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Abstract

Parameter optimization problems constrained by partial differential equations (PDEs) appear in many
science and engineering applications. Solving these optimization problems may require a prohibitively large
number of computationally expensive PDE solves, especially if there are many variable parameters. It is
therefore advantageous to replace expensive high-dimensional PDE solvers (e.g. finite element) with lower-
dimension surrogate models. In this paper, we use the reduced basis (RB) model reduction method in con-
junction with a trust region optimization framework to accelerate PDE-constrained parameter optimization.
New a posteriori error bounds on the RB cost and cost gradient for quadratic cost functionals are presented,
and used to guarantee convergence to the optimum of the high-fidelity model. The proposed certified RB
trust region approach thus requires only a minimal number of high-order solves, used to update the RB model
if the approximation is no longer sufficiently accurate. We consider problems governed by elliptic PDEs and
present numerical results for a thermal fin model problem with six parameters.

1 Introduction
PDE-constrained parameter optimization problems form a broad class of problems with applications across
engineering and science disciplines. In an engineering design setting, PDE-constrained parameter optimization
is used to determine the optimal parameters of a system of interest, such as an airplane wing or a thermal
fin. Because typical optimization algorithms require many simulations of the system dynamics, using classical
discretization techniques (e.g. finite element) to solve these problems may be prohibitively expensive. One way
to address this issue is to make use of surrogate models of reduced dimension.

Numerous model reduction approaches exist and have been successfully applied to PDE-constrained optimiza-
tion problems. In this paper, we build on the reduced basis (RB) method, a projection-based model reduction
technique first developed in the late 1970s that supports rigorous a posteriori error estimation (see [1] for a
review). Like other projection-based methods, the RB method is traditionally divided into a computationally
expensive offline phase, during which the reduced basis is built to be globally accurate over the entire param-
eter domain, and an online phase, in which the model may be efficiently evaluated at any parameter within
the admissible domain, making it particularly suited to many-query and real-time contexts. However, although
optimization is a many-query context, the traditional online-offline decomposition is not particularly efficient for
optimization, because typical gradient-based optimization algorithms require only local accuracy of the model
along the optimization trajectory. A significant portion of the computational expenditure in ensuring global
accuracy of the model is thus wasted.

The trust region optimization framework provides us with a natural way to break with the traditional online-
offline divide and progressively build the RB model along the optimization trajectory. This work builds on several
contributions on the use of surrogate models in trust region optimization. Alexandrov et al. show convergence
of the trust region approach when using models that satisfy the first-order condition [5]. Others have explored
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the use of specific model reduction methods, including POD [6, 7], Krylov interpolatory methods [8], and, in
the stochastic context, sparse grids [9]. In particular, we make use of a result from Yue and Meerbergen which
guarantees convergence of a trust region framework using surrogate models for which error bounds exist [8].

In this paper, we use reduced basis models and the associated a posteriori error bounds to demonstrate
convergence of a trust region reduced basis framework for parametrized linear elliptic PDEs with quadratic cost
functionals. Section 2 presents the problem formulation and introduces our notation. Section 3 gives an overview
of the reduced basis method and presents the reduced basis error bounds needed for the trust region algorithm.
In Section 4, we introduce the trust region framework, discuss the convergence theory, and present the combined
trust region reduced basis optimization algorithm. Section 5 demonstrates the algorithm on a thermal fin model
problem and performance of the algorithm is compared to that of a standard quasi-Newton method.

2 Problem formulation
Let Ω be a physical domain in Rd with Lipschitz continuous boundary ∂Ω. We define the Sobolev space Xe ≡
H1

0 (Ω) ⊂ H1 (Ω), where H1 (Ω) =
{
v | v ∈ L2 (Ω) ,∇v ∈

(
L2 (Ω)

)d} and H1
0 (Ω) =

{
v | v ∈ H1 (Ω) , v|∂Ω = 0

}
.

