NONLINEARLY PRECONDITIONED OPTIMIZATION ON GRASSMANN MANIFOLDS
FOR COMPUTING APPROXIMATE TUCKER TENSOR DECOMPOSITIONS

HANS DE STERCK* AND ALEXANDER HOWSE'

Abstract. Two accelerated optimization algorithms are presented for computing approximate Tucker tensor decompositions
(ATDs). The first is a nonlinearly preconditioned conjugate gradient (NPCG) algorithm, wherein a nonlinear preconditioner
generates a direction replacing the gradient in the nonlinear conjugate gradient iteration. The second is a nonlinear GMRES
(N-GMRES) algorithm, in which a linear combination of iterates generated by a nonlinear preconditioner is minimized to
produce an improved search direction. The Euclidean versions of these methods are extended to the manifold setting, where
optimization on Grassmann manifolds is used to handle orthonormality constraints and to allow isolated minimizers. The higher
order orthogonal iteration (HOOI), the workhorse algorithm for computing ATDs, is used as the nonlinear preconditioner in
NPCG and N-GMRES. Four options are provided for the update parameter 8 in NPCG. Two strategies for approximating the
Hessian operator applied to a vector are provided for N-GMRES. NPCG and N-GMRES are compared to HOOI, NCG, limited
memory BFGS, and a manifold trust region algorithm using synthetic data and real life tensor data arising from handwritten
digit recognition. Numerical results show that all four NPCG variants and N-GMRES using a difference of gradients Hessian
approximation accelerate HOOI significantly for large tensors, noisy data, and when high accuracy results are required. For these
problems, the proposed methods converge faster and more robustly than HOOI and the state-of-the-art methods considered.

1. Introduction. When vast quantities of information are collected for analysis, it is both useful and
natural to organize these collections into multidimensional arrays, with each dimension corresponding to a
component or feature of the data source and each element an observation for a particular configuration of
these components or features. Such arrays are called tensors, and the number of dimensions (modes) is the
tensor order. Tensors are used when large quantities of data need to be organized, stored, and analyzed,
such as in data mining [21], numerical linear algebra [5], pattern and image recognition [26], and signal
processing [9]. Many more examples are given in [20].

A tensor decomposition expresses a tensor as a sum and/or product of several components with the goal
of simplifying further work involving the tensor data. Tensor approximation problems involve approximating
a tensor X by a tensor X with a specified decomposition, often by minimizing X — X in an appropriate norm.
We consider Tucker decompositions, where X € R %I~ ig expressed as a multilinear product (explained
in Section 2) of a core tensor 8 € RF1*XEx and factor matrices A € RInxFn: X = (AN . AN 8,
Of particular interest are the subset of approximate Tucker decompositions using orthonormal matrices A (™),
which introduce equality constraints into the defining optimization problem.

Two algorithms for solving this problem are discussed. The first is a nonlinearly preconditioned conjugate
gradient (NPCG) method [31], in which a nonlinear preconditioner is used in place of the gradient to generate
search directions in nonlinear conjugate gradient (NCG) iterations. The second is an acceleration technique
called nonlinear GMRES (N-GMRES) [30, 31, 34], wherein a linear combination of past iterates, generated
by a nonlinear preconditioner, is optimized to produce an improved search direction.

In this paper, these two methods are adapted to handle both equality constraints and objective function
invariance properties causing non-isolated minima by using matrix manifold optimization strategies. Matrix
manifold optimization for approximate Tucker decompositions has been considered before: Newton’s method
[15], the BFGS and limited memory BFGS quasi-Newton methods [27], NCG [18], and a trust-region method
[19] have previously been developed.

We use the higher order orthogonal iteration (HOOI) [10], an alternating least squares type algorithm
for Tucker tensor decomposition, as the nonlinear preconditioner. Convergence of HOOI can be slow, and
we demonstrate numerically that it may be significantly accelerated by applying NPCG or N-GMRES ac-
celeration on manifolds, resulting in robust and highly competitive methods. In particular, comparisons
to HOOI [10], NCG [18], limited memory BFGS [27], and a trust-region method [19], each adapted to the
matrix manifold context, show that the newly proposed methods offer significant advantages for problems
with large and/or noisy source tensors.

