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Abstract

Two new approaches for the use of factorized sparse approximate inverse (FSAI) preconditioners are
presented. The first one, BTFSAI, is based on a block tridiagonal factorization strategy, while the second
one, DDFSAI, is built by reordering the matrix graph according to a multilevel k-way partitioning method
followed by a bandwidth minimizing algorithm. These preconditioners are tested for the solution of SPD
problems arising from different engineering applications. The results are evaluated in terms of performance,
scalability and robustness of the preconditioner, showing that both strategies are able to converge in a
smaller number of iterations and total time in comparison to the native FSAI.

I. Introduction

The solution of a large size sparse linear system of equations

Ax = b, (1)

where A is a SPD matrix, requires the use of iterative methods based on Krylov subspaces. It is
well known, however, that the use of these methods alone generally provide poor convergence.
This can be remedied by using their preconditioned form, which requires the definition of a
preconditioner, i.e., a linear transformation that approximates the action of A−1.

There are a number of ways to build and apply a preconditioner. Among the algebraic
algorithms, the most popular categories are the incomplete factorizations, multigrid methods
and sparse approximate inverses [Benzi, 2002; Ferronato, 2012]. Regarding its application, three
possibilities may arise, namely the left, right and split preconditioning techniques, which have par-
ticular advantages between one another. Additionally, different preconditioners can be composed
to form new ones, such as using domain decomposition and incomplete factorizations together or
nested Krylov methods [Chan and Mathew, 1994; Mcinnes et al., 2014].

With respect to incomplete factorizations, sparse approximate inverses have the advantage of
being more stable. Particularly, the factorized version of this algorithm introduces the improvement
of preserving the definiteness of a given problem. Another important difference is that their
application only requires a sparse matrix by vector product instead of triangular solves. This last
feature is very attractive from the point of view of a parallel implementation, since that type of
mathematical operation involves a high level of concurrency.
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A necessary step for building a factorized sparse approximate inverse, FSAI, consists in
selecting the sparsity pattern. Two main alternatives are available: the static and the dynamic
strategy. In the former, an a priori pattern is selected upon a sparsified format of a low power of
the original matrix, while in the latter, a certain number of the most significant entries minimizing
the Kaporin number of the preconditioned matrix for each row are selected [Grote and Huckle,
1997; Huckle, 2003; Janna and Ferronato, 2011]. In general, the last approach is more effective than
the first one as the selected entries are optimal.

In this paper, two new preconditioners built upon the dynamic FSAI algorithm are considered:
the BTFSAI - Block Tridiagonal Factorized Sparse Approximate Inverse - and the DDFSAI - Domain
Decomposition Factorized Sparse Approximate Inverse. The first one is based on the successive
application of the FSAI algorithm on the matrix reordered in a block tridiagonal structure and
the second one is based on the combination of a two level domain decomposition approach
and the FSAI preconditioner, which is used for computing the approximate inverse of the inner
submatrices and the Schur complement.

This work is organized as follows: in the next section, the FSAI algorithm is reviewed and
the theory underlying the proposed preconditioners is presented. In the results section, these
preconditioners are used to solve a set of linear systems representing real engineering problems.
Here, an analysis of their performance and parallel efficiency is done. In the end, the conclusions
of this work are stated.

II. FSAI Preconditioning

The FSAI preconditioner M−1 of a symmetric positive definite matrix A is given by

M−1 = FTF ≈ A−1, (2)

where the factor F is calculated by minimizing the Frobenius norm

||I− FL||F (3)

over the set of matrices which share the same lower triangular nonzero pattern S. In the same
equation, the matrix L is the exact lower Cholesky factor. Note that, although this matrix is used
in the equation (3), it is not required for the calculation of F. Indeed, setting to zero the derivative
of this equation with respect to the entries fij yields

[FA]ij =

{
0, if i 6= j
lii, if i = j.