We associate with Xe the inner product (w, v)Xe ≡
´

Ω
∇w · ∇v +

´
Ω
wv, ∀w, v ∈ Xe, as well as the induced

norm ‖·‖Xe =
√

(·, ·)Xe . Additionally, we define Y e ≡ L2 (Ω), with associated inner product (w, v)Y e ≡
´

Ω
wv,

∀w, v ∈ Y e and induced norm ‖·‖Y e =
√

(·, ·)Y e . The superscript ·e indicates that we are dealing with the “exact”
continuous domain.

We now introduce the weak form of the µ-parametrized elliptic PDE,

a (ue (µ) , v;µ) = f (v) , ∀v ∈ Xe, (1)

and quadratic cost functional of the PDE solution vector,

Je (µ) = d (ue (µ) , ue (µ)) + ` (ue (µ)) , (2)

where µ is a parameter vector in the parameter domain D ⊂ RP , a (·, ·;µ) and d (·, ·) areXe-continuous symmetric
bilinear forms, and ` (·) and f (·) are Y e-continuous linear forms. We note that this cost definition fits the standard
output least squares formulation. The optimization problem is to find the parameter µeopt which minimizes the
cost Je (µ), i.e.,

µeopt = arg min
µ∈D

Je (µ) . (3)

We make several assumptions on the bilinear forms that appear in the above formulation. First, we assume
continuity of a (·, ·;µ) and d (·, ·), i.e.,

a (w, v;µ) ≤ γa (µ) ‖w‖X ‖v‖X ≤ γa0 ‖w‖X ‖v‖X , ∀w, v ∈ X,∀µ ∈ D (4)

and
d (w, v) ≤ γd ‖w‖X ‖v‖X , ∀w, v ∈ X,∀µ ∈ D, (5)

where γa (µ) and γd are the continuity constants of a (·, ·;µ) and d (·, ·), respectively. We also assume coercivity
of a (·, ·;µ), i.e.,

0 < α0 ≤ α (µ) ≡ inf
v∈X

a (v, v;µ)

‖v‖2X
, ∀µ ∈ D, (6)

where α (µ) is the coercivity constant, and that a (·, ·;µ) exhibits affine dependence on the parameter µ, i.e. we
can write the form as

a (w, v;µ) =

Qa∑
q=1

Θq
a (µ) aq (w, v) ∀w, v ∈ X,∀µ ∈ D, (7)

where Qa is an integer. For simplicity, we assume that the forms f (·), d (·, ·), and ` (·) are parameter-independent,
although extensions to affine dependence are readily admitted [1].

To make use of gradient-based optimization methods, we require not only the cost but also its derivatives.
Derivatives of PDE outputs may be efficiently calculated using adjoint methods, which allow derivatives in all
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directions to be computed by solving just two equations. We thus introduce the adjoint (dual) problem associated
with our primal problem and cost [2], given by

a (v, ψe (µ) ;µ) = 2d (ue (µ) , v) + ` (v) , ∀v ∈ Xe. (8)

For ease of notation, we assume a single parameter µ, but the extension to multiple parameters is straightforward.
We may thus calculate the derivative of the cost function with respect to the parameter µ via

∇µJe (µ) = −aµ (ue (µ) , ψe (µ) ;µ) , (9)

where the sensitivity bilinear form aµ (·, ·;µ) is the derivative of a (·, ·;µ) with respect to the parameter µ. We
assume that aµ (·, ·;µ) is continuous, i.e.,

aµ (w, v;µ) ≤ γaµ (µ) ‖w‖X ‖v‖X ≤ γaµ0 ‖w‖X ‖v‖X , ∀w, v ∈ X,∀µ ∈ D. (10)

Affine dependence of a (·, ·;µ) implies that the sensitivity bilinear form aµ (·, ·;µ) also exhibits affine dependence
on the parameter µ, i.e. it follows from (7) that

aµ (w, v;µ) =

Qa∑
q=1

∂Θq
a (µ)

∂µ
aq (w, v) ∀w, v ∈ X,∀µ ∈ D. (11)

We assume that we have access to αLB (µ), a lower bound on α (µ), and to γUBaµ (µ), an upper bound on γaµ (µ).
These can be calculated via either the “min-theta” approach for affine coercive problems [1], or more generally, via
the successive constraint method [3]. We also assume we have access to the constant γd which can be calculated
by solving a generalized eigenvalue problem.

