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1 Abstract

In this paper, we present a novel isogeometric approach to the numerical solution of the classical Reissner-
Mindlin and Kirchhoff-Love plate equations. This approach eliminates the common issue of locking in thin plates,
a numerical phenomenon resulting from an incompatibility between the finite element spaces for the translational
and rotational displacement degrees of freedom. This locking-free implementation also permits the use of a simple
geometric multigrid method for solving the resulting linear system in which Schwarz methods with intelligently-
chosen subdomains are used for iterative smoothing in the multigrid V-cycles. In the thin plate limit, our multigrid
approach automatically and exactly preserves the constraint that the shear strain is zero at every geometric level.
This results in a method with convergence rates independent of the thickness. Moreover, this elucidates the problem
as a network of coupled plates with Dirichlet boundary data specified by adjacent subdomains. Numerical results
for both the Kirchhoff-Love and Reissner-Mindlin plates are presented. The results demonstrate the robustness of
the numerical method through the invariance of convergence rates with respect to thickness.

2 Introduction - Motivations

Load-bearing structures in a plane-stress state are often modeled through the use of plates and shells. This modeling
approach is desirable in comparison to a full three-dimensional elastic model since through-thickness effects can generally
be neglected, consequently reducing computational expense. However, there are difficulties associated with their
numerical solution. The simplest plate and shell models are based on Kirchhoff-Love theory and were studied largely
in the 50’s. Due to the 4th-order nature of the governing biharmonic form, C1 elements are required for compatibility
with the weak H2 solution. The 21 degree-of-freedom Argyris element is a suitable choice for such a model, requiring
global continuity at nodes and along edges, as well as continuous nodal first and second derivative data. Unfortunately,
the resulting linear system is sorely ill-conditioned. The difficulties associated with constructing well-conditioned and
conforming Kirchhoff-Love elements paved the way for the Reissner-Mindlin plate model, a 2nd-order system requiring
only requiring C0 finite elements for its weak H1 solution. This is accomplished by relating the translational and
rotational displacements through an additional shear strain term. Although Reissner-Mindlin plate elements greatly
simplify implementation, they suffer from a numerical artifact known as “locking.” This phenomenon occurs as thickness
vanishes due to the necessity of satisfying a constraint that the shear strain be zero, resulting in an indefinite linear
system. For most plate elements, this constraint is much too strong, resulting in a loss of approximability. A solution to
this simulation hurdle is to introduce the shear strain as an additional variable and weaken the constraint enforcement
by decreasing its order [1]. Unfortunately, linear systems associated with the Reissner-Mindlin plate model typically do
not lend themselves to efficient iterative solution procedures due to the locking phenomenon and the indefinite nature
of the system as thickness vanishes.

Isogeometric analysis is a novel computational approach which unifies computer-aided design and finite element analy-
sis [4]. Isogeometric analysis has been shown to be a particularly powerful analysis technology for structural mechanics.
The arbitrary continuity between elements provided through the isogeometric paradigm permits a trivial implemen-
tation of the Kirchhoff-Love plate model, since global C1 elements are readily available. Additionally, isogeometric
discrete differential forms allow for a locking-free implementation of the Reissner-Mindlin plate which satisfy the shear
constraint pointwise in the zero-thickness limit, without losing approximability [2]. This further enables the use of
multigrid solvers for both Kirchhoff-Love and Reissner-Mindlin plates. This is accomplished through the use of Schwarz
iterative methods, a generalization of the Jacobi and Gauss-Seidel smoothers. Rather than smoothing and updating the
solution in a node-by-node fashion, we instead define a set of overlapping subdomains [7] on which the Reissner-Mindlin
and Kirchhoff-Love plate problems are solved. In the classical setting, these subdomains lock, but the new method
introduced is locking-free for any mesh size. This results in a robust and efficient linear solver technology.
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3 Isogeometric Analysis

Isogeometric analysis is a modification to the finite element method where rather than using the Lagrange polynomials
for performing analysis, we instead use Non-Uniform Rational B-Splines, or NURBS. The primary motivation behind
this modeling paradigm is to eliminate the design-through-analysis bottleneck - the high expense of creating analysis-
suitable meshes from CAD geometries. A tremendous benefit of using the NURBS basis is that the resulting mesh is
arbitrarily continuous, in contrast to the typical C0 finite element counterpart.