The remainder of the paper is as follows. Section 2 covers preliminary tensor details required, including
the Tucker tensor format and the standard approaches to solve this tensor approximation problem. Section 3
introduces matrix manifold optimization, which is applied to NPCG in Section 4 and N-GMRES in Section 5.
Implementation details and numerical results are given in Section 6. A summary is provided in Section 7.
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2. Preliminaries. Throughout this paper, vectors are in bold lowercase (x), matrices bold uppercase
(X), and tensors Euler script (X). Elements are indicated by subscript or bracketed indices: X;;, = X(4, j, k).

2.1. Matrix Singular Value Decomposition. A matrix M € R™*" has singular value decomposi-
tion (SVD) M = UXVT, where U € R™*™ 'V € R™*" are orthogonal and ¥ € R™*" is diagonal with
nonnegative real entries in decreasing order. The diagonal entries of 3 are the singular values of M and
the columns of U (V) are the left-singular (right-singular) vectors. The rank of M is equal to the number
of nonzero singular values. By the Eckhart-Young theorem, the best rank-r approximation of M in the
Frobenius norm is obtained by keeping the largest r singular values, setting the rest to zero [13].

2.2. Tensor Matricizations and Multilinear Rank. Mode-n tensor fibers are obtained by fixing all
indices but the n*". The mode-n matricization of X, denoted X (n), is obtained by taking the mode-n fibers
of X as the columns of X(,). In general the ordering of fibers does not matter, so long as it is consistent
throughout calculations. The n-rank of X is the dimension of the vector space spanned by the mode-n fibers:
rank,, (X) = dim(Col(X(,))) [10]. The multilinear rank of X is the N-tuple (rank;(X),...,ranky(X)).

2.3. Tensor Products and Norm. The mode-n contravariant product of X € RI1> >IN and A €
R s Y = (A)y - X [15]: Y(it, vy in_1,7,ntts -, in) = Zi’::l A(4,in)X(i1,...,in). Each mode-n fiber
of X is multiplied by each row of A. It follows that Y(,) = AX(,) and (B), - ((A), - X) = (BA), - X. The
mode-n covariant product of X and A € RI»*/ is Y = X - (A),, [15], where Y(i1, ., in_1,0Gnits---sin) =
252:1 X(i1,...,in)A(in, ). Clearly, (AT),-X = X-(A),. Multiplication in different modes is commutative.

The inner product of X,Y € RI>In js (X Y) = Zﬁ:l e fg’zl X(i1yy.-yin)Y(i1, ... in). The
tensor Frobenius norm is |X|p = /(X,X). || X|r = HX(H)HF for all n, and ||X|| is invariant under
orthogonal transformations A™: [|X| = [[(A®,..., ADN). f)CHF Finally, the elementwise product of

equal size tensors is denoted by X x Y.

2.4. The Tucker Tensor Format and the HOSVD. The Tucker format decomposition of a tensor

X € RN s (A A 8 where § € RFE1 X XEx and A(™) ¢ RIWEn If R, > rank, (X) for all
n, the decomposition is exact; otherwise, this is an approximate Tucker decomposition (ATD). A variant of
the Tucker decomposition called the higher order SVD (HOSVD) was introduced in [10], which established
that all tensors have such a decomposition. The HOSVD of X € RIt**In jg X = (A(l)7 . ,A(N)) -8, where
each A(™ € RI»*In is orthogonal and § € RI1 ¥ *IN gatisfies

(i) all-orthogonality: for all possible n, o, and 5, @ # B: (8;,=a, Si,=3) = 0;

(i) the ordering: [|8;, =1z = [I8i,=2llp = -+ = [|8i, =1, || p = O for all n.
Given a multilinear rank (Rq,...,Ry), a truncated HOSVD may be computed in which A ™ contains only
R,, orthonormal columns. This procedure is described in Algorithm 1 [20].