Finally, we introduce the N -dimensional finite element (FE) approximation space X ⊂ Xe and define Y ≡ Y e.
X and Y inherit their inner product and norm definitions from Xe and Y e. For use in the reduced basis method,
we will assume that N is sufficiently large that ue (µ) and u (µ) are indistinguishable (and likewise for Je (µ) and
J (µ)). The weak form of our PDE in the finite element space is given by

a (u (µ) , v;µ) = f (v;µ) , ∀v ∈ X, (12)

with adjoint
a (v, ψ (µ) ;µ) = 2d (u (µ) , v) + ` (v) , ∀v ∈ X, (13)

and cost and cost gradient
J (µ) = d (u (µ) , u (µ)) + ` (u (µ)) (14)

and
∇µJ (µ) = −aµ (u (µ) , ψ (µ) ;µ) (15)

The optimization problem then becomes to find µopt satisfying

µopt = arg min
µ∈D

J (µ) . (16)

3 Reduced basis approximation
The reduced basis (RB) approximation method is a projection-based model reduction method where the N -
dimensional approximation space is given by the span of N ‘snapshots’, i.e. FE solutions taken at various chosen
parameters. For the primal problem, this space is denoted Xpr

N and is defined to be

Xpr
N = span {ζn ≡ u (µprn ) , 1 ≤ n ≤ N} . (17)

The RB approximation uN (µ) ∈ Xpr
N to the exact solution u (µ) is obtained through a standard Galerkin

projection:

a (uN (µ) , v;µ) = f (v;µ) , ∀v ∈ Xpr
N (18)
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For the dual problem, the RB approximation space is denoted Xdu
N and is defined to be

Xdu
N = span

{
Υn ≡ ψ

(
µdun
)
, 1 ≤ n ≤ N

}
, (19)

and the RB dual approximation ψN (µ) ∈ Xdu
N is given by

a (v, ψN (µ) ;µ) = 2d (uN (µ) , v) + ` (v) , ∀v ∈ Xdu
N . (20)

This allows calculation of the RB cost and cost gradient via

JN (µ) = d (uN (µ) , uN (µ)) + ` (uN (µ)) , (21)

and
∇µJN (µ) = −aµ (uN (µ) , ψN (µ) ;µ) . (22)

3.1 A posteriori error estimation
In addition to allowing for efficient solution approximation, the RB method also allows efficient a posteriori
calculation of upper bounds on the error in the RB solution. In this section, we summarize the standard a
posteriori error estimation result for the primal problem, referring the reader to [1] for the detailed development.
This result is extended to the dual problem, and primal-dual a posteriori bounds on the error in the cost and
cost gradient are presented.

Error bounds in the X-norm We first consider error in the reduced basis approximation to the primal
problem, given by

epr (µ) = u (µ)− uN (µ) (23)
To arrive at a bound on epr (µ), we consider the residual of the primal weak form (18),

rpr (v;µ) = f (v;µ)− a (uN (µ) , v;µ) ,∀v ∈ X, (24)
and introduce its Riesz representation,

(r̂pr (µ) , v)X = rpr (v;µ) , ∀v ∈ X. (25)
It follows from the Riesz representation theorem that

‖r̂pr (µ)‖X = ‖rpr (·;µ)‖X′ = sup
v∈X

rpr (v;µ)

‖v‖X
, ∀v ∈ X. (26)