(4)

Substituting the matrix F by F̃ = D−1F, where D = [diag(F)]−1/2, it is possible to state that[
F̃A
]

ij = δij, (5)

which is used to calculate the factor F̃ and finally the matrix F. This way, the diagonal entries of
the preconditioned matrix FAFT are equal to one.

A key factor which affects the performance of the FSAI preconditioner is the selection of the
sparsity pattern. A number of strategies are available for this task and one of the most promising
consists on the algorithm developed by Janna and Ferronato [2011] which is based on the row-wise
minimization of the Kaporin conditioning number. In this strategy, the density of F is controlled
by the following set of parameters:
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1. kmax: maximum number of steps for adding new entries.

2. ρF: number of entries added to the sparsity pattern in each step.

3. εF: stopping tolerance based on the relative reduction of the Kaporin number.

In the adaptive FSAI preconditioner, a diagonal pattern is assumed as initial guess. After that,
the gradient of the Kaporin number of the preconditioned matrix is computed row-wise and the
indices of the ρF largest entries of this vector are added to the previous sparsity pattern. For each
row, a linear system obtained from gathering the components of the full matrix is solved and the
result is used to build the corresponding row of F, until the relative reduction of the Kaporin
number falls below εF. This process can be repeated up to a kmax number of times. For more
details about this algorithm, the reader is referred to the paper by Janna et al. [2015].

I. Block Tridiagonal FSAI

In the Block Tridiagonal preconditioner - BTFSAI - the matrix A is first reordered by the reverse
Cuthill-McKee algorithm [Cuthill and McKee, 1969], with the aim to reduce its bandwidth, and
then it is divided into a block tridiagonal structure according to a given number of blocks. After
that, the block LDU decomposition of this new matrix is calculated where the inverses of the
diagonal blocks are approximated explicitly by the adaptive FSAI algorithm.

With this approach, the global matrix is subdivided into small blocks, that should be approxi-
mated with less effort. Though this method is intrinsically sequential, parallelism can be exploited
for each block by the use of the FSAI algorithm.

Calling Ai the SPD diagonal submatrix and Bi the upper diagonal submatrix of the i− th block,
the SPD matrix A can be written as:

A =


A1 B1
BT

1 A2 B2
. . . . . . . . .

BT
n−2 An−1 Bn−1

BT
n−1 An

 , (6)

while its block LDU decomposition reads

A =


I1

BT
1 S−1

1 I2
. . . . . .

BT
n−1S−1

n−1 In




S1
S2

. . .
Sn




I1 S−1
1 B1
I2 S−1

2 B2
. . . . . .

In

 (7)

where

Si = Ai − BT
i−1S−1

i−1Bi−1, i = 2 . . . n, (8)

is the i − th block Schur complement and S1 = A1, by definition. Let S−1
i = FT

i Fi be the
approximate inverse of the Schur complement computed by the adaptive FSAI algorithm and
let the matrix Hi be equal to the product FiBi, it follows that the Schur complement defined on
the equation (8) can be calculated recursively as Si = Ai −HT

i−1Hi−1. Using these relations, the
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approximate inverse of the matrix A as given in the equation (7) reads

A−1 ≈ M−1 =


FT

1 −FT
1 H1FT

2
FT

2 −FT
2 H2FT

3
. . . . . .

FT
n




F1
−F2HT

1 F1 F2
. . . . . .
−FnHT

n−1Fn−1 Fn

 . (9)

The procedure to build the BTFSAI preconditioner is summarized in the algorithm 1 and its
application to an arbitrary vector v is presented in the algorithm 2.

