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Abstract
Large scale scientific computing models, requiring iterative algebraic solvers, are

needed to simulate high-frequency wave propagation. This is because large degrees
of freedom are needed to avoid the celebrated Helmholtz computer model pollution
effects. Using low-order finite difference or finite element methods (FDM/FEM), such
issues have been well investigated for low and medium frequency models (typically
at most 50 wavelengths per diameter of the wave propagation domain). Standard
FDM/FEM based discretizations of the time-harmonic Helmholtz wave propagation
model lead to sign-indefinite systems with eigenvalues in the left half of the complex
plane. Hence standard iterative methods (such as GMRES/BiCGstab) perform poorly,
and additional techniques such as multigrid (MG) or decomposition of the domain are
required for efficient and practical simulation of high-frequency FDM/FEM Helmholtz
models. In this work, we investigate the use of multiple additive Schwarz type domain
decomposition (DD) approximations to efficiently simulate high-frequency wave prop-
agation with high-order FEM. We compare our DD based results with those obtained
using a standard geometric MG approach for over 100 wavelength models.

1 Introduction

Various domain decomposition (DD) methods have been shown to be effective for nu-
merous applications [7]. Recently there has been substantial interest in understanding
applications of DD for simulation of sign-indefinite wave propagation models (see [5]
and references therein). Most recent works have focused on simple cases with low-
order methods on rectangular domains, and consider only low- to medium-frequency
problems in numerical experiments.

For high-frequency models, standard low-order FDM/FEM models require a com-
putationally prohibitive large number of degrees of freedom (DoF) for accurate solu-
tions. Thus low-order computer models are not practical for high-frequency problems.
In this article, we consider acoustic wave propagation in non-convex media with re-
entrant corners which are features that occur in practical applications. We implement
a high-order FEM model to facilitate efficient simulation of high-frequency problems
with 100 or more wavelengths per diameter of the computational domain.

The main contribution of this short note from a preliminary version of our article [3]
is to develop a high-order FEM for a two dimensional homogeneous media wave prop-
agation model in conjunction with several variants of the classical additive Schwarz
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(AS) method for high-frequency problems. The full heterogeneous media article [3]
will include high-order FEM models for efficient simulation of high-frequency wave
propagation in both two and three dimensions. We demonstrate the efficiency of the
algorithms by comparing with a similar geometric multigrid (GMG) approach [4].

We consider the following model for time-harmonic acoustic wave propagation. Let
k > 0 be the constant wavenumber, and Ω ⊂ R2 be a bounded Lipschitz domain
with outward pointing unit normal vector ν and diameter L. Let g ∈ L2(∂Ω) be the
absorbing boundary data, typically induced by the impinging incident wave (plane or
point-source) from R2 \Ω. The continuous model with an absorbing boundary for the
acoustic wave propagation is to find u ∈ H1(Ω) such that

∆u(x) + k2u(x) = 0, in Ω, and
∂u

∂ν
− iku = g, on ∂Ω. (1)

We define the wavelength as λ = 2π/k, refer the model (1) to be an X wavelength
problem if L = Xλ, and define the frequency of the model to be high if X ≥ 50.

Standard finite element method (FEM) computer models for this problem require
large degrees of freedom (DoF) for accurate solutions, and the DoF required increase
as k increases. With the standard low-order FEM with spline degree p = 1 we require
the mesh size h ∼ k−3/2 for pollution free solutions [5]. With this choice, the resulting
DoF becomes prohibitive for direct methods as k becomes large. While the DoF are
decreased, high-order FEM models also require iterative methods as the frequency of
the problem becomes very large. The resulting system of equations are poorly condi-
tioned and sign-indefinite, and traditional iterative methods are not possible or perform
poorly. Thus efficient iterative methods for FEM computer models of Helmholtz prob-
lems is an active area of research. We decrease the required DoF in this paper by using
a high-order FEM with p = 4 and develop an efficient DD iterative method framework.

