
Numerical Methods for Gremban’s Expansion of Signed Graphs

Alyson L. Fox ∗

January 23, 2016

Abstract

Signed graphs contain both positive and negative relationships between vertices. Data scientists are
interested in solving linear systems associated with signed graphs. Fairly robust solvers for unsigned,
undirected graph Laplacians have been developed but these solvers are not directly applicable to general
signed graphs. Gremban’s expansion [2] is used to transform the signed, undirected graph Laplacian
into an unsigned, undirected graph Laplacian. The solution to the linear system of the expanded matrix
yields the solution of the original linear system. Thus, using Gremban’s expansion we can extend the
current Laplacian solvers’ robustness to signed graph Laplacians. This paper delves into the numerical
stability and applicability of Gremban’s expansion and proves that the error of the solution of the
original linear system can be tightly bounded by the error of the expanded system. Gremban’s expansion
was originally only for symmetric matrices. However, this paper demonstrates that the expansion is
applicable to the nonsymmetric matrices associated with signed, directed graphs. Both manufactured
and real-world signed, undirected graph Laplacians are tested with various solvers to show that the
expansion is numerically stable.

1 Introduction

For graph-ranking applications, data scientists are interested in solving Lx = b, where L is a graph-associated
matrix (e.g. a graph Laplacian). Four types of graphs that are of interest are: unsigned-undirected (UU),
signed-undirected (SU), unsigned-directed (UD), and signed-directed (SD). Every edge in an undirected
graph is bidirectional, where as some edges in a directed graph are directed from a source vertex to a target
vertex. The graph Laplacian of an undirected graph is symmetric due to the symmetry of the edges, which
is not the case for directed graphs. A signed graph, however, has both positive edges and negative edges.
A positive edge of a signed graph can be seen as a similarity or closeness, where a negative edge can show
dissimilarity or distance. A social network, for example, may be represented as a signed graph where positive
edges represent “friends” and negative edges represent “foes.” When a graph is used to cluster or group a
social network, a negative edge would represent two people whose grouping together should be avoided as
it may cause a disruption. Data scientists employ various models that may involve any of these four graph
types and they require efficient solvers for the associated linear systems.

There exists a multitude of fast solvers for UU graphs, one such solver is Lean Algebraic Multigrid
(LAMG) [5]. UU graph systems are known to be the simplest of the four problems since they result in a
symmetric, diagonally dominant Laplacian with a known null-space. Directed graph Laplacians are nonsym-
metric and there is no efficient, general-purpose solver for nonsymmetric M-matrices. Therefore, there is a
lack of robust UD graph solvers. This paper explores Gremban’s expansion for signed graphs, which decom-
poses any symmetric diagonally dominant matrix into a diagonally dominant Z-matrix and a nonpositive
matrix, S = M + P . The user can solve Sx = b, by using an expanded UU graph Laplacian system,

Gw =

[
M −P
−P M

] [
x
−x

]
=

[
b
−b

]
= z,

which is amenable to fast solvers like LAMG. Under suitable hypotheses on S, the system G is either
nonsingular or has a trivial null space. In either case, the solution to the original system can be found by
solving the expanded system and then extracting x. (See Section 3 for details). This paper shows that, for
SU graphs, Gremban’s expansion is stable such that the error of the original linear system is less than the
error of the linear system for the expansion. The expanded system and a robust UU solver (e.g. LAMG)
yield a robust SU solver, as demonstrated in the results section. This paper shows how Gremban’s expansion
can be generalized to any (possibly nonsymmetric) diagonally dominant matrix. Gremban’s expansion could
then expand SD graphs to UD graphs. However, since robust, optimal solvers for directed graphs are not
readily available, the main focus of the paper will be SU graphs.

∗Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado

1

The paper is organized as follows. Section 2 describes the notation, important definitions, and extends
useful concepts of unsigned graphs to signed graphs. Section 3 introduces Gremban’s expansion and demon-
strates its numerical stability. It is also shown that the expansion can be also used for linear systems involving
SD graphs. Section 4 gives a brief description of LAMG. Section 5 presents numerical results demonstrating
the use of the expansion with LAMG.