We may then arrive at a bound on the X-norm of epr (µ) in terms of the dual norm of the residual and the
coercivity lower bound [1],

‖epr (µ)‖X ≤ ∆pr
N (µ) =

‖r̂pr (µ)‖X
αLB (µ)

. (27)

Next, we consider the error in the dual problem, given by

edu (µ) = ψ (µ)− ψN (µ) . (28)

To arrive at an analogous bound for this error, we require the residual of the dual weak form (20),

rdu (v;µ) = 2d (uN (µ) , v;µ) + ` (v;µ)− a (v, ψN (µ) ;µ) , ∀v ∈ X. (29)

Again, we use the Riesz representation theorem to note that∥∥r̂du (µ)
∥∥
X

=
∥∥rdu (·;µ)

∥∥
X′ = sup

v∈X

rdu (v;µ)

‖v‖X
, ∀v ∈ X, (30)

where the Riesz representation is given by(
r̂du (µ) , v

)
X

= rdu (v;µ) , ∀v ∈ X, (31)

allowing us to bound the X-norm of edu (µ) [4] by∥∥edu (µ)
∥∥
X
≤ ∆du

N (µ) =

∥∥r̂du (µ)
∥∥
X

+ 2γUBd (µ) ∆pr
N (µ)

αLB (µ)
. (32)
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Error bounds for the cost and cost gradient The error in the cost functional follows from (14) and (21),
i.e.,

eJ (µ) = J (µ)− JN (µ) = d (u (µ) , u (µ))− d (uN (µ) , uN (µ)) + ` (u (µ)− uN (µ)) , (33)

for which we may obtain the bound [4]

∣∣eJ (µ)
∣∣ ≤ ∆J

N (µ) ≡
‖r̂pr (µ)‖X

∥∥r̂du (µ)
∥∥
X

+ γUBd (µ) ‖r̂pr (µ)‖X ∆pr
N (µ)

αLB (µ)
+ |rpr (ψN (µ) ;µ)| . (34)

For the error in the cost gradient, we obtain from (15) and (22)

e∇µJ (µ) = ∇µJ (µ)−∇µJN (µ) = aµ (u (µ) , ψ (µ) ;µ)− aµ (uN (µ) , ψN (µ) ;µ) (35)

for which we may obtain the bound [4]

e∇µJ(µ) ≤ ∆
∇µJ
N (µ) = γUBaµ (µ)

(
∆pr
N (µ) ∆du

N (µ) + ∆pr
N (µ) ‖ψN (µ)‖X + ‖uN (µ)‖X ∆du

N (µ)
)
. (36)

3.2 Computational procedure
Like many model reduction methods, the RB method is traditionally divided into a computationally expensive
offline phase and a computationally efficient online phase. During the offline phase, a greedy algorithm is used
to choose the parameters µprn and µdun at which snapshots are taken to minimize the maximum error in the RB
approximation over the entire admissible parameter domain [1]. Snapshots are computed, and N -dimensional
matrices and vectors are used to precompute N -dimensional matrices and vectors for use during the online
phase. This allows all computation during the online phase of the RB algorithm to involve only N -dimensional
quantities, allowing efficient execution of many model evaluations. Details of this online-offline decomposition
for the state approximation and error estimation are presented in [1]. The online-offline decompositions for the
dual problem, sensitivity approximations, and associated error estimations are analogous [4], and are not given
explicitly here.

4 Trust region framework
The canonical trust region optimization framework uses a model function mk (µ) to approximate the objective
function J (µ) at each iterate µk. The model function mk (µ), which generally changes at each trust region
iteration, is often a local quadratic Taylor expansion, although various other approximate models, including
POD, have been considered in [5, 9, 6, 8]. Additionally, for each iterate, we specify a trust region radius δk,
which allows us to define the kth trust region subproblem as

min
s
mk
(
µk + s

)
s.t. ‖s‖ ≤ δk (37)

To determine if the step s should be accepted, we compute the ratio ρk =
m(µk)−m(µk+1)
J(µk)−J(µk+1)

, a measure of how
well the model predicts decrease in the true cost. The value of ρk is used to determine not only whether or not
the optimization step is accepted, but also whether the trust region radius should increase, decrease, or stay the
same for the next optimization subproblem. One criticism of this approach is that the computation of ρk requires
evaluating the true objective function J (µ), which may be computationally expensive.