The articles [1, 2, 4] (and references therein) consider preconditioning the system
with a discrete version of the following complex shifted Laplacian wave propagation
model with added absorption. As a preconditioner, we use the discrete system resulting
from the Galerkin discretization of the standard variational formulation to the following
problem. Find u ∈ H1(Ω) such that

∆u(x) + (k2 + i E)u(x) = 0 in Ω, and
∂v

∂ν
− ikv = g on ∂Ω, (2)

where E > 0 is a free shift parameter.
Most recent work regarding the shifted Laplacian considers using a multigrid (MG)

approximation of a discrete version of (2). With MG approximations of the precondi-
tioner, it has been shown that the key to efficient simulation is a proper choice of the
shift parameter E . The recent work [2] provided analysis for the proper choice of the
shift E ∼ k in order for the shifted Laplacian to be a good preconditioner, requiring
wavenumber independent GMRES iterations, for the original problem. However, this
work does not apply when DD or MG are used to efficiently approximate the precon-
ditioner. In the case of MG approximations, based on numerical experience, it is well
known that a shift E ∼ k2 provides optimal convergence of the preconditioned iterative
method (see [1, 4]). However, analysis of this choice for MG is an open problem.

2



The recent preprint [5] suggests that additive Schwarz (AS) approximations of the
shifted Laplacian problem in (2) with shift E ∼ kα for α ∈ [0, 2] provide efficient pre-
conditioners for the original model. Further using a standard low-order method, it has
been shown in [5] that the choice α ∈ [0, 1.2] is optimal with a slight degradation as α
approaches 2. This is surprising since α = 2 is the common choice with MG. However,
to achieve these results in [5], two-level AS methods are implemented with relatively
fine coarse grid selection which makes their choice of DD implementation more com-
putationally expensive than common MG approaches [4]. Further, the authors of [5]
require the use of hybrid AS methods which are less parallelizable than classical AS
methods.

In this work, we consider the proper choice of shift E when implementing hybrid
and classical AS methods with parameter selections which provide both high and low
computational costs for a high-order h-p computer model. We consider the use of
overlapping and non-overlapping AS and hybrid AS type algorithms to approximate
the preconditioner.

2 A High-Order FEM Model

Our FEM model is based on a high-order discretization of the standard variational
formulations for the problem in (1) and the corresponding preconditioner problem
from (2). For our model problems we choose the boundary data g in (1) and (2) such
that a point source at (3, 0) is the exact solution to the problem. In Figure 1 we provide
simulations for the non-convex model problem.

Figure 1: Simulations of the real part of the total field for the model problem with 50 and
100 wavelengths per diameter of Ω (left and right)

The FEM model is based on the following variational formulation of the continuous
models in V = H1(Ω). The variational formulation for (2) using the L2 inner product
notation is to find u ∈ V such that

aE(u, v) = F (v), for all v ∈ V, where (3)

aE(u, v)=〈∇u,∇v〉L2(Ω)− (k2+i E)〈u, v〉L2(Ω)− ik〈u, v〉L2(∂Ω), F (v)=〈g, v〉L2(∂Ω). (4)
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For a chosen mesh parameter h, the discrete Ritz-Galerkin system for solving the
problem is posed on a finite dimensional subspace V hp ⊂ V , spanned by WEB-spline [6]

basis functions Bj of degree p for j ∈ Ih, where Ih is an index set corresponding to
node points used to construct the basis. The FEM approximate solution uh is then

uh =
∑
j∈Ih

cjBj , where a(uh, v) = F (v), for all v ∈ Vh. (5)

The second equation in (5) yields a system of linear equations for the unknown coeffi-
cients in first equation in (5). We denote the resulting system of equations in matrix
form as AE . If E = 0, the problem in (2) reduces to the original problem in (1), and
we denote the sesquilinear form a(·, ·) and system of equations as A.