2 Preliminaries

A graph, G, may belong to many different classes. This work extends the linear solver technology that works
well on UU graphs to SU graphs. A UU graph, G(V, E , w), relates a set of n vertices, V, by m connections
or edges in the set E with weights, w. An edge (i, j) ∈ E between two vertices i and j is an undirected or
symmetric relationship, meaning (j, i) is also in E and wij = wji. Edge (i, j) is also a positive relationship,
wij > 0, as its size is proportional to the strength of affinity between i and j. Let us assume G is connected
with no self loops, that is (i, i) 6∈ E . Typically, a UU G is represented by its symmetric adjacency matrix,

Aij =

{
wij (i, j) ∈ E
0 otherwise

. (1)

This and other matrix representations are commonly analyzed. Define the diagonal degree matrix,

Dij =

{
di i = j

0 otherwise
, (2)

where di =
∑
i wij is the total weight of edges incident to vertex i. The combinatorial graph Laplacian of G

is L = D −A.
Data analysts often desire the solution to Lx = b. Matrix L is singular with known kernel, L1 = 0. If L

is symmetric, b is in the range of L only if 1tb = 0. If b is not in the range, we are interested in L†b which
can be calculated by using projections and a SPD solve,

x =
(
L+

α

n
11t
)−1(

I − 1

n
11t
)

b, (3)

for any α > 0. This is an important discussion for the signed case, as the matrices of interest are not always
singular.

For UU graphs, matrix L can be symmetrically factored using its incidence matrix, E ∈ Rn×m, which
maps the edges to the vertices. Let the e-th edge be (i, j) ∈ E and orient e as follows. If i < j, then let
Ei,e = +1, Ej,e = −1, Ek,e = 0 for k 6= i, j. Let W be a diagonal matrix such that We,e = wij . This yields
the factorization, L = EWEt. This factorization and the quadratic form, xtLx =

∑
(i,j)∈E wij(xi − xj)2,

are powerful tools used for deriving properties of solutions to Lx = b, designing numerical solvers, and
performing numerical analysis of such solvers. This can be generalized to the signed case.

For SU graphs, which we denote by G±(V, E+∪E−, w), there are some positively weighted edges, wij > 0
for (i, j) ∈ E+, and some negatively weighted edges, wij < 0 for (i, j) ∈ E−. For simplicity, we assume there
are no contradictory edges, that is, (i, j) ∈ E+ ⇒ (i, j) 6∈ E−, and, conversely, (p, q) ∈ E− ⇒ (p, q) 6∈ E+.
Thus, E+ ∩ E− = ∅ and E+ ∪ E− = E . The matrix forms associated with G± are easily generalized with
the same formulae we provide above. The signed adjacency matrix, A, will have some negative entries, D is
the diagonal matrix of the total degree (di =

∑
j |ai,j |), and the signed combinatorial Laplacian L has some

positive off-diagonal entries. We extend the incident factorization to signed graphs.The incidence matrix, E,
for a signed graph must have the product of the entries in each column be equal to the negative of the sign
of each edge weight. Let the e-th edge be (i, j) ∈ E and orient e as follows. If i < j, then let Ei,e = +1,
Ej,e = ±1 such that EieEje = −sign(wij), Ek,e = 0 for k 6= i, j. Let We,e = |wij |, then the Laplacian is
factor as before, L = EWEt. Note that that L of a SU graph is a symmetric diagonally dominant matrix.

The goal is to apply tools that work well for combinatorial Laplacians of UU graphs to solve Lx = b
for SU graphs. For G±, we will show that, in special situations, L is singular. In real-world datasets, L
is usually nonsingular. We address the singular case first. When L is singular, the eigendecomposition is

2

directly related to that of the combinatorial Laplacian generated by reversing the sign of all the negative
edge weights, L̃. To formalize this we require the concept of a balanced signed graph. A bipartition y of the
set of vertices V, is defined as, yi = 1, i ∈ U , and yj = −1, j ∈ W, where U ∪W = V and U ∩W = ∅.

Definition 2.1. A connected signed graph, G±(V, E+ ∪ E−, w), with nonzero edge weights is balanced if V
can be partitioned into two groups U and W, such that (i, j) ∈ E+ implies either both vertices i, j are in U
or both are in W and (i, j) ∈ E− implies one of the two vertices is in U and the other is in W.

Equivalently, unbalanced graphs can be defined as graphs containing a cycle with an odd number of
negative edges. If a graph is balanced then the spectrum is easily relatable to the corresponding unsigned
Laplacian.

Theorem 2.1. Let L be a signed Laplacian matrix of the balanced connected graph, G, with bipartition y
and eigenvalue decomposition L = UΛU t. Let L̃ = diag(y)Ldiag(y), then L̃ is the corresponding Laplacian
matrix of the unsigned graph Laplacian of G. The eigenvalue decomposition of the Laplacian matrix, L̃, is
similar to L, by L̃ = ŨΛŨ t where Ũ = diag(y)U . Moreover, y is the kernel of L.