To address this criticism, we use the reduced basis cost JkN (µ) as our model function mk (µ). The a posteriori
error bounds which we have developed in Section 3 allow us to eliminate the evaluations of the true cost. Finally,
we use a recent result from Yue and Meerbergen [8] to use the a posteriori error bounds to guarantee convergence
of our trust region approach to the optimum of the high-fidelity model.

4.1 Convergence
Standard trust region convergence theory requires (i) that the model function mk satisfy the first-order condition,
i.e. the model function must match the true objective and gradient at the current iterate exactly, and (ii) that
each iterate of the optimization meet a sufficient decrease condition. In [8], Yue and Meerbergen relax these
requirements to consider the general setting of an unconstrained trust region optimization algorithm which
makes use of surrogate models with the following properties:
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1. a bound on the error in the model function exists over the entire parameter space,

2. at any point within the parameter domain, we may reduce the approximation error to within any given
tolerance ε > 0, and

3. the model function must be smooth with finite gradient everywhere.

Given the above conditions, Yue and Meerbergen replace the first-order condition with the following relaxed
first-order condition (adapted to our notation from Sections 2 and 3):

A.
∣∣JkN (µk)− J (µk)∣∣ ≤ ∆J,k

N

(
µk
)

and
∥∥∇µJkN (µk)−∇µJ (µk)∥∥ ≤ ∆∇J,kN

(
µk
)

B.
∆J,k
N (µk)
JkN (µk)

≤ τJ and
∆∇J,k
N (µk)

‖∇µJkN (µk)‖ ≤ τ∇µJ
(38)

for any given τJ > 0 and τ∇J > 0. There are two parts to the relaxed first-order condition. Part A requires that
error bounds exist for both the cost function and its gradient. Part B requires that we be able to infinitely refine
the reduced model; i.e. for any given τJ and τ∇J , we can build a reduced basis model for which the relative error
bounds are lower than these tolerances. The sufficient decrease condition is similarly replaced, with what Yue
and Meerbergen term an “error-aware sufficient decrease condition”:

Jk+1
N

(
µk+1

)
≤ JkN

(
µkAGC

)
(39)

where µAGC is known as the “approximate generalized Cauchy point”, defined to be a point that achieves sufficient
decrease in the reduced basis model in a descent direction.

If the relaxed first-order condition is satisfied, and all iterates satisfy the error-aware sufficient decrease
condition, Yue and Meerbergen show convergence of the trust region algorithm to the optimum of the high-
fidelity model under mild assumptions [8] which are satisfied in our setting. We note that the a posteriori error
bounds of reduced basis models satisfy part A of the relaxed first-order condition, and that these bounds may
be reduced to zero by simply adding the finite element solutions at the current iterate u

(
µk
)
and ψ

(
µk
)
to the

primal and dual bases, respectively, satisfying part B. Thus, to ensure convergence of the trust region reduced
basis algorithm, we need only ensure that all iterates satisfy the error-aware sufficient decrease condition by
rejecting steps which violate this condition.

