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SUMMARY

In this paper, a full aggregation-based algebraic multigrid strategy is developed for structural contact
problems in saddle point formulation. The basic idea is to preserve the saddle point structure on all multigrid
levels. This concept of extending multigrid methods to saddle point systems is not new and can be found,
e.g., in the context of Stokes and Oseen equations in [8, 20]. So far, there is not so much literature on
aggregation-based algebraic multigrid solvers for mortar-based contact problems. The main contribution of
this work is the development of an interface aggregation strategy for generating the Lagrange multiplier
aggregates that are required for coupling the structural equations with the contact constraints. The proposed
method is simpler to implement, computationally less expensive than the ideas from [1], and — in the author’s
opinion — the presented approach is more intuitive for contact problems. Our interface aggregation strategy
perfectly fits into the general multigrid framework and can easily be combined with segregated transfer
operators which allow to preserve the saddle point structure on the coarse levels. Numerical experiments
show the robustness of the new method.

KEY WORDS: Algebraic Multigrid Methods, Structural Contact problems, Mortar methods, Saddle
point problems, Coarsening strategy, Lagrange multipliers, Iterative linear solvers

INTRODUCTION

In the meanwhile, mortar finite element methods are well-established as a basis for state-of-the-art contact
formulations that are required in many engineering applications. However, the efficient solution of the arising
linear systems turns out to be challenging. This paper proposes an aggregation-based algebraic multigrid
method with some extensions specifically designed for contact problems in saddle point formulation. The
outline of the paper is the following: Section 1 briefly introduces the problem with a special focus on the
algebraic saddle point structure of the linear systems. In section 2 the core components of the multigrid
method are explained that are necessary to preserve the saddle point structure throughout all multigrid levels.
A new interface coarsening strategy is introduced in section 3, which is then shown to be robust for a large
numerical example discussed in section 4.

1. ALGEBRAIC STRUCTURE OF CONTACT PROBLEMS

1.1. Strong formulation of contact problem

Since we are only interested in the algebraic block structure of the final linearized discrete systems,
it is sufficient to discuss a quasi-static contact problem with only two deformable bodies to derive all
mathematical basics concerning the contact kinematics and the contact constraints. That is, the time
parameter ¢ € [0,7] reduces to a load path parameter. Consider two bounded solid bodies, which are

represented by QgNl), QBN2) c R% with d € {2, 3} in the reference configuration (cf. Figure 1). This leads
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Figure 1. Two solid bodies contact problem in reference configuration.

to the following constrained boundary value problem with ¢ € {1,2}:

DivPWN) 4 Vi) — ¢ in 0§V % [0,77, )

uWVi) — W) on I‘g\/i) x [0,7T], (2a)

PN NN — M) on TV 5 [0, 7. (2b)

subject to the constraints ga (2™ 1) >0 on AN (0,17, (3a)
pn (2™, 1) <0 on " 5[0, 7], (b

pa (@) 1) gn (@) 1) = 0 on 4N % 0,77 3c)

Equations (1) to (2b) describe the momentum balance equations with the Dirichlet and Neumann boundary

conditions. Herein, P is the first Piola—Kirchhoff stress tensor and f, fo and u represent body forces, known
tractions at the Neumann boundary I'y and prescribed displacements at the Dirichlet boundary I'p in the

reference configuration, respectively. Furthermore, IN (Ni) denotes the outward unit normal vector on I‘(NM).
In Figure 1, the I'c represents the contact boundaries at the contact interface in the reference configuration.

In our notation, the slave contact interface ng) and the master contact interface PEM) are associated with

the solid bodies represented by QSNI) and Q(()Nz), respectively. The inequalities (3a) to (3c) model the

normal contact constraints. Therein, g, defines a so-called gap function which measures the distance of

a point V1) on the slave interface fyéNl) to the projected corresponding point on the master side of the

contact interface in the current configuration. In the mathematical formulation one introduces the negative
slave side contact traction thl) as Lagrange multiplier, i.e., A = —thl). Therefore, the normal part of the

contact stress can be denoted by An := A"n and the tangential part by A, := A — Aum in the following.
Here, n denotes the outward unit normal vector in the current configuration. Isoparametric finite elements
with first-order and second-order Lagrange interpolation are employed for discretization. The Lagrange
multiplier space inherits the (d — 1)-dimensional mesh emerging from a restriction of the d-dimensional
triangulation ’7}1;0 of g to the slave side of the contact interface. For the sake of brevity the details of the
discretization, contact search and nonlinear solution methods are skipped. The interested reader might refer
to, e.g., [16, 26, 44].

