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Abstract. In the context of model order reduction (MOR) for nonlinear problems, we propose
a variant of discrete empirical interpolation method (DEIM), called global DEIM (GDEIM). Since
DEIM is a nearly-optimal method, i.e., the error of the reduction depends on the number and location
of the selected nonlinearities to evaluate, we show that, by employing an alternative procedure to
select the points, we sometimes obtain a better accuracy of the reduction with GDEIM for the same
number of points as for DEIM. This is useful especially when one has restrictions on the dimension of
the reduced order model (ROM) to simulate or, the other way around, when a better accuracy can be
reached for a specified reduction order. To compare the accuracy level between GDEIM and DEIM
before proceeding with the reduction, i.e., when the projection matrix is formed, we make use of a
heuristic error estimator cheap to evaluate, which in most of our experiments is able to determine
which of the two methods is best. This can speedup simulations of the obtained ROM, when inputs
and/or parameters are swept for analysis. We demonstrate the usefulness of GDEIM to nonlinear,
parametric, analytic functions and provide a comparison with DEIM by using our error estimator.
The second contribution of this work is a mathematical formulation which extends (G)DEIM to
general nonlinear function, evaluated non-componentwise. We provide accuracy and speedup results
from using our extended formulation to an example for time-domain circuit simulation, described by a
set of differential algebraic equations. This may be a promising direction to speedup analysis of more
complex and large circuits, where it is common to have millions of unknowns in the vector-solution.
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1. Introduction. In computational sciences, the size of systems under analysis
can be very large when a high accuracy of the simulation is required, of the order
of millions or even more unknowns. Such problems can be encountered in many
application areas such as fluid dynamics [7], aerodynamics [3], circuit simulation [11],
batch chromatography [12], etc. Many of these problems become intractable even on
modern computing machines because of the huge requirements for memory and CPU
time. Projection-based MOR techniques seek to reduce computational complexity of
numerical problems by reducing the number of the unknowns for which the problem
has to be solved. The ROM is expected to approximate the original one with a specified
tolerance.

A suitable technique for nonlinear and/or parametric systems of equations is the
proper orthogonal decomposition (POD) (see [8] and [9] for further details). It makes
use of a Galerkin condition, forming the projection basis from collected snapshots
(solutions) of the original model, during the simulation. It has found application in
numerous areas such as fluid dynamics and compressible flow. However, its application
to nonlinear problems has met difficulties because the computational cost of nonlinear
evaluations is not decreased by POD, thereby defeating the objective of the reduction
process.

*Version January 15, 2016. Department of Mathematics and Computer Science, TU Eindhoven,
PO Box 513, 5600 MB, The Netherlands, www.win.tue.nl/~gdeluca, www.win.tue.nl/~hochsten.
The first author benefits from the financial support provided by the Marie Curie Action, under the
European project ASIVA14. The second author was supported by an NWO Vidi research grant.

1



2 DE LUCA AND HOCHSTENBACH

Many techniques have been proposed to reduce the computational complexity of
evaluating the nonlinear part of the problem. Missing point estimation (MPE) was
initially proposed for finite volume discretization [1]. DEIM, a discrete variant of EIM
[2], is similar to MPE in the sense that it reduces the cost by choosing only a subset
of spatial grid points, which reduces the cost for evaluating the complete L? inner
products at each discrete time point. Unlike MPE, DEIM attempts to approximate
each nonlinear function by using a precomputed coefficient matrix, which makes the
cost of nonlinear evaluations proportional to the (hopefully small) number of chosen
DEIM points, in correspondence of selected components of the vector-solution.

DEIM is worse than an orthonormal projection by no more than a factor C =||
(PTU)~!||2. Although the theoretical upper bound C is very large, in practical ex-
periments it is always below (say) 100. For that reason, [4] claim that DEIM is a
nearly-optimal method. Besides, the error of the reduction depends on the number
and location of the selected nonlinearities to update. We show that, even by retaining
different points, we sometimes obtain a better accuracy of the reduction with GDEIM.
GDEIM approaches the same order of accuracy of DEIM as the number of retained
points increases. However, we experience an improvement of accuracy of even 40%
with respect to DEIM when the number of selected points is relatively small. By using
a heuristic error estimator we can often determine whether GDEIM is more accurate
than DEIM and choose the best method among the two for the reduction process be-
fore it is employed, with the possibility to save time/memory for further analysis with
a smaller ROM. The estimator is cheap to evaluate and seems to be reliable in terms
of L'-, L?- and L®-norm, commonly used in, e.g., statistics and engineering fields.
We provide numerical experiments on analytic function in Section 5 to illustrate this.