The NURBS functions are derived from the B-spline basis. The B-spline basis used for analysis is constructed by
first specifying an open knot-vector Ξ = (ξ0, ξ1, . . . , ξn+p+1), a vector of knots ξk such that the first and last knot are

repeated p+1 times. This knot vector describes the parametric domain Ω̂ in which the analysis basis exists. Thereafter,
the B-splines can be generated through the Cox-deBoor formula given by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1

0, elsewhere

This formula generates the B-spline basis in one-dimension. The corresponding d-dimensional B-spline basis is obtained
through a tensor product of one-dimensional basis functions.

Figure 1: Sets of B-spline basis functions with varying polynomial degrees: constant, linear, quadratic, and cubic.

For more information regarding isogeometric analysis and NURBS basis functions, the reader is referred to [4] and [8].

4 Plate Geometry and Mechanics

In the plate setting, the displacement field is handled in an idealized fashion. The 3-dimensional plate is modeled as
a 2-dimensional, planar surface, known as the “midsurface,” and through-thickness effects are linearized about this
midsurface. The plate is assumed to live in a Euclidean space, though the choice of basis is not necessarily Cartesian.
We assume the shell midsurface is defined by an isogeometric representation

X(ξ) =
∑
i

PiNi,p(ξ)

where {Ni,p} are NURBS basis functions and {Pi} are control points. Moreover, the in-plane covariant vectors used in
the analysis coordinate frame are defined by the derivative of this mapping with respect to the parametric coordinates,

aα =
∂X

∂ξα

for α = 1, 2. Through these basis vectors, the covariant metric tensor is given by their contraction aαβ = aα · aβ . The
contravariant counterpart to the metric tensor is given by the inverse of the covariant metric tensor, aαβ = [aαβ ]−1.
Note that throughout this paper, Einstein notation is used, therefore repeated high and low indices invoke a summation
between those components.

In what follows, Latin indices correspond to 1, 2, 3 and Greek indices correspond to 1, 2. The normal basis vector, used
for tracking out-of-plane displacements, is given by

a3 =
a1 × a2

‖a1 × a2‖
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The purpose of the metric tensor is used for “raising” and “lowering” indices or equivalently converting vector entities
between their covariant (low index) and contravariant (high index) forms. Particularly,

uα = aαβu
β and uα = aαβuβ

Moreover, the contravariant basis is defined as
aα = aαβaβ

An arbitrary vector in this frame is represented as

u = uαa
α + u3a3

since a3 = a3. With the previous notation established, the displacement of a plate is written as:

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3θ(ξ1, ξ2) (1)

where the term u = uia
i represents the translational displacement of the midsurface while the term θ = θαa

α represents
the rotational displacement of the midsurface. The strong form of the PDE governing the displacement of the plate is
given by the internal and external force balance namely,

σij,j = Fi (2)

where, in the plate setting, the stress tensor is given by

σ = σij a
i ⊗ aj = σij ai ⊗ aj

Under the Hooke’s Law assumption, we can express the stress tensor as the contraction of the strain tensor with the
stiffness tensor Ĉ,

σij = Ĉijklεkl

However, we can further decompose this relationship into its in-plane and out-of-plane components as

σαβ = Cαβλµελµ and σα3 = σ3α =
1

2
Dαλελ3

where the stiffness tensors are given by

Cαβλµ =
E

2(1 + ν)
(aαλaβµ + aαµaβλ +

2ν

1− ν
aαβaλµ) and Dαλ =

2E

1 + ν
aαλ

Now the components of the strain tensor, ε = εij ai ⊗ aj , are given by the components of the symmetric part of the
gradient of the displacement field therefore,

εij =
1

2
(U,i · aj + U,j · ai) (3)

Note that differentiation of a vector, v = via
i, with respect to the parametric variable ξα in the a-frame is defined as

v,β =
∂

∂ξβ
(vαa

α + v3a3) = vα|βa
α + v3,βa3

where the covariant derivatives of in-plane components are given by

uα|β = uα,β + Γλαβuλ

and the Surface Christoffel Symbols are defined as

Γλβα = aλ · aβ,α

Now, after substituting (1) in (3) and simplifiying, we have

εαβ = γαβ(u) + ξ3χαβ(θ)
εα3 = ζα(u3,θ)
ε33 = 0
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where

γαβ(u) = 1/2(uα|β + uβ|α)

χαβ(θ) = 1/2(θα|β + θβ|α)

ζα(u3,θ) = 1/2(θα + u3,α)

(4)

are referred to as the membrane strain, bending strain, and shear strain tensors, respectively. Moreover, in the plate
setting we are primarily concerned with transverse displacements. Therefore, we will define u3 = w (and v3 = v for
virtual displacements) in what follows to clarify subsequent derivations. Refer to [3] for a more detailed derivation and
description of the Kirchhoff-Love and Reissner-Mindlin plate models.