Algorithm 1 Construction of the BTFSAI preconditioner

1: procedure cptBTFSAI(A, n)
2: Compute A−1

1 ≈ FT
1 F1, the approximate inverse of A1

3: for i = 2, . . . , n do
4: Compute Hi−1 = Fi−1Bi−1
5: Compute Si = Ai −HT

i−1Hi−1

6: Compute S−1
i = FT

i Fi, the approximate inverse of the Schur complement
7: end for
8: end procedure

Algorithm 2 Calculation of u = M−1v

1: procedure applyBTFSAI(Fi,Hi,v)
2: w1 = Fv1
3: for i = 2, . . . , n do
4: wi = Fi

(
vi −HT

i−1wi−1
)

5: end for
6: un = FT

n wn
7: for i = n− 1, . . . , 1 do
8: ui = FT

i (wi −Hiui+1)
9: end for

10: end procedure

The main drawback of this approach is the need of computing n− 1 Schur complements along
with their FSAI approximations. While theoretically these matrices should be SPD, the use of
approximate inverses may cause the loss of this property. Indeed, for some matrices, we can have
indefinite Schur complements if the approximate inverses are not accurate enough. In this case,
the construction of the preconditioner should be restarted allowing for a larger number of nonzero
entries per row.

II. Domain Decomposition FSAI

Roughly speaking, domain decomposition refers to a number of techniques which solve a problem
defined on a large domain Ω via the solution of smaller problems defined over subdomains
Ωk, k = 1, . . . , n. Each problem can be solved independently and the solutions can be gathered to
build the outcome of the original problem. A survey work on domain decomposition methods is
provided by Chan and Mathew [1994]; Dolean et al. [2015].
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In the domain decomposition FSAI preconditioner - DDFSAI - the graph of the original matrix
is reordered according to the k-way partition algorithm implemented in the METIS software library
[Karypis and Kumar, 1998]. With this method, the number of edges connecting a subdomain to
the others is minimized, thus reducing the pieces of information that need to be communicated
among different blocks. At the same time, the size of subdomains is kept to be approximately of
the same order in favour of providing a good load balance among different threads, which are
going to work in one or possibly more blocks. After this, each independent block of the matrix is
reordered according to the reverse Cuthill-McKee algorithm in order to reduce its bandwidth.

Let Ã be the reordered matrix:

Ã =

[
A1 B1
BT

1 A2

]
=


(A1)1 (B1)1

(A1)2 (B1)2
. . .

...
(A1)n (B1)n(

BT
1
)

1

(
BT

1
)

2 . . .
(
BT

1
)

n A2

 , (10)

where the submatrices (A1)i represent the communications between the internal nodes of the
i− th subdomain for i = 1, 2, . . . , n; A2, the communications between interface nodes and (B1)i,
the coupling between the interface and internal nodes belonging to the i− th subdomain. The
block LDU decomposition of (10) is given by

Ã =

[
I1

BT
1 A−1

1 I2

] [
A1

S2

] [
I1 A−1

1 B1
I2

]
, (11)

thus, the exact inverse of Ã can be written as

Ã−1 =

[
I1 −A−1

1 B1
I2

] [
A−1

1
S−1

2

] [
I1

−BT
1 A−1

1 I2

]
. (12)

The computation of the inverses A−1
1 and S−1

2 is approximated by the adaptive FSAI algorithm,
giving rise to the following preconditioner for A:

M−1 =

[
I1 −FT

1 F1B1
I2

] [
FT

1 F1
FT

2 F2

] [
I1

−BT
1 FT

1 F1 I2

]
. (13)

Defining H1 = F1B1, the expression (13) can be rewritten as

M−1 =

[
FT

1 −FT
1 H1FT

2
FT

2

] [
F1

−F2HT
1 F1 F2

]
. (14)

The algorithm for constructing the DDFSAI preconditioner is almost the same as 1 restricted
to two blocks, with the only difference consisting in the initial ordering of the matrix, which in
the current case uses the METIS library besides of the reverse Cuthill-McKee ordering. The same
argument applies also to the preconditioner application that can be summarized according to the
algorithm 2 restricted to two blocks only.