Besides, the second contribution of this work is a deepening of the interpolation
method to general nonlinear functions which cannot be evaluated in a componentwise
fashion. In fact, [4] provides a DEIM formulation targeted to nonlinear functions
evaluated componentwise. Here, we extend the analysis to functions evaluated non-
componentwise. We show results from a numerical example in circuit simulation,
which confirms the validity of the general formulation in Section 5.

The rest of the work is organized as follows: in Section 2, we provide the problem
formulation; the DEIM/GDEIM theory and comparison of features, as well as the
error estimator are in Section 3. We present the extended formulation for general
nonlinear functions in Section 4. Numerical examples are in Section 5. Conclusions
and future perspective are outlined in Section 6.

2. Problem formulation. The models’ equations are sets of nonlinear and/or
parametric ODEs (e.g., coming from semi-discretization of PDEs) and set of DAEs
(e.g., for circuit simulation). The method is still applicable to nonlinear, parametric
algebraic constraints (e.g., from discretization of steady-state problems).

The set of nonlinear ODEs is of the form

(2.1) %y(t) = Ay(t) +g(y()),

with proper initial conditions, where y(t) = [y1(t),...,y.(t)]* € R" is the vector-
solution, ¢t € [0,7] is the time variable, A € R™ " is a constant matrix and g

is a vector-valued, nonlinear function evaluated at y(t) componentwise, i.e., g =
[9(y1(2)), .-, 9(yn()]T € R™, where g : J — R with J C R.



GLOBAL DEIM FOR NONLINEAR MODEL REDUCTION 3

The set of nonlinear DAEs is of the form

(22) Dy(t) +Ay() +(y(1) = bs(0),
where y(t), A defined as for (2.1), D € R™*" is a singular, constant matrix and b € R"
is a column-vector (it can be a matrix as well) selecting the input s(¢) € R. For this
case, we consider that g = [g1(y1(t),...,yn(t)), ..., gn(v1(1), ...,y (t)]T € R", with
Gi(5..y) : R" = R, as well as that ¢;(-,...,-) # g;(-,...,), for i # j. In this case,
the componentwise evaluation does not hold, and the Jacobian of g is no longer strictly
diagonal (as for componentwise function).

When a high accuracy of the simulation is required, the full order model dimen-
sion n might become very large, resulting in an intractable simulation time. Thus,
MOR techniques generate a ROM with smaller dimension k& < n, by building a projec-
tion matrix Vi € R™¥ to approximate the full model solution y(t), i.e., y(t) =~ Vi¥(t),
where y(t) € R¥ is the ROM solution. By projecting the original system onto the sub-
space spanned by V., the ROM of (2.1) is given by

d

(23)  —¥y()= Ay () + Vig(Viy(t).

For the DAEs formulation (2.2), we have
~d ~ _ -
(24) D—y(t) + Ay (1) + Vig(Viy(t) = bs(t),

with A = VI AV € R** D = VIDV}, € R*** and b = VI'b € RF. We employ
the POD method to compute Vy, since the ROM inherits the dominant features of
the original model. However, by exploring the dimensions in the operations involved
in (2.3) and (2.4), one can see that the original dimension 7 is still involved (to form
the argument of the nonlinear function and to project it). Another drawback of POD
might be that the snapshots do not contain meaningful information of the original
model, provided only after the training period. In this regard, we will present chal-
lenges targeted to circuits simulation.

Our method GDEIM (as DEIM) selects a smaller number of nonlinear components to
update, which translates into a non-complete inner product, speeding up the simula-
tion time while preserving accuracy of the solutions.

3. DEIM and GDEIM. DEIM approximates a nonlinear function g(7) with
g(7) (7 any parameter), such that

g(r) = g(7) = Upe(7),

where U, € R"*? is the basis of the subspace which the interpolated nonlinear function
is projected onto, with p < n, and c(7) € RP? is the interpolating coefficients vector
generated by DEIM. The basis U, = [uy, ..., u,] can be obtained from the SVD on the
matrix whose columns come from the evaluation of the nonlinear system’s part only.
This basis also determines the set of interpolation indices {p1, ..., p,} which serve to
interpolate the singular vectors at specific points, chosen so that the reduction error’s
growth is iteratively limited [4]. The indices are in the form P = [e,,...,e,,] €
R™ P where e; is the jth standard basis vector in correspondence of the maximum



4 DE LUCA AND HOCHSTENBACH

value extracted from a residual-vector. Assume that the product PTU is nonsingular
(this is ensured by the selection of non-repetitive indices and by assuming the linear
independence of the singular vectors in U [4]), the coefficient vector ¢(7) is determined
uniquely from PTg(7) ~ (PTU,)c(7) thus the oblique projection is used here

(3.1)  g(1) = Upe(r) = U,(PTU,) " 'PTg(r).