5 Isogeometric Thin Plate Discretizations

Up to this point, we have assumed a plate-like displacement field, but we have not invoked any kinematic assumptions
while doing so. The Reissner-Mindlin plate paradigm accounts for transverse shear strain by handling rotational
and translational displacements as 3 independent degrees of freedom. However, as the thickness tends to zero, these
shearing effects become negligible and the plate approaches a “pure bending” configuration. The Kirchhoff-Love plate
model is suitable for thin members for which ζ = 0 is a valid assumption. Consequently, the rotational displacements
are simply the negative gradient of the translational displacements.

For isogeometric implementation, we must construct a weak form of (2) consisting of the terms presented in the above
strain tensor decomposition. We begin by defining appropriate finite element spaces for the variational formulation.
The translational and rotational displacements exist in the spaces

Sw = Vw := {w ∈ H1(Ω) : w|∂Ω = 0} and Sθ = Vθ := {θ ∈ (H1(Ω))2 : θ × n|∂Ω = 0}

respectively. The test and trial spaces are then defined by

X =

{
Sw, Kirchhoff-Love Plate

Sw × Sθ, Reissner-Mindlin Plate
and Y =

{
Vw, Kirchhoff-Love Plate

Vw × Vθ, Reissner-Mindlin Plate

for the mixed variables in the above space

u =

{
w, Kirchhoff-Love Plate

(w,θ), Reissner-Mindlin Plate
and v =

{
v, Kirchhoff-Love Plate

(v,η), Reissner-Mindlin Plate

We can then discretize the above spaces and the corresponding mixed variables as

Shw := {wh ∈ Sw : wh =

Nv∑
v

uvNv(ξ)} and Shθ := {θh ∈ Sθ : θh =

Ne∑
e

θeMe(ξ)} (5)

where Nv and Me are isogeometric basis functions for the translational and rotational displacement fields, respectively.
We will further specify these functions in what follows. Figure 2 displays representative basis functions for the trans-
lational and rotational displacement fields displayed over the parametric domain. The corresponding discrete test and
trial spaces Xh and Y h are defined as X and Y above.

We are now ready to define the constituent weak forms present in the variational formulation. These are arrived at by
performing appropriate contractions of the strain tensors (4) with their corresponding constitutive relationships and a
virtual displacement. The corresponding bending bilinear form is:

bbending(u,v) =

∫
Ω

Cαβλµχαβ(θ)χλµ(η) dΩ (6)

and the corresponding shear bilinear form is:

bshear(u,v) =

∫
Ω

Dαλζα(w,θ)ζλ(v,η) dΩ (7)
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Figure 2: From left to right: A representative scalar (vertex) basis function for translational displacements of poly-
nomial order 3. A corresponding θ1 vector (edge) basis function for rotational displacements about a2. A
corresponding θ2 vector (edge) basis function for rotational displacements about a1.

The virtual work is given by

F (v) = t

∫
Ω

Fv dΩ (8)

where F = F3 for notational convenience. We concern ourselves only with plates subject to transverse loading, so
membrane effects (and in-plane displacements) may be neglected. With the above specification of test and trial spaces,
and definition of the bilinear forms for bending and shear, isogeometric implementation amounts to solving the following
weak problem:

Find uh ∈ Xh such that

a(uh,vh) = F (vh) (9)

for all vh ∈ Y h where

a(uh,vh) =


t3

12
bbending(∇wh,∇vh), Kirchhoff-Love Plate

t3

12
bbending(uh,vh) + tbshear(u

h,vh), Reissner-Mindlin Plate

and

F (vh) =

∫
Ω

tFvh dΩ

Since (9) will be implemented and subsequently solved through a multigrid method, we must ensure that no issues
arise from intergrid transfer e.g., coarsening or refining the mesh. The Kirchhoff-Love equation is fully capable of
implementation in a multigrid setting, since only a second derivative term appears in the weak form, provided the
NURBS basis is at least C1-continuous. However, this is not the case for the weak form for the Reissner-Mindlin
equation above. In particular, this equation suffers from locking, a numerical artifact which arises as a consequence of
the “plate” assumption used in the derivation of the model.