1.2. Algebraic formulation

The final linear systems arising within a nonlinear iterative solver for the discrete contact problems have the
following algebraic block structure:
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The subscripts A7 and N5 denote the inner nodes of the two solid bodies away from the contact interface.
The subscript M represents the nodes at the master interface. The nodes at the slave interface are split
into the set of inactive nodes Z and active nodes .A. Here, inactive means, that the nodes are currently not
in contact. The set of inactive and active nodes is dynamically determined by a contact search algorithm
(cf. [26]). The solution vector contains displacement increments Aw and Lagrange multiplier increments
AX associated with all nodes at the slave interface. In rows 7 and 8, the matrix in (4) contains the
(linearized) contact constraints in normal and tangential direction relative to the current contact interface.
Row 6 represents the inactive nodes. The upper right block in the matrix couples the structural equations
and the contact constraints using the mortar matrices D and M. For a detailed description and derivation the
reader is referred to [26-29, 44]. Equation (4) perfectly fits into the definition of a generalized saddle point
problem with the typical block structure

T u
(& %)= ®

Linear systems with saddle point structure make special preconditioning and solving strategies necessary,
which are aware of the special block structure of the underlying system matrix. The interested reader might
refer to [5] as a starting point to dive into the theory of saddle point problems with an elaborate classification
and a general overview of solving strategies for saddle point problems. There is a wide variety of classes of
(block) preconditioning techniques for saddle point problems (see, e.g., [2, 5, 6, 11, 13-15, 23-25, 31, 35,
40, 45, 49]). This list is by far not complete.

1.3. Multigrid for saddle point problems

Multigrid methods are known to be among the most efficient preconditioning or solution methods for certain
classes of linear systems. This paper presents a multigrid strategy for the class of saddle point matrices
arising from mortar contact problems as introduced in the previous sections. The proposed multigrid method
is based on the (smoothed) aggregation algebraic multigrid algorithms (cf. [30, 36-39, 44]) with special
extensions for block matrices and some minor contact-specific adaptions. In contrary to geometric multigrid
methods, algebraic multigrid methods (e.g., [32]) have the advantage that they do not rely on geometric
user-provided mesh information, but use only algebraic information from the provided matrix in (5) as
input. The class of aggregation-based algebraic multigrid methods uses so-called aggregates to coarsen the
fine level problem. Each aggregate is an agglomeration of neighboring fine-level nodes which represents
one virtual node on the next coarser level. The aggregation information is then used to build the transfer
operators (prolongator P and restrictor R) which are used to recursively coarsen the fine level problem. A
detailed introduction to multigrid methods is given in different textbooks (e.g., [12, 19, 33]).
In general, there are two distinct ways to apply multigrid ideas in context of saddle point problems:

Nested multigrid approach: Multigrid methods can serve as local single field smoothers or solvers within
well-known Schur complement based block preconditioners such as the SIMPLE method (cf. [25])
and variants. The coupling of the primary variables and the constraint variables is only considered on
the finest level in the outer (SIMPLE) iteration. This approach is already known in the literature and,
e.g., described by [18] and [32] for the Navier—Stokes equations. The implementation is very easy and
allows to use the multigrid components in a standalone fashion within the Schur complement solver.

Full multigrid approach: A truly monolithic algebraic multigrid method for saddle point problems is
presented in the following. It is specifically designed for problems arising from structural contact
problems but the general concept applies to other saddle point problems, too. The idea is to keep the
saddle point structure on all multigrid levels such that the contact constraints are considered on all
levels. We apply Schur complement based level smoothers which have the advantage that the contact
constraints are sufficiently considered on all levels.