GDEIM, as DEIM, selects the points such as to minimize the reduction approxi-
mation error. Instead of searching for the entry with the largest magnitude in a vector
as DEIM does, GDEIM employs a global search for the maximum on a “bunch” of
singular vectors. This is shown in Alg.2.

Algorithm 1: DEIM Algorithm 2: GDEIM
1: procedure DEIM (Input: U,) 1: procedure GDEIM (Input: Up)
2 v="Up(:,1) 2 V=]
33 P=[lp=[] 332 P=[lp=[]
4 for/=1:pdo 4 for(=1:pdo
5: p1 = max |v| 5: [p1, 4] = max |Up|
6: v=Up(:,1) 6 V(1) = Up(:,4)
n P=Pele=|P] n P=[Pelo=|P]
8 if > 1 then 8: if | < p then
9: T=Up(;,1: 1—=1)(Up(p,1:1—1)) " v(p) 9 remove ¢th column from U,
10: vV=0v—0 10: Uy =Up —V(V(p,:)) 'Up(p,:)
11: end if 11: end if
12: end for 12: end for
13: end procedure (Output: p) 13: end procedure (Output: p)

DEIM has been proven to be well-defined because of the non-singularity of the
interpolated basis. For GDEIM is same, due to linearly independence of the processed
singular vectors with respect to remaining ones.

The DEIM reduction error is provided by the following Lemma.

LEMMA 3.1. Let g € R™ be an arbitrary vector. Let {w}_, C R™ be a given
orthonormal set of vectors. Let the DEIM approxzimation of order p < n for n in the
space spanned by {w}_, C R" be

9= U,(P"U,) Py,

where Uy, = [uy,...,up] € R™P and P = [e,,,...,e,] € R"P, with {p1,...,pp}
being the output of the method. An L? error bound for g is then given by

(32) Nlg=gl<I(P"U) " Iz - (B — U Uy)gll,

with I, identity matriz of dimension p [5].

Inequality (3.2) in Lemma 3.1 is applicable for GDEIM as well. Moreover, since
GDEIM does a global search for the maximum value which minimizes the approx-
imation error, the constant || (PTU,)~! ||z from GDIEM might be lower than that
from DEIM. We experience this in many cases, mostly when the number of retained
points is small. However, the constant is a pessimistic bound for the error, and the
true approximation error approaches smaller values. Motivated by this, we can use
the constant to check which of the two method is the best in terms of accuracy. We
create a metric, cheap to evaluate, to establish this. Because it is a pessimistic bound,
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the metric is a heuristic one, but after many experiments on analytic functions we find
out that it is reliable in most of the cases.
Consider the following

lg — 8all2< (PEUG) 2 - | (T~ UcUg)gll2,
lg = &p <[ (PLUD) 2 - (T~ UpUp)gll,
Ug=Up R,

with g4, gp the approximate solutions of g by GDEIM and DEIM, respectively, and
R is a rotational matrix, such that R~ = RT. Thus,

(PEUG) 2 - [ (T—UgUS)gl2 =l (PEUG) 2 - [|(T— UpR(UpR) g2
= (P&Ug) 2 |(I-UpUL)gl,

which implies

le—8cll2 _ |(PEUG) |l
lg—gpllz2 = [[(PLUD) 1|2’

(3.3)

where || g — 8¢ |l2, || — €p ||2 are the L?-mnorm errors between the original and the
reduced model obtained with method GDEIM and DEIM, respectively.

By evaluating the right-hand side of (3.3) we can hopefully predict which method is
the best, both when a small number of retained points is required with an acceptable
ROM accuracy level, and when the specification is the error tolerance and one of the
two methods reaches it with a smaller number of points.

Specifically, when

I (P5UD) 2 ’

then we say that GDEIM is better than DEIM. The estimator’s behavior is an upper
bound function for the ratio of the true approximation errors

lg—8cll2

(3.5) =
lg—8pll2

From simulating several functions, we find out that for a relatively small number of
iterations, the estimator (3.4) predicts correctly (3.5) for 70% of the experiments,
independently of the singular values decay of the model, with the L!-, L?- and L-
norm.