This phenomenon can be understood by observing the asymptotic behavior of (9) as the thickness vanishes. This is
accomplished by recasting the equation in the form

bbending(uh,vh) + t−2bshear(u
h,vh) =

∫
Ω

gv dΩ (10)

where g is a thickness-scaled loading. It can be shown that as thickness tends to zero, the weak problem (9) reduces
to the aforementioned “pure bending” problem

bbending(uh,vh) =

∫
Ω

gv dΩ
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Conceptually, this illustrates the fact that transverse shear strain, ζ, is negligible for thin members. However, this is
the dominant term in the asymptotic limit of (10) above. Therefore, we must have that ζ → 0 at least quadratically
in t as t→ 0, which implies that

∇w ≈ −θ (11)

for t� 1. However for standard isogeometric finite element spaces, this condition must be weakened for compatibility
with the basis. For example, consider the limiting case where t = 0 and assume piecewise continuous linear basis
functions are used for both translational and rotational displacements. Note that piecewise continuous linear basis
functions become piecewise constants after differentiation. Moreover, if θ is to be both continuous and piecewise
constant with Dirichlet boundary conditions, (11) implies (erroneously) that w ≡ 0 and θ ≡ 0; for 0 < t � 1, this
drastically slows convergence rates and generally requires mesh resolution of h ≈ O(t) to overcome locking.

Ultimately, a multigrid method would suffer from locking on the coarse grids in a conventional finite element framework.
However, we can construct a locking-free implementation by preserving the plate cohomology in the choice of basis.
This amounts to selecting discrete test and trial spaces which satisfy:

Sw
~∇−−−−→ SθyΠw

yΠθ

Shw
~∇−−−−→ Shθ

(12)

where Πw and Πθ are so-called commuting projection operators. Provided such a commuting diagram holds, we have
that for any wh ∈ Shw, there exists a θh ∈ Shθ such that the shear constraint ∇wh = −θh is satisfied pointwise. We
are able to exactly preserve the plate cohomology using the emerging framework of isogeometric discrete differential
forms [2]. Within this framework, Nv and Me can be considered as smooth generalizations of the Nédélec elements
which exist on the vertices and edges of the mesh, respectively, as displayed by Figure 2.

6 Iterative Schwarz Methods for Overlapping Subdomains

The locking-free Reissner-Mindlin plate paradigm presented above permits the use of multigrid methods for iterative
solution, since the prior concern of coarse-grid locking is no longer an issue. However, the nature of the Reissner-
Mindlin plate system requires a smoother which respects the coupling between the rotational and translational degrees
of freedom in the zero thickness limit. Particularly, we consider the generalization of the Jacobi and Gauss-Seidel
smoothers known as Schwarz methods.

Schwarz methods are divided into two schemes, additive and multiplicative. The former is analogous to Jacobi, where
the solution is updated only after a complete domain smoothing while the latter is comparable to Gauss-Seidel, where
the solution is updated after each smoothing step [5]. The difference between the methods arises in the definition of the
entities which are smoothed. Particularly, while Jacobi and Gauss-Seidel smooth nodal quantities, Schwarz methods
are applied to pre-defined subdomains; in the case where the subdomains are the individual degrees of freedom, the
Schwarz methods coincide with Jacobi and Gauss-Seidel.

For the purpose of the Reissner-Mindlin plate model, we select subdomains with the relationship between translational
and rotational degrees of freedom in mind so the smoothing process permits communication between the various
displacements. In particular, we specify the subdomains to be the set of functions contained in the support of the
vertex basis function i.e., Ωv = supp(Nv), as shown in Figure 3. This specification ensures that we have a commuting
diagram like (12) for each subdomain. This also illuminates the interpretation of Schwarz smoothing solving a series of
coupled small-plate problems, where each subdomain is considered to be a small Reissner-Mindlin plate with Dirichlet
boundary data specified by translational and rotational displacements of neighboring plate elements. Therefore we
consider the weak subdomain plate problem posed over the subdomain spaces defined by

Shwv
= Vhwv

:= {wh ∈ Shw : supp(wh) ⊂ Ωv} and Shθv = Vhθv := {θh ∈ Shθ : supp(θh) ⊂ Ωv} (13)
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and furthermore the subdomain test and trial spaces defined by

Xh
v :=

{
Shwv

, Kirchhoff-Love Plate
Shwv
× Shθv , Reissner-Mindlin Plate

and Y hv :=

{
Vhwv

, Kirchhoff-Love Plate
Vhwv
× Vhθv , Reissner-Mindlin Plate

Figure 3: A representative subdomain defined by the support of the vertex basis function and containing the adjacent
edge basis functions.