Algorithm 1 HOSVD

1: procedure HOSVD(X,Ry, ..., Ry)

2 forn=1,...,N do

3 A « R, leading left singular vectors of X(n)
4: end for
5
6
T

S - (AW, A
return §, A, ... AN
end procedure

2.5. The Best Tucker Approximation Problem. While Algorithm 1 can be used to compute a
HOSVD ATD with an arbitrary multilinear rank, truncating a HOSVD to a smaller multilinear rank does
not give an optimal approximation [10]. To determine the best orthonormal ATD of a given X, we minimize
the approximation error in the Frobenius norm:

1 2
min 7Hx—(A<1>,...,A<N>)-sH

s,{A(m} 2 F

subject to 8§ € RFEv X xhn A(M) ¢ RInxFn and AMTAM — Ig,.
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This can be shown to be equivalent [11] to the maximization problem

1 2
max 7HX~(A(1),...,A(N))H
{amy 2 F (2.1)

subject to A ¢ RI"*Fn and AMTAM =15

where § =X+ (AW, A,

The most popular method for solving (2.1) is the higher-order orthogonal iteration (HOOI) [11], repro-
duced here as Algorithm 2 [20]. While simple to implement, HOOI may be slow to converge in practice,
hence alternative optimization methods are desired. The maximization problem (2.1) may be treated using
matrix manifold optimization strategies, as discussed in the next section.

Algorithm 2 HOOI

1: procedure HOOI(X,Ry,..., RN)

2 initialize A(™ € RI»*En for n =1,..., N using HOSVD
3 repeat

4: forn=1,...,N do

5: Y X (AW A T ACHD AN

6 A™ «— R, leading left singular vectors of Y ()

7 end for

8 until termination condition satisfied

0. S X (AD, . AN
10: return §, AW, ... A
11: end procedure

3. Matrix Manifold Concepts for NPCG and N-GMRES Acceleration. We now introduce the
concepts from matrix manifold optimization used to adapt NPCG and N-GMRES to the manifold setting.
This section covers the technical elements of our approach common to both methods. Sections 4 and 5 apply
these specifically to NPCG and N-GMRES, respectively. As a general reference for this section, see [2].

We restrict our discussion to Riemannian manifolds, which have smoothly varying inner products. The
Stiefel manifold, St(n, p), is the set of all nxp orthonormal matrices, {X € R"*P|X7X =I,}. The Grassmann
manifold (Grassmannian), Gr(n,p), is the set of p-dimensional linear subspaces of R™ [14]. In both contexts
p <n. Each Y € Gr(n,p) can be represented as the column space of some Y € St(n,p). There is no unique
representative Y: the subset of St(n, p) with the same column space as Y is YO, := {YM|M € O, }, where
O, is the set of p x p orthogonal matrices. Gr(n,p) is thus identified with the set of matrix equivalence
classes St(n, p)/0, := {YO,|YTY =1,}, which is induced by the equivalence relation X ~ Y if and only if
Col(X) = Col(Y). The inner product for St(n,p), and hence Gr(n,p), is (X,Y) = tr(XTY).

Let M denote an arbitrary manifold. A tangent vector at * € M, denoted &,, describes a possible
direction of travel tangent to M at x. The vector space of all tangent vectors at x is the tangent space,
T, M. A tangent vector at Y € St(n,p) is itself an n X p matrix. Just as Y € St(n,p) can represent
Y € Gr(n,p), we can use elements of TySt(n,p) to represent elements of Ty Gr(n,p). TySt(n,p) may
be expressed as the direct sum of a wvertical space Vv, which contains directions for movement within
the equivalence class Y; and a horizontal space Hv, which contains directions for movement into a new
equivalence class. Elements of Hy are used as unique representative tangent vectors for points on Gr(n,p).
Specifically, Vy = {YMM = —-MT,M € RP*P} and Hy = {Z € R"*P|YTZ =0,}, and

My =I-YYT (3.1)

is the orthogonal projection onto Hy [2,14].
To move along M in the direction of £, one uses a mapping from T'M to M known as a retraction. On
Gr(n, p) we use the retraction

Ry (t€) = of(Y +t§), (3.2)

where qf(Z) is the Q factor of the thin QR decomposition of Z [2].
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The direction of travel from x to y cannot be described by a vector y — z: this operation is not defined.
A tangent vector defining the direction from x to y can be found by the logarithmic map. The tangent vector
in TxGr(n,p) pointing from X to Y is