For the nested approach the existing standard theory for saddle point problems as well as multigrid
methods applies in a straightforward way. In contrast, for the full multigrid approach the multigrid hierarchy
may suffer from stability issues. Thus, the stability of the discretization scheme plays an important role
for building coarse representations of the fine level problem in context of multigrid methods. In the work
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4 T. A. WIESNER ET AL.

by Wabro [41] a coupled AMG method is developed and analyzed for a stabilized mixed finite element
discretization of the Oseen equations, which utilizes special techniques to preserve stability on the coarser
levels by scaling the standard Galerkin product. However, at least for the Stokes problem, extensive
numerical studies in [20] reveal that uniform inf-sup stability (cf. [3, 22]) of the coarse level operators
is not necessary for obtaining a successful multigrid preconditioner (see also, e.g., statements on successful
preconditioners in [32]).

Special multigrid methods have been developed for mortar finite element problems in saddle point
formulation. The multigrid theory for this particular class of saddle point problems has evolved starting
from special multigrid methods for mortar finite element methods (e.g., [7, 17]) to mortar finite element
methods in saddle point formulation (e.g., [9, 10]). Recent works on specific multigrid methods for structural
contact problems in saddle point formulation are based on the ideas from the mortar finite element method
and introduce a very flexible multigrid framework that can be applied to a wide variety of different mortar
situations including structural contact problems (e.g., [42, 43]).

Most of the literature available on multigrid for contact problems is primarily on geometric multigrid
methods with abundant work on saddle point smoothers (cf. [46, 48]). However, in this paper, the usage of a
smoothed aggregation algebraic multigrid method is proposed for the contact problems based on the mortar
discretization.

2. FULL MULTIGRID APPROACH FOR CONTACT PROBLEMS

The basic idea of the full multigrid approach is to preserve the saddle point structure on all multigrid levels
by using appropriate transfer operators. This means, that one has to deal with coarse saddle point problems
on each level which makes appropriate level smoothers necessary.

2.1. Block smoothers
General block smoothers can be expressed by

Agkt! - AuF -1 rfi K ¢T Auk
-l (-6 D) e

where ) describes the 2 x 2 block preconditioning matrix approximating the 2 x 2 block operator in (5).
In structural contact simulations the interesting but challenging part is the coupling of the different solid
blocks at the contact interface. Mathematically, the contact problem is governed by the contact constraint
equations. Since the coupling of the structural blocks takes only place in the level smoother, constraint
smoothers (cf. [21]) are preferred, which put some special focus on the consideration of the constraint
equations. Guided by ideas of the SIMPLE preconditioner (e.g., [25]) the @ is chosen as

~ 1T 1T
0 <K o~> (1 K 11c1> _ (K 1 Kkhel )~ (K CI> @
c -5)\o0 1ir ¢ (1-Yek'd-1z)% e -z

with a > 0. In (7) the S denotes an approximation of the Schur complement S := 7 + C2K’1CI with a
cheap and easy-to-invert approximation K of the block K.
With S = aZ + aCoK ™! CI properly scaled, the error matrix of the preconditioner reduces to

T w—1pT
ESIMPLE:A*Q:(S ¢ _KOK Cl)- ®)

The zero row in (8) shows that an appropriate approximation of the Schur complement S allows to exactly
satisfy the contact constraints within one smoothing sweep. Therefore, in our case, the preferred choice are
the block approximate smoothers such as the SIMPLE-based methods.

Variants of the SIMPLE method like SIMPLEC as introduced by [34] can be understood as an
enhancement of the classical SIMPLE method. The general idea is to provide better approximations for
the inverse of the block K. Instead of just using the diagonal of K for calculating the approximate inverse of

K, the diagonal matrix containing the row sums of }K! = (\aij [)i,j=1,...,n is used. That is, K is defined as
nk

K:diag(Z|aij|)7 i=1,... nk. ©)
j=1

The default choice for S is consequently S=aZ+ aCQR_lCI with K as defined in (9). So, the method
is very similar to the classical SIMPLE method (cf. [14]). To keep the computational costs low, one does
not solve for the internal block inverses exactly, but only applies a fixed number of smoothing sweeps with
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ALGEBRAIC MULTGRID IN CONTACT MECHANICS 5

a relaxation-based method. As a naming convention, the prefix “Cheap” is added to the name of the block
smoothing method to indicate the usage of a cheap approximation for finding the inverse of the diagonal
blocks. A more theoretical discussion on the mathematical consequences of approximations for the Schur
complement S can be found in [48].