III. Results

The analysis of the results is performed in two stages. In the first one, the impact of the DDFSAI
and BTFSAI configuration parameters on their performance is studied considering the solution
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of a 3D homogeneous Poisson problem. In the second stage, both computational performance
and parallel efficiency of the proposed preconditioners, considering an OpenMP implementation,
are evaluated for a set of SPD problems from the University of Florida Sparse Matrix Collection
[Davis and Hu, 2011]. The performance of the native FSAI algorithm as implemented in the
FSAIPACK package [Janna et al., 2015] is also shown with the purpose of comparison. In all test
cases, the preconditioned conjugate gradient method (PCG) is used as the linear solver; the right
hand side of the linear systems is calculated as the system matrix times the unitary vector and
the convergence is considered to be achieved when the relative residual is smaller than 10−9. The
density of a sparse approximate inverse preconditioner F is calculated as

µF =
nnz (F)
nnz (A)

, (15)

with nnz (G) the function returning the number of non-zeros of the matrix G. The computational
performance is examined through the total number of iterations needed for convergence nit and
the wall clock time needed for building the preconditioner Tp and solving the linear system Ts.
These data are analysed for the simulation carried out in serial using a local cluster equipped
with two Intel Xeon E5-2643 processors and 256 Gbytes of RAM memory. On the other hand, the
scalability tests were performed in a single node of the IBM Blue Gene/Q FERMI supercomputer
at the CINECA - Centre for High Performance Computing - which is equipped with a 16-core IBM
Power A2 processor at 1.6 GHz and 16 Gbytes of RAM memory with 42.6 Gbytes/s bandwidth.

I. Preconditioner Analysis

A comprehensive analysis of the preconditioners proposed in this work is performed considering
the solution of a 3D Poisson test case defined on a cube. This problem is solved by the finite
difference method by using a uniform grid containing 150 nodes in each direction yielding a SPD
matrix containing 3,375,000 rows and 23,490,000 non-zeros.

Initially, we find the optimal configuration for the native FSAI preconditioner, providing the
lowest total wall-clock time, and set this configuration as the reference one. The search for the
best setup of the preconditioner is accomplished by using the guidelines suggested in [Janna and
Ferronato, 2011]. The same input parameters are used for building also the BTFSAI and DDFSAI
preconditioners, with the only additional information being the number of blocks or partitions. In
order to see how this parameter affects the solution process, we show in the Figure 1 the number
of iterations needed for convergence and the times for building these preconditioners and solving
the linear systems considering a varying number of blocks between 50 and 400.

For the BTFSAI preconditioner, it is possible to note that the number of iterations needed for
convergence decreases with respect to the reference case up to 200 blocks, approximately, then it
starts to increase again. This behaviour is probably caused by the quality of the approximated
Schur complements, which decreases as the number of blocks gets higher. Considering the
DDFSAI preconditioner, we see that the number of iterations grows moderately with respect to
both FSAI and BTFSAI preconditioners, but remains approximately constant changing the number
of blocks, thus showing a very stable behaviour with n. In this problem, we see an increase in both
of the times for computing and applying the preconditioner if compared to the reference case,
however this 3D Poisson problem is so simple that a wall-clock time comparison is not significant.

II. Numerical Results

The performance and scalability of the preconditioners BTFSAI and DDFSAI are analysed consider-
ing a set of matrices representing different engineering applications, such as structural mechanics,

6



Copper Mountain Conference on Iterative Methods • March 2016

50 100 150 200 250 300
Number of blocks

0

100

200

300

400

Ite
ra

tio
ns

FSAI-CG
BTFSAI-CG
DDFSAI-CG

50 100 150 200 250 300
Number of blocks

0

20

40

60

80

100

120

140

Ti
m

e 
[s

]

FSAI-CG-precon
FSAI-CG-solve
BTFSAI-CG-precon
BTFSAI-CG-solve
DDFSAI-CG-precon
DDFSAI-CG-solve

Figure 1: Number of iterations needed for convergence as a function of the number of blocks used, left. Wall clock time
needed for computing the preconditioner and solving the linear system again as a function of the number of
blocks used, right. These figures show the results obtained with DDFSAI and BTFSAI.

geomechanics, electromagnetism and multiphase flow. Table 1 lists the details about the linear
problems solved.