Logx (Y) = Uarctan(X)VT, (3.3)

where UXVT is the compact SVD of IIx Y(XTY)~! [28]. Furthermore, tangent spaces T, M and T, M for
x # y are generally different vector spaces, hence linear combinations of £ € T, M and n € T, M are not
well defined. By using a vector transport mapping, we can find a £ € T, M which corresponds to {. Given
z,y € Gr(n,p) and £ € T,,Gr(n, p), a corresponding vector in Ty Gr(n,p) is determined using (3.1) [2]:

Ty (§) = Hy¢. (3.4)

For a manifold M = H,Icvzl Gr(ng, pr), a Cartesian product of N Grassmannians, elements are N-tuples
of linear subspaces y = ()1, ..., Yn)T, in turn represented by N-tuples of matrices y = (Y1,...,Yxn)T. The
tangent space at y € M is the Cartesian product of tangent spaces Ty, Gr(ng, pr). The inner product on M
s (x,y) = ZkN:1<Xk7 Y). All other required operations are performed componentwise on x,y € M, using
the operations defined for Gr(ng, px).

3.1. Application to the Best ATD Problem. To solve (2.1), two points must be addressed. First,
(2.1) does not have isolated maxima, as ||-||» is invariant under orthogonal transformations. Second, or-
thonormality of (A(”))YIY=1 introduces a large number of equality constraints. However, if we optimize over a
Cartesian product of Grassmannians, representative N-tuples of matrices from the product of Stiefel mani-
folds will satisfy the orthonormality constraints by definition. Furthermore, as these matrices now represent
equivalence classes of matrices, we now have an unconstrained problem with isolated extrema:

1 2

Sl (Aa® A H .

where A™ € St(I,,, R,,) represents A™ € Gr(I,,, R,).

The general optimization strategy is to determine an ascent tangent vector for (3.5) at the current point,
then carry out a linesearch along a retraction curve in the direction of this tangent vector. The Riemannian
gradient and Hessian of the objective function may be required, which can be obtained from their Euclidean
equivalents. We refer readers to [15,19], where these expressions can be found.

4. Nonlinearly Preconditioned Conjugate Gradients on Grassmann Manifolds. We first ex-
plore the Euclidean NPCG algorithm, and then discuss how to extend it to a matrix manifold setting. By
choosing HOOI as the nonlinear preconditioner, we obtain a complete algorithm for the ATD problem.

4.1. Nonlinear Conjugate Gradients. The conjugate gradient (CG) method is an iteration which
minimizes the convex quadratic f(x) = %XTAX — bTx, where A is symmetric positive definite. Nonlinear
conjugate gradients (NCG) is an adaptation of CG to minimize nonlinear objective functions f(x) [24]:

Xk41 = X + Qi Pk, gr = V[(xk)

(4.1)
Pk+1 = —8k+1 T+ BrPrk, Po = &o-

The search direction update parameter 3, which determines the relative weighting of the current gradient,
gk+1, and the previous search direction, px, may be determined by one of several possible formulae. Letting
Yk = 8k+1 — 8k, we consider the Polak-Ribiére [25] and Hestenes-Stiefel [17] 5 formulae

T T

PR _ Sk+1Yk HS _ Sk+1Yk

k+1 — T ’ k+1 — T .
g8k PrYk

(4.2)

4.2. Preconditioning. Linear preconditioning can be introduced by a change of variables x = Sz [16].
Writing the algorithm for z, then converting back to x gives
Xk+1 = X + axPk

Pit+1 = Pg i + Bipr,  Po = Pg,
4

(4.3)



where P = SST. The formulae for () remains the same, except now gy and py are replaced by STg), and
S~!'pi. We instead introduce a fully nonlinear preconditioning function P in place of a linear transformation
with matrix S. Let X, = P(xy) and define the direction generated by the preconditioner to be g, = xj — Xj.
Replacing gi by g, we obtain the NPCG iteration [31]

Xk+1 = Xk + QkPk,

g _ (4.4)
Pi+1 = —8hy1 T Br+1Pk, Po = —8p-

The formulae for 3, 41 may be adjusted by a straight replacement of g1 with g, everywhere in (4.2).
We denote these choices by 3:

T = —T =
ri1Yk Br+1Yk

BERy = LR pis, = 2k , (4.5)

k+1 gzgk k+1 y;pk

where ¥, = 8,1 — 8- A second possibility is to consider the linearly preconditioned analog B 41, and
replace the Pg; ., terms with g, ,,, retaining the gradient elsewhere [31]. We denote these choices by 3:

T < T v

PR 8r+1Yk 8r+1Yk

BPR = 2EELTE o BHS = . (4.6)
k+1 g]'ggk k+1 ylpk

Algorithm 3 Nonlinearly Preconditioned Conjugate Gradients on Manifolds

1: procedure NPCG(xo)

2: X + one iteration HOOI(xq)

3 8o+ —Log,, (Xo)

5: k<« 0

6: while ||gy|| > tol do

7 Compute ay

8 Xp+1 < Rx, (@rPr)

9: Evaluate gr+1 = grad f(xx+1) (the Riemannian gradient)
10: X1 < one iteration HOOI(xx41)
L B e Lok, (%)

12: Compute 3,

13: Pk+1 < _Ek-&-l + Bk+17;(k+1 (pk)
14: k<—k+1

15: end while

16: end procedure

4.3. Adaptation of NPCG to Grassmann Context. Bold lowercase letters now represent n-tuples

of matrices; e.g., xp = (Ag), e ,Alin))T. We define P to be one iteration of the inner loop of the HOOI, so
Xr = P(xy) describes a point on the product manifold. Let g, = —Log,, (Xx) (see (3.3)), the negative of
the tangent vector at xj in the direction of X;. The manifold NPCG iteration is
Xk+1 = Rx aPk),
+ 7k ( )7 B (47)
Pk+1 = =841 +/Bk+17;(k+1(pk’)’ Po = —8p-

A line search is now carried out along the curve defined by a retraction Ry, (-) from xj (see (3.2)), and the
formula for pg41 requires vector transport of py using 7Ty, ., (-) (see (3.4, 3.1)). The 3 formulae become

(8rt1: V) ~ns By Vi) 48
= @@y T 5T o) (48)

where ¥, = 8,11 — Txus: (8r)- We use vector transport so each tangent vector is in Ty

M. Similarly,

k+1

2PR (8k+1,Yk) _ (8ky1, YR 4
= e @) = BT o) (4.9)

where yx = gr41 — Tx,., (&) The resulting manifold NPCG algorithm is presented in Algorithm 3.
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5. Nonlinearly Preconditioned Nonlinear GMRES on Grassman Manifolds. N-GMRES |7,
29,34] is an acceleration technique for iterations solving nonlinear systems, where a linear combination of
past approximations is optimized to produce an improved search direction. As in Section 4 we first recall
N-GMRES in the Euclidean setting before extending it to manifolds.

5.1. The N-GMRES Algorithm. Given a one-step iterative update function P(-) and a sequence of

past updates {x;}¥_,, we compute Xj11 = P(xx), then seek an improved approximation of the form
k
Xit1 = Xp41 + Z ;i (Xp41 — Xj).
3=0
For the optimality condition Vf(x) = g(x) = 0, we seek a; which approximately minimize ||g(Xx+1)],
(which is a nonlinear function of each «;). Linearization of g(X;11) about Xjy1 gives:
k

o (Xp+1 — X;5) ~ 8(Xpt1) + Z a;(8(Xk+1) — 8(x5)),

Xkt+1 j=0

k
- Jg
g(Xpy1) ~ g8(Xpt1) + ;) Ix

the second approximation eliminating the need for k 4+ 1 Hessian-vector products. The resulting objective
function describes a least squares problem:

_ k _
|8®e) + g s (8(Resn) — 8(x,)) |-
Let the j'™ column of A be the vector (g(Xx+1) — g(%;)), b = g(Xk+1) and @ = (g, ..., ax)T. We may
describe a as the solution to the normal equations, ATAa = —ATb, and can solve for a via any method for

the linear least-squares problem (e.g. QR decomposition, the Moore—Penrose pseudoinverse). If a descent
direction is obtained, a line search in the direction of Xj1 determines xy1:

X4l = Xpg1 + BXer1 — Xng1);
otherwise, we discard the past iterates and restart the N-GMRES process. Details on the line search used
in numerical experiments are provided in Section 6.