After defining the overlapping subdomains, we are ready to present the Schwarz methods used for iterative smoothing
of the numerical solution. Through the subdomain definition, we are able to construct restriction and prolongation
operators that isolate and combine the corresponding subdomain stiffness matrices.

Consider the domain for a fixed level l of the multigrid method such that Ωl = ∪vΩlv, where Ωlv = Ωv. We define
restriction and prolongation operators via Rv : Ωl → Ωlv and RTv : Ωlv → Ωl. The nth iteration of the Schwarz method
begins by first computing the residual rn = f −Aun. The additive Schwarz method is then defined via

un+1 = un + η

(
N∑

v=1

RTv (RvAR
T
v )−1Rv

)
rn

where η ∈ (0, 1] is the scaling factor. This factor is introduced because additive Schwarz does not preserve the partition
of unity hence will not converge, as introduced in [7]. The multiplicative Schwarz method for N subdomains is defined
as

un+ i
N = un+ i−1

N +RTv (RvAR
T
v )−1Rvr

n+ i−1
N

7 Numerical Tests

We now present a series of numerical tests illustrating the effectiveness of our proposed multigrid framework. The
first test is a weakly clamped rectangular Kirchhoff-Love plate with uniform downward loading. The exact solution
to this problem is known and used as an assessment of convergence. Figure 4 contains a table displaying the number
of V-cycles required to reduce the error by 106, along with the corresponding average convergence factor during this
process, for various numbers of degrees of freedom. For each V-cycle, one pre and post smoothing step is employed
using the multiplicative Schwarz smoother. From the figure, we observe that the number of iterations required for error
reduction is independent of the number of levels. Figure 5 demonstrates the convergence of the numerical solution
with mesh refinement if a full multigrid algorithm is employed for system solution. From the figure, we observe the
convergence is optimal with respect to mesh refinement. That is, the error decays like N−2, where N is the number of
degrees of freedom.

Our second test is a weakly-clamped parallelogram Kirchhoff-Love plate with uniform downward loading. As opposed
to the first test, the exact solution to this test exhibits singularities in the obtuse corners which inhibit convergence.
Figure 6 contains a table displaying the number of V-cycles required to reduce the error by 106, along with the
corresponding average convergence factor during this process, for various numbers of degrees of freedom. The V-cycles
for this problem are identical to the rectangular plate case. From the figure, we observe that the number of iterations
required for error reduction is asymptotically independent of the number of levels, though the number of iterations
required for convergence for this problem is larger than the number required for the first problem. This detoriation is
a consequence of the singularities present in the exact solution.
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DOFs V-cycles Convergence Factor
16 9 0.211
25 10 0.241
49 9 0.203
121 9 0.213
361 10 0.229
1225 10 0.226

Figure 4: Convergence behavior and displacement plot for the rectangular Kirchhoff-Love plate system using a V (1, 1)
scheme.

DOFs Error Convergence Rate
16 2.879e-05 -
25 3.698e-06 4.5985
49 3.863e-07 3.3568
121 6.404e-08 1.988
361 3.528e-09 2.6519
1225 4.781e-10 1.6358

Figure 5: Convergence rates and plot of ‖e‖L2 at various levels of refinement for the rectangular Kirchhoff-Love plate
using FMG(1,1,1) scheme.

DOFs V-cycles Convergence Factor
16 6 0.092
25 13 0.341
49 39 0.699
121 65 0.808
361 82 0.845
1225 86 0.851

Figure 6: Convergence behavior and displacement plot for the parallelogram Kirchhoff-Love plate system using a V (1, 1)
scheme.