2.2. Segregated transfer operators

To keep the characteristic saddle point block structure (5) on all multigrid levels, the common approach is
to use segregated transfer operators

P* 0 R* 0
Pg+1 = < A)\) and REJrl = ( /\)\> N (10)
0o P 01 0 R 011

as, e.g., introduced in [8] or [1]. The segregated block transfer operators (10) are put together from
the transfer operator blocks for the different physical and mathematical fields (e.g., displacement field
and Lagrange multipliers). Here, P* and R" describe the transfer operator blocks corresponding to the

stiffness matrix block K in (5). The transfer operators P> and R* define the level transfer for the Lagrange
multipliers.

The block diagonal structure in (10) guarantees that the primary displacement variables and the secondary
Lagrange multipliers are not “mixed up” on the coarser levels. That is, the coarse level matrix still has the
same block structure with a clear distinction of momentum and constraint equations as for the fine level
problem.

Whereas for many coupled problems (e.g., Fluid-Structure-Interaction problems, Thermo-Structure-

Interaction problems) it is straightforward to generate P> and R, in case of structural contact problems this
is a non-trivial task, as one cannot use the Z block to generate valid aggregation information for the Lagrange
multipliers due to an insufficient pattern of the Z block. Consequently, one needs a special routine for ﬁndlng

aggregates for the Lagrange multipliers A to be able to build the (non-smoothed) transfer operators P> and

R*. For an interface coupled problem it seems natural to apply an interface aggregation method which
extends the aggregation to the contact interface for coarsening the Lagrange multipliers.

3. COARSENING STRATEGY

3.1. Aggregation strategy for the displacement variables

To preserve a meaningful saddle point structure on the coarse levels it is important to keep the two solid
blocks separated in the matrix representation on the coarse levels. One can use the standard aggregation
strategy with a modified K block from (5) as input to build the displacement aggregates <% which do
not cross the contact interface (see Figure 2). This way the two solid blocks are not “melted” together in
the coarse level matrices. In an efficient implementation the modified matrix is not built explicitly, but the
oft-diagonal entries are dropped on the fly.

3.2. Aggregation strategy for the Lagrange multipliers

In contrast to geometric multigrid methods, there is not so much literature on aggregation-based AMG
methods for contact problems in saddle point formulation. The only publication, the author is aware of
covering all aspects of smoothed aggregation methods for structural contact problems in saddle point
formulation, is Adams in [1], which also discusses a special aggregation strategy for the Lagrange

multipliers. To find aggregates .«7;™ for the Lagrange multipliers, Adams proposes to apply the standard
aggregation algorithm to the graph of a suitable matrix representing the Lagrange multipliers. However,
this approach has some drawbacks: First, the graph used for the aggregation of the Lagrange multipliers A
has to be built explicitly to serve as input for the standard aggregation algorithm. Secondly, one has to run
the aggregation algorithm sequentially both for the displacement degrees of freedom and for the Lagrange
multipliers. For the second run of the aggregation method one might have to use a different set of aggregation
parameters to obtain optimal results, which further increases the complexity for the user. Algorithmically,

the resulting aggregates <7, for the Lagrange multipliers are built independently from the displacement
aggregates .
In this work, a different approach is proposed to build aggregates <™ for the Lagrange multipliers.

Instead of explicitly building some helper matrix for the aggregation routine, interface aggregates .7,
for the Lagrange multipliers are directly generated using the aggregation information for the displacement
variables (see Figure 2). The resulting interface aggregates for the Lagrange multipliers are by construction
consistent with the corresponding displacement aggregates.