Proof. Order the vertices so that U is first and W is second and let block L12 represent the edges between
i ∈ U and j ∈ W. A balanced graph implies that all positive off-diagonal entries in L occur in L12 and
L12 ≥ O. The similarity transform L̃ = diag(y)Ldiag(y) makes these entries negative (with their symmetric
counterparts) and leaves all entries in the other blocks of L alone. The rest of the results are derived easily
via the similarity transform and the fact that 1 is the kernel of L̃.

The partition of a balanced graph can be found by a depth-first traversal, assigning each vertex to a
partition such that the balance property is fulfilled [3]. Additionally, the same process can be used to
determine if the graph is unbalanced. If G is balanced, then one would solve the spectrally equivalent
Laplacian system L̃x̃ = b̃, where b̃ = diag(y)b and the solution to the original linear system is then found
by x =diag(y)−1x̃. Therefore, in what follows, we assume G is unbalanced. It is unlikely that a real-world
graph is balanced unless it is a byproduct of the underlying dataset.

The incidence factorization for G±, shown above, is used to show that L is always at least positive
semi-definite. From the factorization, we can derived the quadratic form,

xtLx =
∑

(i,j)∈E+
|wij |(xi − xj)2 +

∑
(p,q)∈E−

|wpq|(xp + xq)
2, (4)

which is greater or equal to 0 for any x. For an unbalanced G±, we show this quadratic form is strictly
positive, implying matrix L is strictly positive definite. For the first term to be 0, we require x is constant
on each connected component of G+(V, E+, w). For the second term to be 0, any cycle in G± must have an
even number of edges in E−. Thus, the terms (xp + xq)

2 of the connecting components cancel out. This
contradicts the definition of an unbalanced graph [3]. Thus, the signed Laplacian of an unbalanced G± is
nonsingular and Lx = b can be solved without projection for any b.

Remark 2.1. (SD Graphs) As mentioned in the introduction, data scientists are also interested in SD
graphs. In a SD graph, each vertex of the edge is given a direction and a sign. The following section will
show that Gremban’s expansion can be generalized to nonsymmetric diagonally dominant matrices. This
would allow any SD graph Laplacian to be expanded into an UD graph Laplacian, and the solution of the
linear system of the expanded matrix will return a solution to the original system.

The following section contains a detailed description of Gremban’s expansion and how it can be used
with a robust solver for UU graph Laplacian.

3 Numerical Stability of Gremban’s Expansion

In [2], the author shows that any symmetric diagonally dominant (SDD) matrix can be expanded into a
undirected graph Laplacian, and solving a linear system involving the expanded matrix yields the solution
to a linear system involving the original matrix. An important distinction needs to be made between

3

signed and unsigned graph Laplacians. Signed Laplacians have some positive off-diagonal elements while
a unsigned Laplacian has strictly nonpositive off-diagonal elements. The following defines a diagonally
dominant Z-matrix, which is a generalization of an unsigned Laplacian:

Definition 3.1. A matrix M as a Diagonally Dominant Z-matrix if it is diagonally dominant, mii ≥∑n
j=1 |mij |, with positive diagonal, mii > 0 for every i, and has nonpositive off-diagonal elements, mij ≤ 0

for every i 6= j.

With this definition, M is possibly strongly diagonally dominant, mii >
∑n
j=1 |mij |, for some i. Also,

M is not required to be symmetric. Any diagonally dominant matrix can be decomposed into a diagonally
dominant Z-matrix and a nonpositive matrix. The Gremban expansion is then defined as:

Definition 3.2. Let S be diagonally dominant with positive diagonal. We decompose, S = M + P , such
that M is a diagonally dominant Z-matrix, and P has purely nonnegative entries and zero diagonal. Define
the Gremban Expansion matrix, G, as

G =

[
M −P
−P M

]
.

Note that G is a diagonally dominant Z-matrix. If S is a signed Laplacian, then G would be an un-
signed Laplacian. All unsigned Laplacians are diagonally dominant Z-matrics by definition. The following
demonstrates the relationships between the spectra of the expansion and the original matrix. We will also
show that the expansion is numerically stable for SU graphs, meaning that a small residual for the expanded
system implies a small residual for the original system. Although not the primary focus of this paper, we
show that the expansion and some of the theory is relevant for the nonsymmetric matrices associated with
SD graphs. The following theorem relates the spectrum of the expansion, G, with the matrices that define
the diagonally dominant matrix, S:

Theorem 3.1. Let S be diagonally dominant with positive diagonal, and let G be a Gremban expansion of
S. Employ the decomposition, S = M + P , with M a diagonally dominant Z-matrix, and P ≥ O and zero
diagonal. Then,

σ(G) = σ(S) ∪ σ(M − P).