Next, results for the weakly clamped, rectangular Reissner-Mindlin plate with uniform loading are presented. Table 1
shows the number of V-cycles required to reduce the norm of the residual by 106, along with the average convergence
factor during this process, for various levels of refinement. Similarly to the Kirchhoff-Love plate, one pre and post
smoothing step is employed using the multiplicative Schwarz smoother, for each V-cycle. From the figure, we observe
that the number of iterations required for error reduction is independent of the number of levels. Perhaps more
importantly, the convergence rate is independent of the plate thickness. This is the first time this has been observed for
a Reissner-Mindlin plate discretization in its primal form. This observation has considerable implications in engineering
practice. The ability to develop robust, efficient, and easy to implement multigrid methods for beams, plates, and shells
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has the potential to dramatically reduce the cost associated with structural mechanics simulations. This is made further
evident when coupled with the enhanced robustness and accuracy of isogeometric analysis, as compared to classical
finite element analysis.

Table 1: Convergence behavior of the rectangular Reissner-Mindlin plate for at various thicknesses with the multiplica-
tive Schwarz smoother. The “V-cycles” column presents the number of V(1,1)-cycles required to reduce the
residual by 106. The “Convergence Factor” column is the average convergence factor through this process.

t = 0.05 t = 0.01 t = 0.001 t = 0.0001

DOFs V-cycles
Convergence

Factor
V-cycles

Convergence
Factor

V-cycles
Convergence

Factor
V-cycles

Convergence
Factor

65 22 0.528 23 0.541 19 0.479 16 0.416
133 24 0.562 25 0.572 24 0.560 20 0.498
341 19 0.480 20 0.498 19 0.482 19 0.481
1045 17 0.436 18 0.458 18 0.458 18 0.459
3605 12 0.313 15 0.390 16 0.419 16 0.420
13333 12 0.310 14 0.362 15 0.392 15 0.396

The additive Schwarz method lends itself to efficient parallel implementation, as opposed to the multiplicative Schwarz
method. As a final test, we examined the effectiveness of the additive Schwarz method as a smoother for the weakly
clamped rectangular Reissner-Mindlin plate. Figure 7 contains a table displaying the number of V-cycles required
to reduce the error by 106, along with the corresponding average convergence factor during this process, for various
numbers of degrees of freedom. From the figure, we observe that the number of iterations required for error reduction is
independent of the number of levels though the convergence factor is higher than that associated with a multiplicative
Schwarz smoother. This deterioration in convergence is offset by the lower computational cost of the additive Schwarz
method, as well as its capability for parallel implementation.

DOFs V-cycles Smoothing Factor Convergence Factor
65 35 0.4 0.671
133 40 0.4 0.705
341 62 0.4 0.800
1045 60 0.4 0.793
3605 51 0.4 0.762
13333 49 0.3∗ 0.754

Figure 7: Convergence behavior for a V (1, 1)-cycle and displacement plot for the (t = 0.0001) rectangular Reissner-
Mindlin plate system of 13333 DOFs solved using full multigrid with the additive Schwarz smoother. ∗A
smoothing factor of η = 0.3 was required for the solution to converge on the finest mesh.

Numerical tests were also run for problems with complex geometry and various loadings. Similar results were achieved
in these cases, further demonstrating the robustness of the proposed framework. The results of these tests are not
shown for brevity.
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8 Conclusions and Future Work

In this paper, we presented a locking-free isogeometric approach to the numerical solution of the classical Reissner-
Mindlin and Kirchhoff-Love plate equations. The isogeometric paradigm automatically provides the necessary con-
tinuity for a weak implementation of the Kirchhoff-Love plate, while the algebraic structure of isogeometric discrete
differential forms yields a robust and accurate method for the Reissner-Mindlin plate, independent of plate thickness.
Our new approach permits linear system solution through a geometric multigrid method. This is in contrast with
classical approaches, which require the use of expensive direct solvers. Our multigrid methods leverage the use of
additive and multiplicative Schwarz smoothers with overlapping subdomains. This illuminates the interpretation of
the overall problem as a system of coupled plates with Dirichlet boundary data specified by neighboring subdomains.
Illustrative numerical tests were provided that demonstrate our method is robust and converges with rates independent
of the plate thickness and mesh size.

In future work, we will extend the presented method to classical and shear-deformable shells. We anticipate that the
present method may be easily extended to this setting, though we expect modifications will be required to address the
problem of membrane locking. Thereafter, we will extend our framework to complex structures consisting of multiple
beams, plates, and shells (e.g., an airplane wing). Application of our framework to such complex structures will require
the use of parallel implementation to to alleviate simulation cost and to simultaneously deal with increased memory
requirements. Finally, we anticipate that our framework may be easily extended to incompressible fluid flow problems
by exploiting the existence of a Stokes cohomology [6, 7].
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