4.2 Trust region reduced basis algorithm
The optimization subproblem for the trust region reduced basis (TRRB) algorithm is defined as follows:

min
µk+1

JkN
(
µk+1

)
s.t.
∣∣∣∣∆J,k

N (µk+1)
JkN (µk+1)

∣∣∣∣ ≤ εL (40)

Any line search method may be used for the solution of the optimization subproblem; in Section 5 we use a BFGS
method. The error bound on the cost functional, ∆J,k

N (µ), is used to implicitly define the trust region, requiring
that iterates of the line search remain within regions for which the error bound is less than εL times the cost. If
the line search steps outside of this region, we use backtracking to bring the line search back to a region where
∆J,k
N (µ) is sufficiently low.
For each subproblem solve, we have two possible stop criteria: either (i) the line search method locates a

stationary point within the trust region, or (ii) the line search gets too close to the boundary of the current trust
region, i.e., ∥∥∇JkN (µ)

∥∥ ≤ τsub or βεL ≤
∆J,k
N (µ)

JkN (µ)
≤ εL (41)

for some small τsub ≥ 0 and for some β ∈ (0, 1), generally close to 1. The latter criterion prevents the algorithm
from expending too much effort optimizing close to the trust region boundary, because we heuristically assume
that further attainable gains in this region are minimal. Overall convergence is reached when the norm of the
true gradient is less than a tolerance τ ≥ τsub, i.e. when∥∥∇J (µk)∥∥ ≤ ∥∥∇JkN (µk)∥∥+ ∆

∇µJ,k
N

(
µk
)
≤ τ. (42)

The reduced model we employ is a progressively-built reduced basis model, where the primal and dual bases
used to calculate J0

N (µ) and ∇µJ0 (µ) consist solely of u
(
µ0
)
and ψ

(
µ0
)
, respectively. In the course of the

6



optimization, the iterates u
(
µk
)
and ψ

(
µk
)
are added to the RB model if the relative error bound gets close

to exceeding the defined trust region tolerance (i.e. if the previous subproblem optimization terminates because
the line search is close to the trust region boundary). In building and adding to our reduced basis this way, we
automatically satisfy the relaxed first-order condition (38), because the reduced model is able to exactly represent
the FE solution at each trust region iterate in our elliptic context.

Below, we summarize the algorithm steps:

1. Initialization. Let k = 0, and choose τ ≥ τsub ≥ 0, τ∇J ∈ (0, 1), and β ∈ (0, 1). Additionally, choose µ0,
the initial optimization point, κtr < 1, a decrease factor for the trust region size, and εL, the initial trust
region error boundary. Generate the initial reduced basis model by computing truth solutions u

(
µ0
)
and

ψ
(
µ0
)
.

2. Optimization sub-problem. Minimize JkN (µ) with the stopping criteria∥∥∇JkN (µ)
∥∥ ≤ τsub or βεL ≤

∆J,k
N (µ)

JkN (µ)
≤ εL (43)

3. Determine step acceptance.

(a) First, we note that a sufficient condition for (39) is

JkN
(
µk+1

)
+ ∆J,k

N

(
µk+1

)
+ ∆J,k+1

N

(
µk+1

)
≤ JkN

(
µkAGC

)
. (44)

Note that we do not have access to ∆J,k+1
N

(
µk+1

)
. However, it is sufficient to instead check

JkN
(
µk+1

)
+ ∆J,k

N

(
µk+1

)
< JkN

(
µkAGC

)
. (45)

because we may add u
(
µk+1

)
and ψ

(
µk+1

)
to the RB model before the next subproblem solve to

ensure ∆J,k+1
N

(
µk+1

)
= 0, thus also satisfying the sufficient condition. This is cheap to check, and if

it holds we may accept µk+1, add u
(
µk+1

)
and ψ

(
µk+1

)
to the reduced basis model, and go to Step

4.

(b) Otherwise, we note that a necessary condition for (39) is

JkN
(
µk+1

)
−∆J,k

N

(
µk+1

)
−∆J,k+1

N

(
µk+1

)
≤ JkN

(
µkAGC

)
. (46)

So we check
JkN
(
µk+1

)
−∆J,k

N

(
µk+1

)
≤ JkN

(
µkAGC

)
. (47)

If this condition fails, satisfying (46) may require a large error bound in the next model, leading to
inaccurate approximations, so we reject the iterate µk+1, shrink the trust region (set εL = κtrεL), and
re-solve the optimization sub-problem (go to Step 2).