Table 1: Test problems solved

Name Rows Nonzeros Description

Ecology2 999,999 4,995,991 2D ecology problem

Tmt-sym 726,713 5,080,961 Electromagnetic problem

Cylinder 372,960 16,473,150 3D geomechanical problem

Hook1498 1,498,023 59,374,451 3D structural problem

Similarly as Figure 1, we show in Figure 2 how the performance of both preconditioners vary
according to the number of blocks or partitions used in their construction. Except for the last test
case, the BTFSAI preconditioner always shows a gain in performance with respect to the FSAI
preconditioner, though with a performance that is sensitive to the number of selected blocks. It
is possible to note that there is a problem dependent optimal number of blocks for building this
preconditioner. More blocks involve the approximation of too many Schur complements with a
performance degradation. On the other hand, a few blocks do not exhibit thoroughly the block
tridiagonal structure of the matrix, but still can perform better than the pure FSAI. The DDFSAI
preconditioner can also decrease the solution time and the total number of iterations, although this
effect is not so pronounced as in the BTFSAI case. Its behaviour, however, is always very stable
with n. When the time needed for building a good preconditioner is relatively large, like in the
Cylinder case, the use of DDFSAI is more pronounced since the inverse of the Schur complement
can be calculated with a low accuracy showing no significant loss of effectiveness.
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Figure 2: Convergence results for the matrices Ecology2, Tmt-sym, Cylinder and Hook1498, respectively
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The densities of the optimal preconditioners in the sense of execution time for each test case
are given in table 2. It is interesting to note that the values for BTFSAI and DDFSAI are smaller
than the one for FSAI, except for the last test case, meaning that those preconditioners can achieve
convergence with a smaller storage need and hence generally exhibit a better quality in the
selection of nonzeroes. In particular, BTFSAI can allow for a significant saving of storage amount,
especially when a denser native FSAI is needed.

Table 2: Densities of the optimal preconditioners with respect to execution time.

Test Case FSAI BTFSAI(n) DDFSAI(n)

Ecology2 2.40 1.58(1000) 2.34(400)

Tmt-sym 1.66 1.36(100) 1.60(500)

Cylinder 0.47 0.29(40) 0.30(200)

Hook1498 0.40 0.66(400) 0.45(400)

The strong scalability profiles of DDFSAI and BTFSAI for the first three test cases are given
in Figure 3. For each preconditioner, we consider two values for the number of blocks, i.e., a
small value and the one giving the best total time of solution as shown in table 2. We show the
scalability profiles up to 64 threads since the IBM Blue Gene/Q is a computer designed for parallel
computations supporting this number of threads with negligible overhead. According to the
figure on the left, DDFSAI shows a good scalability close to the ideal one for the test cases ecology2
and tmt-sym in both configurations, i.e., with many partitions and just a few. The scalability for
the cylinder is a little bit worse, which is probably caused by the small size of this linear system.
Regarding the figure on the right, we note that the scalability of BTFSAI is not as good. This is
because the algorithm involves more synchronization points than DDFSAI, thus decreasing the
level of concurrency especially when increasing n. However, the BTFSAI can still provide a good
scalability as can be seen for the tmt-sym matrix.
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Figure 3: Scalability profiles of DDFSAI and BTFSAI, respectively.
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IV. Conclusions

In this work two new multilevel preconditioners based on the FSAI algorithm were discussed, the
DDFSAI and BTFSAI algorithms. They were applied in the serial and parallel solution of SPD linear
problems arising from different engineering applications in order to test their performance and
scalability. The results show that the BTFSAI technique is very promising in terms of decreasing
the total number of iterations and time for achieving the solution. Further, with the DDFSAI
technique, the computational pain is smaller, but stability and scalability are generally better. We
remark that these strategies are under development and further computational improvements are
being addressed, for instance a hybrid MPI/OpenMP implementation.
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