We use a non-standard high-order FEM approach based on multivariate basis
splines on uniform Cartesian grids which facilitates simple implementation of geomet-
ric multigrid (GMG) [4]. This choice is natural for the model problem considered here,
but our work can be extended to general complex shaped domains including curved
geometries (see [4]). We omit details of the method in this short article and refer
interested readers to [3, 4, 6] for two and three dimensional models.

With spline-degree p = 4 fixed, we consider mesh-grid width h = (1/2)m for m ∈ N,
and we desire to achieve relative L2(Ω)-norm error of approximately 10−3 or less (i.e.
relative error of approximately 0.1% or less). We begin by demonstrating the required
choice of m to achieve our desired tolerance in Tables 1 and 2. In Table 1 we consider
m = 6, and we only achieve our desired tolerance with up to L = 80λ. However, in
Table 2 we implement m = 7 and achieve our desired tolerance for problems with up
to L = 150λ. With h = (1/2)7 there are 4.83 and 7.24 elements per wavelength when
L = 150λ and 100λ respectively. This is much fewer elements per wavelength than is
necessary for accurate results with standard low-order FEM.

Table 1: L2(Ω)-norm error with p = 4, and h = (1/2)6 varying frequency

L 50λ 60λ 70λ 80λ 90λ 100λ

Error 8.6457e-05 2.4574e-04 6.5773e-04 1.8285e-03 5.4235e-03 1.6285e-02

Table 2: L2(Ω)-norm error with p = 4, and h = (1/2)7 varying frequency

L 100λ 110λ 120λ 130λ 140λ 150λ

Error 8.8281e-05 1.5471e-04 2.6905e-04 4.7323e-04 8.5096e-04 1.5618e-03

If we implement the same grid width h = (1/2)7 in Table 3 with p = 1, 2, and 3
for the 150 wavelength problem, we do not achieve our desired accuracy. However,
in Table 3 we see that with the FEM implemented we have similar DoF in the FEM
system for all choices of p, and this implies solving the FEM system has a similar
computational cost. Thus our high-order FEM provides a significant decrease in the
required DoF and the computational cost of solving the FEM system for accurate
solutions to high-frequency problems.
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Table 3: L2(Ω)-norm error with L = 150λ, and h = (1/2)7, varying p.

p 1 2 3 4

Error 1.3591e+00 4.2992e-01 2.2751e-02 1.5618e-03
DoF 197,889 199,172 200,457 201,744

3 Domain Decomposition Algorithms

Consider the system of equations given by the matrix AE which results from the high-
order Galerkin FEM discretization of the shifted Laplacian problem (2) in the FEM
subspace V hp corresponding to a fine grid width of h and WEB-spline basis degree p.

Here we define the notation and method used for decomposing the FEM space V hp into
N subspaces for the AS type DD algorithms.

Assume that we have a collection of open subsets {Ω̃` : ` = 1, · · · , N} such that
Ω̃` ⊂ Rd, and the collection forms an overlapping cover of Ω. Details on the choice of
Ω̃` will be provide later. We are interested in the portion of the cover interior to Ω, so
we define the collection {Ω` : ` = 1, · · · , N} where Ω` = Ω̃` ∩ Ω. For ` = 1, · · · , N we
assume that Ω` is non-empty and a union of elements from the fine grid intersected
with the closure of the domain. For each Ω` the associated subspace of V hp is

V ` = {vh ∈ V hp : supp(vh) ⊂ Ω`}.

The number of DoF for V ` is the cardinality of the set {xj : j ∈ Ih(Ω`)}, where Ih(Ω`)
is a suitable index set, and xj corresponds to the lower left corner of support for the
associated basis function.