Proof. Let (λ,u) be any eigenpair of S. Then, (λ, [ut,−ut]t) is an eigenpair for G,[
M −P
−P M

] [
u
−u

]
=

[
(M + P)u
−(M + P)u

]
= λ

[
u
−u

]
.

Similarly, let (θ,v) be any eigenpair of (M − P). Then, (θ, [vt,vt]t) is an eigenpair for G,[
M −P
−P M

] [
v
v

]
=

[
(M − P)v
(M − P)v

]
= θ

[
v
v

]
.

It has been shown that σ(G) ⊃ σ(S) ∪ σ(M − P). To show, σ(G) ⊂ σ(S) ∪ σ(M − P), let λ ∈ σ(G) with
the corresponding eigenvector v = [vt1,v

t
2]t. Then[

M −P
−P M

] [
v1

v2

]
=

[
Mv1 − Pv2

−Pv1 +Mv2

]
= λ

[
v1

v2

]
=

[
λv1

λv2

]
.

This implies, Mv1 − Pv2 = λv1 and −Pv1 +Mv2 = λv2. Then, (λ,v1 + v2) is an eigenpair of (M − P),

(M − P)(v1 + v2) = (Mv1 − Pv2) + (Mv2 − Pv1) = λv1 + λv2 = λ(v1 + v2)

and (λ,v1 − v2) as an eigenpair of S,

S(v1 − v2) = (M + P)(v1 − v2) = (Mv1 − Pv2)− (Mv2 − Pv1) = λv1 − λv2 = λ(v1 − v2).

4

Therefore, σ(G) ⊂ σ(S)∪σ(M −P) and thus, σ(G) = σ(S)∪σ(M −P). For S symmetric, let S = UΛU t

and (M−P) = VΘV t be the eigenvalue decompositions of the smaller matrices, then the eigendecomposition
of G is,

G =
1√
2

[
U V
−U V

] [
Λ

Θ

](
1√
2

[
U V
−U V

])t
.

It is often the case that G is singular even though S is nonsingular. If S is a signed graph Laplacian
associated with an unbalanced G±, then it is nonsingular, as shown in the previous section. However, G is
singular with constant kernel. Note that nonsingular S does not imply an unbalanced sign structure of the
off-diagonal elements. For example, consider a signed Laplacian of a balanced G± shifted by a non-negative
diagonal matrix. In such cases, the graph of G is not connected, but each of the two components are strictly
diagonally dominant and G is nonsingular.

Lemma 3.1. Assume S is nonsingular, strongly connected, and diagonally dominant. Let G be the Gremban
expansion of S. Consider the systems Sx = b and Gw = z where z = [bt,−bt]t. If G is nonsingular then
w = [xt,−xt]t. If G is singular then the null-space of G is the constant vector, 1, and the solution computed
by the process described in (3) applied to Gw = z yields w = [xt,−xt]t.

Proof. If S is nonsingular and strongly connected, then by Theorem 3.1, G is only singular if (M − P) is
singular. By the Peron-Frobenius theorem, for (M −P) to be singular, S needs to be only weakly diagonally
dominant, and the constant vector is the unique kernel component, (M − P)1 = 0. In this case, [1t,1t]t

is the unique kernel component of G, and the solution can be found as described in equation (3) where
z = [bt,−bt]t is orthogonal to the kernel. We see that Gw = z,[

M −P
−P M

] [
x
−x

]
=

[
(M + P)x
−(M + P)x

]
=

[
b
−b

]
. (5)

In the case of nonsingular G, w = [xt,−xt]t is the unique solution.

The above proofs are extremely powerful. Given a good linear solver for Laplacians of UU graphs, we can
solve any symmetric diagonally dominant system, Sx = b, by transforming it into the associated diagonally
dominant Z-matrix system, Gw = z, solving for w, and extracting x .

Remark 3.1. (Gremban’s Expansion for SD graphs) We note that several of the results in this section
provide theoretical underpinnings for the analysis of applying Gremban’s expansion to systems involving
SD graphs, where S is nonsymmetric. First, there is no assumption of symmetry in Lemma 3.1, and the
expansion applies to linear systems involving nonsymmetric S. Moreover, the eigenvalue containment result
in Theorem 3.1 holds for the nonsymmetric G associated with nonsymmetric S. It is also possible to show
that the singular values and vectors of nonsymmetric G are directly related to those of S and (M −P). Both
the eigenpairs and singular values of G are important for analyzing the numerical stability of the expansion
and the design of LAMG-like solvers for nonsymmetric diagonally dominant Z-matrix systems.