Algorithm 4 Manifold N-GMRES

procedure MNGMRES(xg, ..., Xw-1)
: X, < one iteration HOOI(xw 1)

1:
2:
3 Evaluate b = g(X,,)

4: Form A by (5.1) or (5.2) using x;, j=0,...,w—1
5: Solve ATAa = —ATb for «

6 Pu—1+ — Y i a;Logg (x))

7
8

k< w
while lg(xx—1)||5 > tol do

9: Compute (Bj_1 via linesearch

10: Xk + Rx_, (Bk-1Pk-1)

11: X}, < one iteration HOOI(xy)

12: Evaluate b = g(Xy)

13: Form A by (5.1) or (5.2) using x;, j =k — (w—1),...,k
14: Solve ATAa = —ATb for a

15: Pr = Xk (w1 4 Logsx, (%))

16: k<k+1

17: end while

18: end procedure

5.2. Extending N-GMRES to Manifolds. One iteration of the inner loop of HOOI is used as the
nonlinear update P(-). As with NPCG, a number of changes are required when adapting to manifolds. To
linearize g(x) = grad f(x), the Riemannian gradient of f(x), we use the approximation [2,15]

k
g(Rit1) ~ grad f(Req1) + Y ajHessf(Rip1) (€], (5.1)
=0
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where §; = —Logg, . L (x;). This requires a known expression for the Hessian, as well as k + 1 evaluations
of the Hessian applied to a tangent vector. We may approximate the action of the Hessian to avoid these
calculations by adapting the approach from [29]:

Hess f(Xi+1)[§;] ~ grad f(Xp+1) — Tz, (grad f(x;)), (5.2)
where the past gradient is transported to Xx11. The search direction pg+1 = Xg+1—Xk+1 1S given by a linear
combination of tangent vectors at Xp11: Pr+1 = — Z?:o ajLogg, ., (x;). The line search is carried out along

a retraction starting at Xi11, now defined by pr+1. This process is described in Algorithm 4.

6. Implementation and Numerical Results. NPCG and N-GMRES were used to compute ATDs

for order-3 tensors by minimizing —3 || X - (AW A®) A(3))Hi on a product of three Grassmann manifolds.
The gradient and Hessian are a matrix triplet and a mapping which accepts one matrix triplet and returns
another, respectively. All computations in NPCG are well defined using matrix triplet form. Vectorization
is required when forming the least squares system for N-GMRES.

The linesearch used was the Moré-Thuente algorithm from the Poblano Toolbox (v1.0) [12,23], which was
modified to carry out the search along a curve described by a retraction. Specifically, we provide functions for
the cost and gradient, as well as for the retraction, inner product, and norm on the manifold. Cost, gradient,
inner products, and norms are replaced directly, and we replace the update x = x + ap by = Rx(ap)
(see (3.2)). The linesearch parameter values used were: 10~* for the sufficient decrease condition tolerance,
10~2 for the curvature condition tolerance, an initial step length of 1, and a maximum of 20 iterations.
The algorithms were implemented using Matlab R2010a on an Intel Core i7-2630QM computer with 8GB of
RAM, using the Tensor Toolbox (V2.5) [3,4] to manipulate tensors.

HOSVD truncation (Algorithm 1) generated initial points. N-GMRES requires two or more past iterates
to form the least squares system. A maximum of w = 25 past iterates were kept. If N-GMRES produced
an ascent search direction, we discarded all past iterates and replaced the search direction by the negative
of the ascent direction. NPCG methods were restarted by setting 5 = 0 every 50 iterations. Successful
termination occurred when ||gg||» < tol-|f(xx)|. A scaled gradient tolerance of tol = 1077 was used. When
recording computation time, we omitted time spent checking the termination conditions.