In practice, for ` = 1, · · · , N , we choose the index set Ih(Ω`) first, and this de-
termines the collection {Ω` : ` = 1, · · · , N}. Further, we begin by choosing a non-
overlapping collection {Ω̂` : ` = 1, · · · , N}, and we carefully choose the overlap to
maximize the amount of coupling retained from the original FEM system AE while
minimizing the added DoF in the subdomains. We choose Ih(Ω̂`) such that for all
j ∈ Ih(Ω̂`) the lower left corner xj of associated basis functions φj lies within a rectan-
gle. We keep all the rectangles approximately the same size and denote the approximate
maximum diameter of the subdomains as Hs. The parameter Hs determines the num-
ber of subdomains and the DoF in each subdomain. We plot an example choice of
Ih(Ω̂`) for the model problem by plotting the corresponding xj in different colors for
` = 1, · · · , N in Figure 2.

After creating the non-overlapping decomposition, we choose the overlap as follows.
To simplify notation we denote I := Ih in the following to avoid excessive superscripts.
Define a graph G = (I, E) where I = {1, · · · , n} are the n indices corresponding to the
DoF in the FEM system and E is the edge set such that E = {(i, j)|(AE)i,j 6= 0}. Using
the standard variational formulation of the problem the non-zero pattern is symmetric,
and thus G is undirected.

We denote I0
i := Ih(Ω̂i) to simplify the presentation. Our work above partitions

the graph into N non-overlapping subsets I0
` for ` = 1, · · · , N such that I =

N⋃
`=1

I0
` .
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Figure 2: Subdomain choices for the model problem with h = 0.015625, p = 4, Hs = 1 and
δ = 0, and 1 (left and right). Points corresponding to DoF in different subdomains are
plotted in different colors. Points corresponding to DoF included in multiple subdomains
are plotted in black. The same color had to be used for multiple subdomains.

We now define I1
i for i = 1, · · · , N to be the one-overlap partition of I where for each

i = 1, · · · , N, I0
i ⊂ I1

i , and I1
i is created by including all the immediate neighboring

vertices in the graph to the vertices in I0
i . We use this same method to further define

the δ-overlap partition of I

I =

N⋃
i=1

Iδi ,

where Iδi has δ levels of overlap with neighboring subdomains for integer δ ≥ 0.
Commonly the overlap is instead chosen geometrically by including in a non-

overlapping subdomain neighboring DoF within a certain distance of the boundary
of the subdomain (see [5]). However, our method chooses additional DoF for each non-
overlapping subdomain based on the coupling of the system. Both methods do achieve
similar results, but our method is well suited for high-order FEM. Since high-order
FEM increases the density and coupling of the system AE as p increases, the actual
geometric width of the overlap created increases as p increases for fixed δ. If we were
to use a geometric method to choose our overlap, we would have to manually increase
the width of the overlap as p increased. We provide an example of an overlapping
decomposition for the model problem in Figure 2.

Using the described subspaces and subdomains, we implement the following two-
level algorithms: non-overlapping AS, and hybrid additive Schwarz (HAS), and over-
lapping AS, restricted additive Schwarz (RAS), averaged additive Schwarz (AVE), and
hybrid restricted additive Schwarz (HRAS). These algorithms are well known, and we
omit the details in this short article. We refer interested readers to [5] for full definitions
of all the methods and to [7] for an overview of general DD methods.

Because we implement two-level methods, we require an additional choice of a
coarse grid subspace and corresponding restriction and prolongation operators. Details
of these choices are omitted here, interested readers are referred to [3, 4, 6]. We
additionally use this same choice of coarse grid and grid transfer operators for our
GMG implementation used for comparison in the numerical results.
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3.1 Computational Cost

The key reason for using a DD or GMG [4] approximation of the preconditioner is to
decrease the computational cost of calculating the preconditioner. Here we demonstrate
the computational cost for the GMG and DD methods implemented in this article
explicitly through tables, and we use this to justify our choices of the coarse grid width
Hc and subdomain diameter Hs used in our numerical experiments.