(c) Otherwise, if (47) holds, we add u
(
µk+1

)
and ψ

(
µk+1

)
to the reduced basis model and check (39). If

it holds, then we accept µk+1 and go to Step 4.

(d) Otherwise, we reject µk+1, set εL = κtrεL, and re-solve the optimization subproblem (go to Step 2).

4. Convergence check. If
∥∥∇Jk+1

N

(
µk+1

)∥∥+ ∆
∇µJ,k+1
N

(
µk+1

)
≤ τ , return µk+1 and stop.

5 Numerical tests

5.1 Model problem
To demonstrate our algorithm, we consider a two-dimensional thermal fin with a fixed geometry (Fig. 1) consisting
of a central post and four horizontal subfins [10]. The fin conducts heat away from a uniform flux source at the
root of the fin, Γroot, through the post and subfins to the surrounding air. The fin is characterized by a six-
dimensional parameter vector µ = (k0, k1, k2, k3, k4,Bi)

T containing the heat conductivities of different regions
of the fin and the Biot number, a nondimensional heat transfer coefficient relating the convective heat transfer
coefficient to the conductivity of the fin.
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Figure 1: Thermal fin geometry

The steady-state temperature distribution within the fin, u (µ), is governed by the elliptic partial differential
equation

−ki∇2ui = 0 in Ωi, i = 0, . . . , 4 , (48)

where ∇2 is the Laplacian operator, ui indicates the restriction of u to Ωi, and Ωi refers to the region of the
fin with conductivity ki, each with boundary ∂Ωi. To ensure continuity of temperature and heat flux at the
subfin-post interfaces Γiint ≡ ∂Ω0 ∩ ∂Ωi, i = 1, . . . , 4, we enforce the interface boundary conditions

u0 = ui

and
− (∇u0 · n̂i) = −ki (∇ui · n̂i) (49)

on each interface Γiint, where n̂i is the outward normal on ∂Ωi. On the external fin boundaries we introduce a
Neumann flux boundary condition at the root to model the heat source,

− (∇u0 · n̂0) = −1 on Γroot, (50)

and a Robin boundary condition at all other external boundaries to model convective heat losses,

−ki (∇ui · n̂i) = (Bi)ui on Γiext, (51)

for i = 0, . . . , 4, where Γiext is the boundary of Ωi exposed to the surrounding air. We are interested in the average
temperature at the root of the fin, Troot (µ), which can be expressed as Troot (µ) = L (u (µ)), where

L (v) =

ˆ
Γroot

v. (52)

For our optimization, we consider a thermal fin whose parameters are fixed but unknown, but for which we
know the output T refroot. To infer the unknown parameters, we define a quadratic output s (µ)

s (µ) =
1

2

(
Troot (µ)− T refroot

T refroot

)2

≡

∥∥∥L (u (µ))− T refroot

∥∥∥2

D

2
(
T refroot

)2 , (53)

where D is a suitable Hilbert space of observation, and note that we can define d (u, v) ≡ 1
2 (Lu,Lv)D and

` (v) ≡ −
(
Lv, T refroot

)
D

to write the output as

s (µ) = d (u (µ) , u (µ)) + ` (u (µ)) + const. (54)

Because we are interested in minimizing this function, we can ignore the constant term and minimize the following
cost, which matches the formulation presented in Section 2, i.e.,

J (µ) = d (u (µ) , u (µ)) + ` (u (µ)) . (55)
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5.2 Algorithm performance
To measure the performance of the algorithm, twenty different cost functions Jm (µ) ,m = 1, . . . , 20 are defined
by generating a set of twenty randomly sampled points µ̃m from within the six-dimensional parameter domain.
The PDE is solved for each of these parameter values to obtain T ref,mroot = Troot (µ̃m). Finally, we define a
regularization term for each cost function, given by

h (µ) =

6∑
i=1

(
µ− µ̃mi
µ̃mi

)2

(56)

such that the cost function to be optimized is

J (µ) = d (u (µ) , u (µ)) + ` (u (µ)) + h (µ) (57)