For the rest of this paper we will assume that S is symmetric. Note that the solvers will be using the
expanded matrix G, however, the actual interest is for the solution to the smaller problem S. The following
theorem shows that if given an approximate solution to the Gremban expansion system, we can tightly
bound the norm of the residual of the original system by the norm of the residual of the expansion.

Theorem 3.2. Let S be symmetric and diagonally dominant and G be the Gremban expansion of S. Let y
be an approximate solution to Gw = z. Define P1 = [I O] and P2 = [O I] . Let v = αP1y + βP2y, where
α, β are chosen so that ‖Sv − b‖ is minimized. Then,

‖Sv − b‖ ≤ CS ‖Gy − z‖

where Cs = 1√
2

. This bound is tight.

5

Proof. Let R = 1
2 [I,−I] be a restriction operator, thus Rz = b and Rw = x. Also Ry = 1

2P1y − 1
2P2y.

‖Sz− b‖ ≤ ‖SRy − b‖ =
‖SR(y −w)‖
‖G(y −w)‖

‖Gy − z‖ =
‖SRe‖
‖Ge‖

‖Gy − z‖ = Cs‖Gy − z‖

where Cs = maxe6=0,e⊥1

√
〈RtS2Re,e〉
〈G2e,e〉 which is equivalent to the maximum eigenvalue of the generalized

eigenvalue problem RtS2Rx = λG2x. Let S = UΛU t and (M − P) = VΘV t be the eigendecompositions of
the smaller matrices. Then from Theorem 3.1 we have,

RtS2Rx = λG2x

1

2

[
I
−I

]
UΛ2U t

1

2

[
I −I

]
x = λ

1√
2

[
U V
−U V

] [
Λ2

Θ2

](
1√
2

[
U V
−U V

])t
x

Let y =

(
1√
2

[
U V
−U V

])t
x, then,

1

4

[
U
−U

]
Λ2
[
U t −U t

] 1√
2

[
U V
−U V

](
1√
2

[
U V
−U V

])t
x = λ

1√
2

[
U V
−U V

] [
Λ2

Θ2

]
y(

1√
2

[
U V
−U V

])t
1

4
√

2

[
U
−U

]
Λ2
[
U t −U t

] [U V
−U V

]
y = λ

[
Λ2

Θ2

]
y

1

2

[
I 0
0 0

]
y = λ

[
I

Θ2

]
y

Thus, the eigenvalues of the generalized eigenvalue problem, RtS2Rx = λG2x,are 1/2 and 0, and Cs = 1√
2
.

The above theorem states that in any norm the residual of the original system is smaller that the residual
of the expanded system. We will validate this result by empirically demonstrating numerical stability of
Gremban’s expansion with LAMG (a known robust multilevel solver for diagonally dominant Z-matrix
systems) as well as preconditioned conjugate gradient. The next section will give a brief description of
LAMG.

4 Lean Algebraic Multigrid for Undirected Graphs

Multigrid is an iterative solver that relies on two main components: fine-grid smoothing and coarse-grid
correction. Fine-grid smoothing should be cheap and quickly attenuate the oscillatory components of the
error. This is usually done using weighted Jacobi or Gauss-Seidel. The coarse-grid correction projects the
current smooth error down to a smaller grid. The error then becomes oscillatory and the process can be
repeated until the current grid is small enough to solve directly. The solution is then projected back to the
fine-grid. This is a called a V-cycle iteration. The coarse-grid correction can either be found geometrically, in
which the aggregates are chosen based off of the underlying geometry of the problem, or algebraically, in which
the aggregates are chosen based on a strength of connection. The latter case is known as algebraic multigird
(AMG) and is a powerful solver for PDE-type problems in which the geometry of the underlying mesh is
unknown. AMG is a attractive option for graphs since the geometry of a graph is highly complex. Livne
and Brandt modified AMG specifically for graph Laplacians to create Lean Algebraic Multigrid (LAMG).
The three main contributions of LAMG are low-degree elimination, caliber-1 interpolation with an energy
correction step, and the use of the adaptivity to compute the strength of connection matrix.

These key modifications have been shown to be efficient and robust for most topologies of unsigned,
undirected graphs. Our own implementation of LAMG in Julia has shown to be an efficient and robust solver
for unsigned, undirected and weighted graphs. In a restricted subset of graph Laplacian stemming from data
analysis application, we found that V-cycles were sufficient, including scale-free graphs and bipartite graphs.
In a wider set including mesh-like graphs, Livne and Brandt, claimed W-cycles were necessary. A detailed
explanation can be found the technical report [6].

