaki, X. S. Li, and E. G. Ng, “Preconditioning Schur complement systems of highly-indefinite
linear systems for a parallel hybrid solver,” Numerical Mathematics, vol. 3, pp. 352-366, 2010.

P. Fischer, “An overlapping Schwarz method for spectral element solution of the incompressible Navier-
Stokes equations,” Journal of Computational Physics, pp. 1-35, 1997.

W. Couzy and M. O. Deville, “A Fast Schur Complement Method for the Spectral Element Discretization
of the Incompressible Navier-Stokes Equations,” J. Comput. Phys., vol. 116, pp. 135-142, 1995.

M. Manna, A. Vacca, and M. O. Deville, “Preconditioned spectral multi-domain discretization of the
incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 201, pp. 204-223, 2004.
L. F. Pavarino and T. Warburton, “Overlapping Schwarz Methods for Unstructured Spectral Elements,”
Journal of Computational Physics, vol. 160, pp. 298-317, 2000.

R. Pasquetti, F. Rapetti, L. Pavarino, and E. Zampieri, “Neumann-Neumann-Schur complement methods
for Fekete spectral elements,” Journal of Engineering Mathematics, vol. 56, pp. 323-335, 2006.

Y. a. Erlangga and R. Nabben, “Deflation and Balancing Preconditioners for Krylov Subspace Methods
Applied to Nonsymmetric Matrices,” SIAM Journal on Matriz Analysis and Applications, vol. 30,
pp. 684-699, 2008.

S. M. Joshi, G. N. Thomsen, and P. J. Diamessis, “Deflation-accelerated preconditioning of the Poisson-
Neumann Schur problem on long domains with a high-order discontinuous element-based collocation
method,” arziv: hitp://arziv.org/abs/1512.01756, 2016.

P. J. Diamessis, J. A. Domaradzki, and J. S. Hesthaven, “A spectral multidomain penalty method model
for the simulation of high Reynolds number localized incompressible stratified turbulence,” Journal of
Computational Physics, vol. 202, pp. 298-322, 2005.

G. E. Karniadakis, “Spectral element simulations of laminar and turbulent flows in complex geometries,”
Applied Numerical Mathematics, vol. 6, pp. 85-105, 1989.

10