The optimization problem is then solved on a coarse, medium, and fine grid for each cost function, using both our
trust region reduced basis approach and a BFGS algorithm which uses only full FE solves to obtain the necessary
states and sensitivities. Statistics for these numerical trials are tabulated in Table 2 for a coarse (1333-node),
medium (4970-node), and fine (17899-node) FEM grid (used for both the full BFGS solver as well as generating
the basis functions for the reduced model). Algorithm parameters used for the TRRB tests are tabulated in
Table 1. The parameters of the BFGS algorithm used for the full solver are identical to those used for the TRRB
subproblem solver.

Parameter Symbol Value for numerical tests
“close” to TR boundary threshold β 0.95

trust region boundary εL 0.1
RB gradient error tolerance τ∇J 0.1

subproblem convergence tolerance τsub 1e-8
overall convergence tolerance τ 1e-4

Table 1: Trust region reduced basis algorithm parameters used in numerical tests

Overall, the combined trust region reduced basis optimization approach makes significant gains (more than
five-fold) in reducing the number of full FE solves required to reach the optimum. Whether or not this translates
into run time speedups depends on the expense of the FE solve; for the coarsest grid tested, the standard finite
element quasi-Newton approach outperforms the trust region reduced basis approach. On the medium grid,
however, the trust region reduced basis approach begins to outperform the FE quasi-Newton approach, and
these gains are even more pronounced for the finest grid tested. Additionally, we note that since the number of
full and reduced solves needed by the two algorithms to converge to an optimum is roughly independent of the
size of the grid, the trust region reduced basis approach is most appropriate to extremely large FE simulations,
such as those that might be encountered in real-world problems (even our finest grid is relatively small).

Grid size Coarse Medium Fine
TRRB BFGS TRRB BFGS TRRB BFGS

Mean Time (s) 0.16 0.11 0.67 1.56 7.35 18.2
Min. Time (s) 0.08 0.05 0.42 0.48 4.37 6.69
Max. Time (s) 0.38 0.19 1.23 2.51 12.1 30.2

Mean # FE Solves 4.5 24.6 4.5 24.6 4.5 24.7
Min. # FE Solves 3 8 3 8 3 8
Max. # FE Solves 7 40 8 39 7 39
Mean # RB Solves 179.8 – 183.1 – 179.2 –
Min. # RB Solves 87 – 84 – 84 –
Max. # RB Solves 307 – 326 – 307 –

Table 2: Numerical performance of reduced basis trust region algorithm compared
to full BFGS solver for 20 different cost functions on thermal fin problem
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6 Conclusions
The proposed approach uses reduced basis methods in conjunction with a trust region optimization framework
to make gains in the computational efficiency of parameter optimizations constrained by linear elliptic PDEs. In
this approach, reduced basis models are leveraged to improve upon existing optimization approaches in several
ways. First, reduced basis models are used as the model function within the trust region optimization, reducing
the time for each optimization function evaluation. Second, the traditional trust region framework heuristically
determines whether to accept or reject an optimization iterate by computing the ratio of actual cost function
decrease to cost function decrease predicted by the model function, an approach which has been criticized because
of the necessity of solving the full system simply to determine step acceptance. In the proposed trust region
reduced basis framework, the a posteriori error bounds associated with the reduced basis models are used to
choose when to accept and reject optimization iterates, allowing step acceptance to be decided without recourse
to the full model. Third, the error bounds are used to intelligently determine when to update the reduced model.
Fourth and finally, while previous work has shown heuristic convergence of similar frameworks making use of
alternate model reduction methods, the existence of error bounds for RBM allows rigorous proof of convergence
of the algorithm to a stationary point of the full model.
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