Two test problems were considered. We compared four existing methods: HOOI [10], manifold NCG [18],
a manifold limited memory BFGS (LBFGS) quasi-Newton solver [27], and the manifold trust region (TR)
solver from the Manopt toolbox (V1.0.7) [1,6,19]; with the newly proposed methods: manifold NPCG and
manifold N-GMRES. For LBFGS we use the same termination conditions and specified that vectors from
the last 5 iterations were to be used in forming the Hessian approximation. For the TR solver, excepting
the termination condition parameters, we use the default parameters prescribed by the code’s authors: these
are recorded in Table 6.1. We chose to use a finite difference Hessian approximation rather than the exact
Hessian, as any benefits from improved accuracy are outweighed by the additional computing time required.

Parameter Description Value
A Maximum trust-region radius Vo 1‘ankn(jC)
Ao Initial trust-region radius A/8
K tCG linear convergence target rate 0.1
0 tCG superlinear convergence target rate 1.0
s Accept/reject threshold 0.1
TABLE 6.1

Trust Region Parameters

Problem I. For the first problem, we generated synthetic tensor data with specified size, multilinear
rank, and noise level. Similar tests have been considered in [8,15,19,32]. Given a Tucker tensor X €
R120%120x120 with multilinear rank (40,40, 40), such that 8 has standard normal distributed entries and each
A has orthonormal columns, test tensors are obtained by adding noise to X. As in [31], given N; and N,
with standard normal distributed entries, homoskedastic and heteroskedastic noise were added according to
X[ L X g

f)C’:f)C—i—1 Ny and X' =X+ =

Ny X,
3N 3 [N+ X| o

respectively, with final test tensor X”.



Ten trials were run. In each trial ATDs of multilinear rank (20, 20, 20) were computed for a X" obtained
from the original X and new Nj, Ns. Results obtained from HOOI, LBFGS, TR, and NCG are compared
with results from manifold NPCG using four variants for the § formulae and manifold N-GMRES using both
linearizations mentioned. A maximum of 2000 iterations and a maximum computation time of 1500 seconds
ensured all algorithms eventually terminated.

The minimum, median, maximum, and mean time (in seconds) and number of iterations required for
convergence are recorded in Table 6.2. Of particular interest are the results of each method relative to
HOOI, the standard algorithm used for solving such problems. We see that, with the exception of N-GMRES
using (5.1), all methods succeeded in surpassing HOOI in terms of time required, whereas N-GMRES times
were approximately ten times larger than the times for HOOI. The slowness of this N-GMRES variant is
unsurprising, as evaluating the Hessian applied to a vector is extremely costly.

Among the methods faster than HOOI, TR performed the best in terms of both iteration count and time
required. In terms of time required, it maintains a reasonable lead over the NPCG results, which performed
the best of the newly proposed methods. The results show that the BPE methods slightly outperformed the
B methods, but there were no clear winners between 3 and /3 variants. After another significant gap in
time required come the results for NCG and N-GMRES using (5.2). The two NCG variations gave similar
results in terms of both time and iteration count. N-GMRES exhibited a lower median time and a higher
mean time to convergence when compared to the NCG results, thus we do not provide a relative ranking of
the two methods. Finally, LBFGS lags behind the other methods significantly.

Overall, the results for this synthetic test problem are promising: the best of the new NPCG and N-
GMRES methods outperform each of the existing HOOI and LBFGS methods, and are competitive with the
existing TR and NCG methods, which can be somewhat faster. In what follows we will see that for more
difficult test problems (noisy and of larger size) accurate results can be obtained by the newly proposed
NPCG and N-GMRES methods much faster and more robustly than by the existing methods considered.

Time Tterations
Min Med Max Mean | Min | Med | Max | Mean
HOOI 20.99 36.91 95.68 40.54 | 287 | 506 | 1322 558
LBFGS 25.77 32.84 41.03 32.71 139 | 180 222 180
TR 6.85 11.99 | 18.11 | 11.99 21 33 50 33

NCG BT 1152 | 1820 | 23.46 | 17.82 | 130 | 210 | 253 | 198

BHS | 11.61 | 18.43 | 24.66 | 18.01 | 130 | 209 | 266 199
PR | 11.14 | 15.81 | 19.49 | 15.43 | 58 90 114 87
NPCG BHS | 10.88 | 16.28 | 19.94 | 15.70 | 57 90 114 87
BPE 1 11.97 | 15.23 | 21.02 | 15.79 | 64 86 125 89
BHS | 12.60 | 15.46 | 22.16 | 16.13 | 66 87 130 90
(5.1) [ 295.01 | 391.00 | 573.67 | 406.35 | 64 79 122 82
(5.2) | 13.49 | 16.98 | 25.23 | 18.38 | 52 68 102 71

TABLE 6.2
Problem I. Results for computing ATDs of synthetic tensor data.