4. (G)DEIM for non-componentwise nonlinear functions. Assume g =
gy @), - gy )" = [9(y1(®),y2(1)), -+ g(y1(8), y2()]T in (2.2). Assume also
that we are solving for the ROM solution y(¢) at time t, i.e., we have already performed
GDEIM (or DEIM) and obtain p = [p1, ..., pp|, the vector of indices corresponding to
the rows of g to evaluate. Assume without loss of generality that p = 1, i.e., we need
to evaluate the nonlinear function at the first index of g and to retrieve m = 2 original
model’s components only, say, y1(t) and y2(¢). This can be done by defining a square
incidence matriz M € R™™ which selects the m components needed to evaluate the p
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nonlinearities selected by the MOR method. In the case above, the incidence matrix
will be of the form

1 0 0 -0
0 1 0 0
0 0 0 - 0] ¢grxn
0 - e 0]

with rank(M) = m, such that the oblique projection for the nonlinear function in
(2.4) writes as

Vi Up(PTU,) " (PTg(MV)y (1))

Note that we need neither to perform the multiplication by PT nor by M: first we
selects the rows of Vi with M corresponding to the needed components of the original
model’s solution y(t) to retrieve, then g is evaluated at the selected indices through P
by (G)DEIM. For sparse models in circuit simulation we can say that usually m =~ p,
with m, p < n, and the original dimension is not involved anymore in the computation.
As done for DEIM, we define the vector of indices of the original model’s components
to retrieve as m = [¢1,..., ] € R™. In case of componentwise evaluation it results
p = m, i.e., the p;th component of the vector-valued function g to be evaluated
requires only the ¢;th component of the vector-solution y of the original model. Thus
our formulation extends the DEIM’s one, and it can be applied to (2.3) as well.

5. Numerical experiments. In this section we show results from the compari-
son of GDEIM and DEIM in terms of accuracy. We only show results from simulations
on two nonlinear, parametric analytic functions, by using the estimator in (3.4) for
L?- and L*-norms and both when the accuracy is evaluated at one parameter value
and for a bunch of parameter values.

In each experiments, the original function is discretized in the one-dimensional
spatial z and parameter 7 domains with n = 100 and ¢ = 100 points, respectively.
For the first example, we have that

filz, 1) = e T4 cos(zT),

with € [-1,1], 7 € [10,20]. The distribution of the points (Fig. 5.1(a)) is quite
different between the two methods. In Fig. 5.1(b) one can note that the relative
real error of the approximation (3.5) has very similar behavior to the estimator (3.4).
In particular, the plot tells that for six retained points (GDEIM/DEIM dimension),
when the order of the error is 1072, GDEIM is more accurate than DEIM of about
45%, and of 25% for eight retained points. For the second example, given g(z,7) =
(1.3 + 7)e*™~ !, the function is

B 9(55’7') ifx e [*170)3
fo(z,7) = {_g(x,T) if z € [0, 1],

with € [—1,1], 7 € [1,n]. For this example too, with different selected points (see
Fig. 5.2(a)) there are still some difference between GDEIM and DEIM in accuracy
(Fig. 5.2(b)). Even this time the estimator predicts correctly the real error, except at
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Fig. 5.1: Graphs for fi(x, 7).
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Fig. 5.2: Graphs for fo(x, 7).

the 11th point. In Table 1 we show results from the first example. We list the value of
the L2- and L>-norm of the real error for both GDEIM and DEIM, evaluated for one
parameter value (71) and for nine values (71.9), as the number of points p increases.

Now, we show simulation results from simulating the diode chain [10], whose
model is represented by (2.2). From this experiment, GDEIM and DEIM retained the
same points. We confirm the validity of the extended (G)DEIM to nonlinear func-
tion evaluated non-componentwise. In the following, subscript denotes the index of
the component in the vector-solution and superscript denotes the discretized time in
correspondence of which the solution is computed.

The nonlinear, vector-valued function is g(y(t)) = [g1(y(t)),...,gn_1(y(1)),0]T €
R™ — R™, with

gi(y (1)) = 1 (W) —vira(®)/ez _ 1y,

where c1, co are two constants, for: =1,...,n — 1.
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P L2 (Tl) L2 (7'1:9) LOO (7'1) Loo (’7'1:9)
DEIM GDEIM DEIM GDEIM DEIM GDEIM DEIM GDEIM
6 1.01 0.94 1.01 0.95 2.16 1.91 2.20 1.94
7 0.16 0.09 0.15 0.09 0.34 0.17 0.33 0.16
8 0.04 0.03 0.04 0.03 0.08 0.07 0.08 0.07

Table 5.1: Results from fi(x,7): real error for p retained points, for the two norms, for a
specific (71) and for nine (71.9) parameters.

p L2 (Tl) L2 (Tl;g) LOO (’7'1) Loo (Tl;g)
DEIM GDEIM DEIM GDEIM DEIM GDEIM  DEIM GDEIM
5  4.60e73 3.60e™3  4.60e"3  3.70e7®  6.90e7®  5.90e73 7.10e73  6.00e73
6 2227 1.5de™*  2.24e™*  1.55e7*  4.36e™*  2.14e™*  4.37e7*  2.15e7*
7 5.54e° 6.19¢~° 5.45¢7%  6.09¢° 1.16e7°>  9.92¢¢ 1.14e7%  9.68¢7°

Table 5.2: Results from fy(z,7): real error for p retained points, for the two norms, for a
specific (1) and for nine (71.9) parameters.