6

5 Numerical Results

A Julia [5] implementation of the LAMG algorithm was developed to serve as a platform for the investigations
described in this paper. There are several measurements that are used to asses the efficiency of a multigrid
scheme: convergence factor, cycle complexity and effective convergence factor. The convergence factor,
ρ, measures the asymptotic reduction in the 2-norm of the residual for a single V-cycle. To estimate ρ,
we calculate the convergence factor after each cycle, ρk, and then report the geometric mean for a solve
containing K multigrid cycles,

ρk =
‖Gyk+1 − z‖2
‖Gyk − z‖2

and ρ ≈

(
K∏
k=1

ρi

)1/K

.

The cycle complexity, γ, is the number of work units (the cost of one fine-gird matrix multiplication)
required for a single multigrid cycle. The effective convergence factor (ECF) is the average reduction in
residual per work unit cost, ECF = ρ1/γ .

To get an idea of how the Gremban expansion works for signed graphs, the team gathered a set of undi-
rected, unsigned graphs from the SNAP graph database[4]. For each graph, a randomly chosen percentage,
p = [0.1, 0.8], of the edges were turned into negatively signed edges. For a random vector b the goal is
to solve Lx = b. The Gremban expansion, G, of L was formed and we let z = [bt,−bt]t. LAMG then
solved the system Gw = z with V-cycles with (1, 2) pre- and post- Gauss-Seidel smoothing iterations, used
a cut off of a 100 nodes for the coarsest graph and a residual tolerance of 10−7. Figure 1a, 1b, and 1d show
the convergence factor, cycle complexity and effective convergence factor respectively. Note that due to the
Gremban expansion, the size of the problem is twice the size of the original problem. Table 1 displays the
graphs that had an effective convergence factor greater than .85.

102 103 104 105 106 107 108

Number of Edges

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
v
e
rg

e
n
ce

 F
a
ct

o
r

(a) Convergence Factor

102 103 104 105 106 107 108

Number of Edges

0

5

10

15

20

25

C
y
cl

e
 C

o
m

p
le

x
it

y

(b) Cycle Complexity

102 103 104 105 106 107 108

Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

e
ct

iv
e
 C

o
n
v
e
rg

e
n
ce

 F
a
ct

o
r

(c) Effective Conference Factor

102 103 104 105 106 107 108

Number of Edges

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
st

a
n
t

Minimum
Average

(d) Ratio of Relative Residuals

Figure 1: Performance of LAMG on Constructed Signed Graphs

After the system Gw = z was solved, an approximation to x was found as a weighted average, x =
αP1w + βP2w, as in Theorem 3.2. The solution was found in two different ways: the true minimum of the

7

Graph 2n 2m nlevel Solve Time(s) Setup Time(s) ρ γ ECF

eu-2005(p = .20) 862664 16138468 6 232.1919 175.9230 0.5163 10.4607 0.9388
in-2004(p = .20) 1353703 13126172 29 301.4328 63.1952 0.1866 13.2205 0.8808
amazon-2008(p = .30) 735323 3523472 14 117.6931 28.8957 0.1240 14.5854 0.8666
wb-edu(p = .80) 8863287 44185251 32 1458.5940 212.9845 0.2508 9.4042 0.8632
amazon0601(p = .60) 403364 2443311 16 80.2968 18.8181 0.1135 14.3926 0.8597
web-Stanford(p = .60) 255265 1941926 23 48.3831 12.3606 0.1945 10.3860 0.8541

Table 1: Constructed Signed Graphs with ECF > .85

residual, x = minα,β ||Lx − b||2, and a simple averaging, x = 1
2P1w + 1

2P2w. Define the ratio of relative
residuals, τ , as τ = ||Lx − b||2 / ||Gw − z||2. Figure 1(d) shows the ratio of relative residuals for both the
minimum constant using the optimal α and β for x and the averaging constant.

The average solution still produces ratio of relative residuals that are less than one. From a data-science
perspective, the average solution will give a good approximation with out the extra cost of finding the
minimum.

Note that PCG was not used in conjunction with LAMG. To see how PCG performed with Gremban
expansion, and without the expansion on signed graphs (without LAMG), we have the following results. With
the same set of graphs, we perform three different tests, PCG with Jacobi without Gremban’s expansion and
without LAMG, PCG with Jacobi with the expansion and without LAMG, and LAMG with the expansion
and without PCG. We ran each test to a tolerance of 10−7 and a maximum number of iterations of 10, 000.
Figure 2a, 2b, 2c and 2d compares the convergence factor, number of V-cycle verses number of iterations,
the total time to setup and solve, and only solve time for LAMG and PCG.