N-GMRES

Problem II. The second test problem used the MNIST Database of Handwritten Digits [22], previously
used in [26,33]. This is a collection of 70,000 images, each of a digit centered in a 28 x 28 image. We formed
a tensor X € R28X28x5000 congisting of 5000 images of the digit 5. ATDs with multilinear rank (14,14, 100)
were computed by the same methods considered in the previous example. The experiment was then repeated
using X' = X + 2.5%3\& where N has entries uniformly distributed in [0, 1]. Upper limits of 250 iterations
and 1500 seconds were imposed. Sample convergence histories are presented in Figure 6.1.

A striking result is that NCG, LBFGS, and TR failed to converge within a reasonable amount of time,
compared to the other methods considered. While NCG and LBFGS simply fail to converge, TR does in
fact converge, but requires much more time than HOOI and the newly proposed methods. We may be able
to obtain significant improvements in efficiency by adapting the Manopt trust region method specifically to
the ATD problem, though we do not believe that an efficiency-minded implementation will eliminate the
speed gap observed.

In the noise free case, HOOI converges the fastest, followed by N-GMRES and then the NPCG variants.
Once noise is introduced to generate X', we observe that N-GMRES and the two NPCG methods all converge
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faster than HOOI, satisfying the tolerance in roughly one third of the time. For this problem NPCG using
BH 9 was the fastest method, followed by N-GMRES and NPCG using BH 9. The success of NPCG using BH &
may be due to incorporating both gradient and preconditioner direction information into the B formulae.

Convergence Histories for Computating ATD of MNIST Data

Convergence Histories for Computating ATD of MNIST Data with Noise

-1

Scaled Norm of Gradient

- . . . N
0 100 200 300 400 500 600 700 800
Time (s) Time (s)

Fic. 6.1. Problem II. Sample convergence histories based on MNIST digit input data: noise-free (left) and noisy (right).

F1c. 6.2. Problem II. From top to bottom, images are taken from: (1) X, (2) ATD of X, (8) X', (4) ATD of X'.

The first ten approximation images are shown in Figure 6.2. The main discrepancies in the ATD of X’
are image artifacts in the form of dark blotches surrounding the digits. In spite of the extent to which the
noise visually obfuscated the data, the ATD was able to successfully identify and recognizably display the
digits of the original images.

These results suggest there are significant benefits to using manifold N-GMRES or NPCG to accelerate
HOOI, these benefits having been most apparent for problems with noisy data or large dimensions. Fur-
thermore, the advantages of our preconditioned methods over state-of-the-art methods that include manifold
NCG, LBFGS, and trust region methods are significant in terms of convergence speed and robustness, as
becomes apparent when moving to larger, more noisy, and more realistic data sets.

7. Concluding Remarks. The approximate Tucker decomposition is a tool commonly used in data
compression and multilinear statistics and analysis. Hence, faster, more efficient methods for computing
approximate Tucker decompositions will continue to be in demand. In this paper we extended acceleration
methods for optimization, in particular, NPCG and N-GMRES, to the manifold setting, formulating acceler-
ated optimization methods for approximate Tucker decompositions on manifolds. Numerical results provide
evidence that HOOI accelerated by the N-GMRES algorithm approximating the action of the Hessian oper-
ator by a difference of gradients, or by NPCG iterations using any of the Polak—Ribiére or Hestenes-Stiefel
update rules, can significantly outperform HOOI by itself. Even more importantly, we have considered real

9



data wherein these newly proposed methods outperform manifold versions of NCG, limited memory BFGS
quasi-Newton iterations, and a tCG based trust region algorithm, suggesting that our accelerated methods
are leading contenders for efficient, approximate Tucker decompositions. The manifold versions of NPCG
and N-GMRES we proposed can also be applied to other optimization problems on manifolds where simple
iterative methods exist that may be accelerated.
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