In the area of circuit simulation, a common analysis consists of a time-domain simu-
lation of the model. Usually, numerical integration methods are used to compute the
solution of (2.2) for several discrete time points ', through the Newton method. We
choose [t%,t5%°P] = [0, 6] as interval of simulation, the input u;,(t) = sin(10¢) and the
original model’s dimension n = 10°. Then, we compare the accuracy and simulation
time between a normal simulation and the one with the MOR technique. For the
latter, we adopt the following strategy: we compute the full model’s solutions until
tTRAIN ' o during this training period we collect n, solutions in the snapshot matrix
Y = [y(t%),...,y(tTRAIN)] € R"*7s: we then execute POD-GDEIM, to obtain the
projection matrices Vy, (for the POD) and U, (for the GDEIM), and for the rest of
the simulation we solve for the ROM. It is worth noticing that the way we apply the
MOR procedure is different from optimization analysis: while for the latter one builds
a ROM in an off-line phase (one-time cost), that can be reused for further simulations
by changing inputs and/or parameters, here instead we construct the ROM during
the simulation itself that we want to speed up (on-line phase). This gives rise to a
limiting factor for the performance of the simulation, and to challenges for MOR in
circuit simulation.

A good accuracy of the ROM could be obtained by using the first £ = 20 singu-
lar vectors of the basis (obtained through SVD or through an iterative method [6]);
GDEIM generates the vector p = [1,2,...,20]T € RP with p = 20 (nonlinear rows
of g to evaluate). By inspecting the nonlinearities involved in these equations, one
can extract the components of the original model’s vector-solution which are involved.
The vector with indices corresponding to the needed components to be retrieved is
m=[1,2,...,21]T € R™ with m = 21.
Fig. 5.3 shows the plots of the dynamic’s components x2(t) (left) and of the L relative
error

Iy~ Vg
err(f) G

between the full model’s solution and the approximation, for each discrete time point
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just after the POD training period. The adopted strategy of POD-GDEIM for circuit
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Fig. 5.3: Dynamics z5(t) (left) and error of the reduction (right).

simulation requires an on-line phase procedure to compute the ROM, after collecting
the full model’s solutions. As a consequence, the speedup factor (comparison be-
tween the original model’s simulation time and the ROM’s one) is obviously limited
by the time spent for the training period. We obtain a speedup factor of 2.5 with
respect to the normal simulation, which is almost inversely proportional to the ratio
of the training period by the total interval of simulation, but we have a speedup of
approximatively 600 after the training, i.e., the ROM’s solutions are computed much
faster.

6. Conclusions and future perspectives. In this work we have shown that
GDEIM may be a valuable alternative to DEIM, especially when one has strict con-
straints on either the number of points where to evaluate the nonlinearities or when
a modest level of accuracy is acceptable. By using a heuristic, cheap estimator, one
can often choose with reliability between GDEIM and DEIM to speed up simulations
of further analysis. This is beneficial when the dimension of the ROM is required to
be as small as possible, still achieving the desired accuracy of simulations.

Besides, we have provided a mathematical formulation of (G)DEIM to general,
nonlinear functions evaluated non-componentwise. We applied our extended formu-
lation to the simulation of a circuit model (DAEs), obtaining a good total speedup
factor and a speedup of two order of magnitude after the training period. Thus, the
MOR technique could be applied to general nonlinear, parameterized functions.

To conclude, we would like to highlight some of the challenges we identify for
circuit simulation:

1) The error dynamic between the full model and ROM in Fig. 5.3(right) increases
with time. It suggests that an automated procedure is needed to evaluate,
during the simulation, the accuracy of the ROM extracted through the training
period. It might be necessary to update the projection matrix by collecting new
snapshots. An a posteriori, cheap error estimator is needed in this direction.

2) Related to the previous problem, it is clear that repeating the training period
during the simulation and the computation of the projection matrix are lim-
iting factors for the total speedup. We can think of hierarchical partitioning
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of the matrices and exploiting parallelism for the computation of new snap-
shots/projection matrix.
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