102 103 104 105 106 107 108

Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
v
e
rg

e
n
ce

 F
a
ct

o
r

PCG Jacobi
LAMG
PCG Jacobi No Expansion

(a) Convergence Factor

102 103 104 105 106 107 108

Number of Edges

100

101

102

103

104

It
e
ra

ti
o
n
s

PCG Jacobi
LAMG
PCG Jacobi No Expansion

(b) Iterations

102 103 104 105 106 107 108

Number of Edges

10-3

10-2

10-1

100

101

102

103

104

T
im

e

PCG Jacobi
LAMG
PCG Jacobi No Expansion

(c) Total Time

102 103 104 105 106 107 108

Number of Edges

10-3

10-2

10-1

100

101

102

103

104

T
im

e

PCG Jacobi
LAMG
PCG Jacobi No Expansion

(d) Solve Time

Figure 2: LAMG vs PCG

We see that LAMG provides better convergence factors and fewer iterations for most graphs. For the
total time, LAMG was 12.7% faster than PCG without expansion and 63.49% faster than PCG with the

8

expansion for all graphs tested. For only solve time, LAMG was faster for 92.06% of graphs than for PCG
without the expansion and 98.41% of graphs than for PCG with the expansion. Thus, if solving the same
problem for various right hand sides, LAMG would be the better choice since the hierarchy could be saved.

To get a better idea on how the expansion works for real-world graphs, the second test that was performed
were on bipartite user-movie rating matrices, R, from the Grouplens research∗. The adjacency matrix of the
data is written as,

A =

[
0 R
Rt 0

]
. (6)

Grouplens provides four different size data sets, 100k, 1M, 10M and 20M. Each user rated the movies
between 1 and 5. We scaled the data in four different ways to get a resulting SU graph.

• User Average: If a user rates every movie high then ratings are not proportional thus we subtract
the users average rating, µi, from every movie that they have rated:

A
(user)
ij = A

(user)
ji = Rij − µi.

• Movie Average: Similar to above, with µj as a movie’s average rating:

A
(movie)
ij = A

(movie)
ji = Rij − µj .

• Full Average: Scales by the user average and movie average:

A
(full)
ij = A

(full)
ji = Rij −

µj + µi
2

.

• Shifted: Maps the ratings from: [1, 2, 3, 4, 5]→ [−2,−1, 1, 2, 3].

Table 2 presents the convergence factor, cycle complexity, and effective convergence factor for all shifts.
In the last two columns we have the ratio of relative residuals for the solution using the minimum α and β,
and the average. LAMG performed well on all the matrices with effective convergence factors less than 0.70.

Graph 2m Setup Time(s) Solve Time(s) ρ γ ECF τmin τmax

ml-100k full 99997 2.179957151 0.191529036 0.0038 10.3139 0.5832 0.3656 0.4347
ml-100k movie 1.00E+05 1.960252047 0.177932978 0.0019 10.2738 0.5434 0.3674 0.4576
ml-100k shift 1.00E+05 3.095001936 0.165970087 0.0024 14.0861 0.6519 0.2830 0.2933
ml-100k user 1.00E+05 1.951591969 0.18362093 0.0019 10.3179 0.5456 0.3257 0.5143

ml-1m full 1000068 1.729801178 0.523294926 9.9600E-13 0.9997 9.8682E-13 0.5979 0.6401
ml-1m movie 1000086 1.585048914 0.492215157 6.4000E-12 0.9997 6.3446E-12 0.4036 0.4104
ml-1m shift 1000086 34.1253221 1.945924997 0.0022 15.5254 0.6751 0.2047 0.3667
ml-1m user 1000086 1.656098127 0.493187904 1.8600E-12 0.9997 1.8471E-12 0.4304 0.5378

ml-10m full 9971967 125.957454 19.60491014 0.0017 5.8705 0.3384 0.5016 0.5019
ml-10m movie 9971981.5 124.7016339 18.84954786 0.0016 5.8630 0.3338 0.4528 0.4901
ml-10m shift 9971981.5 131.9069471 22.86774802 0.0021 5.8612 0.3484 0.5181 0.5205
ml-10m user 9971981.5 126.364444 18.90600181 0.0015 5.8626 0.3301 0.4811 0.4907

ml-20m full 19947969 480.011148 33.49572492 0.0015 12.3430 0.5904 0.2928 0.4803
ml-20m movie 19948004 573.897356 31.06468916 0.0024 14.4520 0.6590 0.1794 0.4982
ml-20m shift 19948004 589.2875509 36.9788301 0.0025 13.9342 0.6502 0.4016 0.5092
ml-20m user 19948004 217.217633 32.85207701 0.0020 5.7631 0.3388 0.3280 0.4796

Table 2: LAMG performance on Movielens

This indicates that the expansion, though it doubles the size of the problem, resulted in systems that were
solvable. Table 3 compares the convergence factor as well as the solve time for LAMG and PCG with and
without Gremban’s expansion. For PCG, using Gremban’s expansion resulted in a lower convergence factor.