The exact aggregation procedure is described in Algorithm 1. Assuming that the standard aggregates
% for the displacement degrees of freedom are available, new aggregates %> are built by collecting
the corresponding Lagrange multiplier degrees of freedom relative to the displacement aggregates at the
slave contact interface. Beside the displacement aggregates <% only the mortar matrix D is needed
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Figure 2. Aggregation for contact problems in saddle point formulation
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Figure 3. Two tori impact example — Characteristic stages of deformation.

to algebraically reconstruct the contact interface and find the associated Lagrange multipliers. The new

aggregates 427@)‘ for the Lagrange multipliers can be interpreted as the natural extension of the displacement
aggregates o7, at the interface. This way, one can keep the ratio of coarse level nodes at the slave contact
interface and the coarse Lagrange multipliers constant, which also balances the ratio of contact constraints
and inner structural displacement degrees of freedoms over all multigrid levels.

4. TWO TORI IMPACT EXAMPLE

Inspired by some similar analysis in [47] the problem setup of the two tori impact example with geometry
and load conditions from [26] is used. There are two thin-walled tori with a Neo-Hookean material model
(E = 2250, v = 0.3, pp = 0.1) with a major and minor radius of 76 and 24 units and a wall thickness of 4.5
units. The right torus in Figure 3 lies in the zy-plane and is accelerated by a body force towards the left torus,
which is rotated around the y-axis by 45 degrees. The simulation runs 200 time steps with a time step size
of 0.05s using a generalized-« time integration scheme. The chosen finite element mesh consists of 284672
first-order hexahedral elements with 350208 nodes. All the simulations have been run on 16 cores (spread
over 2 Intel Xeon E5-2670 Octocore CPUs). With the rather complex geometry and contact configuration,
that heavily changes over time, this example can be considered as a representative test for the robustness and
efficiency of the tested numerical methods.

The nonlinear stopping criteria for the internal (non-smooth) Newton method (see,e.g., citepopp2012diss)
are chosen as

A

<1078 A ||r]

)
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ALGEBRAIC MULTGRID IN CONTACT MECHANICS 7

Algorithm 1: Aggregation algorithm for Lagrange multipliers.

Procedure LagMultAggregation («%,D)

Initialize empty set and counter for aggregates l;sz‘

AN 0, 1+0

Initialize empty mapping of displacement aggregates to Lagrange multiplier aggregates
dk) <0 VEk=1,...,myu

Loop over slave DOFs (rows of D)

fori € Ds do

Find displacement node n* id corresponding to displacement DOF i
n" < n(4)

Find aggregate index k that contains displacement node n*

Find k with @,®) ¢ @," where n* € (%)

Loop over all Lagrange multipliers j

for j € Dy do

Check whether Lagrange multiplier j is coupled with row i

if Di,j 7& 0 then

Find pseudo node n? for Lagrange multiplier j

nt n(7)

Check whether to build a new Lagrange multiplier aggregate

if d(k) = 0 then

Increment internal aggregation counter

l+—1+1

Build a new aggregate and add Lagrange multiplier node n?
AW {n*}

Associate displacement aggregate k with Lagrange multiplier aggregate |
d(k) « {1}

Add new aggregate to set of Lagrange multiplier aggregates g
a2 e g UV

else

Extend aggregate 0 < d(k) < I with pseudo node

A AR)) g7, (d(R)) {n)‘}

end

end

end

end

Return aggregates for Lagrange multipliers
return yig}‘

Here, r}* and rf‘ denotes the (nonlinear) residual for the displacement variables and Lagrange multipliers in
the i-th Newton iteration. The quantity Awu describes the solution increment for the displacement variables
in the current Newton iteration.

Within each Newton step, a preconditioned GMRES solver is used with the convergence criterion

I‘k -8
Il <10 12)
r
e
u
for the full residual vector r* = i A | in the linear iteration step k. Table I gives an overview of the different

tested preconditioner variants. It includes variants with the full multigrid approach, the nested multigrid
approach and a SIMPLE based variant without multigrid at all. For the full AMG variants the transfer
operators for the displacement blocks are varied. Particularly, non-smoothed transfer operators (PA-AMG)
are compared with smoothed aggregation transfer operators (SA-AMG).