∗http://grouplens.org/datasets/movielens/

9

PCG with PCG w/o LAMG PCG w/ Expansion PCG w/o Expansion
Graph LAMG(ρ) Expansion(ρ) Expansion(ρ) (SolveTime) (SolveTime) (SolveTime)

ml-100k full 0.0038 0.7132 0.8844 0.1915 0.8981 0.8548
ml-100k movie 0.0019 0.7180 0.9087 0.1779 0.8376 1.0951
ml-100k shift 0.0024 0.7150 0.7740 0.1660 1.0382 0.3889
ml-100k user 0.0019 0.7155 0.8971 0.1836 0.8027 0.8812

ml-1m full 9.9600E-13 0.7127 0.8941 0.5233 7.5420 9.2640
ml-1m movie 6.4000E-12 0.7193 0.9005 0.4922 6.8716 12.4039
ml-1m shift 0.0022 0.7222 0.7880 1.9459 9.3258 4.9282
ml-1m user 1.8600E-12 0.7191 0.9123 0.4932 6.6885 11.3779

ml-10m full 0.0017 0.7005 0.9021 19.6049 58.3471 301.9563
ml-10m movie 0.0016 0.6944 0.8973 18.8495 55.5631 479.5299
ml-10m shift 0.0021 0.7017 0.7858 22.8677 66.9099 213.9651
ml-10m user 0.0015 0.7018 0.8951 18.9060 91.6121 357.2703

ml-20m full 0.0015 0.6988 0.8950 33.4957 192.2985 370.1953
ml-20m movie 0.0024 0.6976 0.8963 31.0647 172.5820 186.1037
ml-20m shift 0.0025 0.7029 0.7905 36.9788 197.5440 109.1963
ml-20m user 0.0020 0.7036 0.9120 32.8521 187.4787 175.2370

Table 3: LAMG and PCG with Jacobi performance on Movielens

However, LAMG without PCG had convergence factors were all under .05, which is much lower than any
of the PCG results. LAMG also resulted in lower solve time. Even though the problem size is doubled for
Gremban’s expansion, PCG with the expansion was at most 7% slower than without the expansion. For the
problems tested, it can be concluded that Gremban’s expansion is numerically stable. It must be noted that
the condition number of the expansion cannot be bounded by the condition number for the original graph
Laplacian. Thus, when using the expansion, a robust UU solver is required to be confident about efficiency
across a diverse set of graphs.

6 Conclusions

Tests suggest that the Gremban expansion for signed undirected graphs performed well in conjunction with
an adequate solver. Using the Gremban expansion with LAMG and V-cycles, it performed well on the
constructed signed graphs as well as the movielens user-movie rating matrices. The movielens matrices give
an indication of real-world signed, bipartite graphs. The expansion when used with a robust solver gave
excellence convergence rates. We can conclude that the Gremban expansion is numerically stable for SU
graphs when a robust solver is used. We showed a tight bound on the expansion for not only undirected,
unsigned graphs but also any symmetric diagonally dominant matrix and proved that Gremban’s expansion
can be generalized to any diagonally dominant matrix. This gives the focus to future work, which is to
create a solver for directed graph Laplacians. We can then use Gremban’s generalized expansion to solve
any diagonally dominant matrix.

References
[1] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast dynamic language for technical computing.

CoRR, abs/1209.5145, 2012.

[2] Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, October 1996. CMU CS Tech Report CMU-CS-96-123.

[3] Jrme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jrgen Lerner, Ernesto W. De, and Luca Sahin Albayrak. Spectral
analysis of signed graphs for clustering, prediction and visualization.

[4] Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and graph mining library in C++. http:

//snap.stanford.edu/snap, June 2014.

[5] O.E. Livne and A. Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver. SIAM Journal of Scientific
Computing, 2011. accepted.

[6] Geoff Sanders, Tom Manteuffel, Alyson Fox, and Nate Monning. An investigation into lamg, 2015.

10