Figure 4a shows the accumulated number of iterations for solving all linear systems within the Newton
method in one time step. Obviously, the SIMPLE based methods need more linear iterations than the AMG
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8 T. A. WIESNER ET AL.

Full multigrid based methods SIMPLE based methods
PA-AMG (CheapSIMPLE) CheapSIMPLE (SGS)
Transfer operators: ~ PA-AMG Transfer operators:  —
Level smoother: 1 CheapSIMPLEC(0.8) Block prec.: 2 CheapSIMPLEC(0.8)
— Pred. smoother: 1 SGS (0.8) — Pred. smoother: 3 SGS (0.8)
— Corr. smoother:  ILU (0) — Corr. smoother:  ILU (0)

CheapSIMPLE (SA-AMG)
Block prec.: 2 CheapSIMPLEC(0.8)
— Pred. smoother: AMG
— Transfer op.:.  SA-AMG (0.4)
— Level sm.: 2 SGS (0.8)
— Corr. smoother: ILU (0)
Table I. Two tori impact example — Different AMG variants.

SA-AMG (CheapSIMPLE)
Transfer operators: ~ SA-AMG (0.4)
Level smoother: 1 CheapSIMPLEC(0.8)
— Pred. smoother: 1 SGS (0.8)
— Corr. smoother:  ILU (0)

based methods. In this example there is nearly no difference between the non-smoothed transfer operator
variant PA-AMG (CheapSIMPLE) and the smoothed transfer operator variant SA-AMG (CheapSIMPLE).
Furthermore, there is no clear and obvious correlation between the number of linear iterations and the
number of active nodes. This shows, that the full multigrid method is robust and efficient with regard to
the increasing complexity of the contact configuration over time. This is in contrast to cheaper mehtods such
as the SIMPLE based methods where one can see a significant drop in the linear iterations for the last time
steps in the simulation, which may correspond to the small number of nodes in contact.

When looking at the corresponding solver timings over the time steps in Figure 4b, one finds the
CheapSIMPLE (SA-AMG) method to be very close to the AMG based methods PA-AMG (CheapSIMPLE)
and SA-AMG (CheapSIMPLE). For the AMG based methods one sweep with a CheapSIMPLEC method
is applied on each level, which internally uses 1 sweep with a symmetric Gauss—Seidel iteration for the
primary variable and 1 ILU sweep for the constraint equation. This way, quite a lot of time is invested in the
coupling on all levels with the comparably expensive ILU method. In contrary to the AMG based method,
the CheapSIMPLE (SA-AMG) method uses 2 sweeps with a CheapSIMPLE preconditioner for the coupling
(on the finest level only). Internally, a 3 level AMG multigrid is used with 2 symmetric Gauss—Seidel sweeps
for the level smoother and an ILU sweep for the constraint correction equation. These parameters have been
found to result in a reasonably low number of linear iterations. For this example the experiment shows that
the CheapSIMPLE (SA-AMG) method needs twice as many iterations as the SA-AMG (CheapSIMPLE)
method, but the costs per iteration are only half of the costs of the SA-AMG (CheapSIMPLE). Nevertheless,
the AMG based methods seem to have a small advantage, when the number of nodes in contact increases.

5. CONCLUSION

In this paper, we describe a full multigrid scheme designed for saddle point problems arising from contact
problems using mortar coupling blocks. The full multigrid scheme has the advantage that the contact
constraints are considered on all multigrid levels which significantly reduces the number of iterations. It
gives the user full control over the coupling process by appropriately choosing the smoother parameters
which might be useful for complex large contact problems in industrial applications. Additionally, we
propose a novel aggregation method for the Lagrange multipliers which reuses existing aggregation
information at the contact interface. In our opinion this is a more intuitive approach for contact interface
problems than the method presented in [1]. We demonstrate the robustness and efficiency of the overall
multigrid method for a large example with increasingly complex contact configurations over time.
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