We present the DoF in the coarse grid systems in Table 4. This same choice of
coarse grid is used for both the GMG and DD approximations. The DoF in the fine
grid with h = (1/2)7 is 201, 744, as shown in Table 3. For our comparison of the
GMG and DD methods we consider a two-level GMG with Hc = (1/2)6 compared
with DD methods using the coarse grid width Hc = (1/2)6. We additionally consider a
three-level GMG with coarsest grid width Hc = (1/2)5 compared to DD methods with
coarse grid width Hc = (1/2)5. This provides equivalent DoF in the coarse grid where
we implement a direct solve for both the GMG and DD methods.

Table 4: DoF in the FEM system with varying Hc for the model problem with p = 4.

Hc (1/2)3 (1/2)4 (1/2)5 (1/2)6

DoF 1,104 3,728 13,584 51,728

Table 5: Maximum DoF in a subdomain and the number of subdomains N for the non-
convex domain with p = 4, h = (1/2)7, and varying Hs, and δ.

Hs (1/2)0 (1/2)1 (1/2)2 (1/2)3

N 9 25 81 289
DoF δ = 0 29,584 10,816 3,364 961
DoF δ = 1 31,680 12,321 4,356 1,521

For the DD methods, the choice of subdomain diameter Hs provides an additional
parameter to control the DoF in the subdomain systems. We consider the DoF required
for the subdomain systems in Table 5. We choose Hs so that the resulting DoF in the
subdomain system are comparable to the DoF in the coarse grid system, and this results
in good load balancing since the subdomain and coarse grid systems can be solved in
parallel for the non-hybrid DD algorithms. Thus for the cases where Hc = (1/2)6 and
(1/2)5 we choose Hs = (1/2)0 and (1/2)1 respectively. This results in slightly fewer
DoF in the subdomain systems compared with the coarse grid system as can be seen
from comparing Tables 4 and 5.

When Hc = (1/2)6 and Hs = (1/2)0, for our classical AS preconditioners we must
solve a system of dimension 51, 728 and nine systems of dimension 29, 584 when δ = 0
or 31, 680 when δ = 1, but these solves can be done completely in parallel. For the
GMG algorithm we solve one system of dimension 51, 728 and require some additional
work for smoothing on the fine grids. Similar analysis can be done for Hc = (1/2)5

and Hs = (1/2)1 using Tables 4–5. Thus with parallel implementation the cost of the
DD and GMG methods are similar.
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4 Numerical Results

We consider the performance of the DD approximations for the preconditioner through
numerical evidence. For comparison we consider the use of a GMG approximation [4]
of the preconditioner. For all results we fix the fine grid width h = (1/2)7. For the
one-level GMG algorithm with coarse grid width Hc = (1/2)6, we use a V (1, 1)-cycle.
For the two-level MG algorithm with coarsest grid width Hc = (1/2)5 we implement an
F (1, 1)-cycle motivated by the previous work [4]. For both algorithms we use weighted
Jacobi smoothing with weight ω = 0.5 and implement a direct solve on the coarsest
grid. These choices of parameters and cycles were shown to be effective preconditioners
for similar problems with p = 3 and L ≤ 100λ in [4].

Table 6: Number of BiCGstab iterations required when preconditioned with GMG, AS
and HAS with δ = 0 with coarse grid Hc = (1/2)6 and subdomain diameter Hs = (1/2)0

for fixed h = (1/2)7 and p = 4.

E = k2

L 100λ 110λ 120λ 130λ 140λ 150λ

GMG 267 310 339 375 398 486
AS 244 278 319 329 365 409

HAS 294 329 363 377 410 449

E = k3/2

L 100λ 110λ 120λ 130λ 140λ 150λ

GMG 65 69 71 79 81 169
AS 31 31 32 34 36 41

HAS 30 30 30 32 33 45

E = k
L 100λ 110λ 120λ 130λ 140λ 150λ

GMG 31 35 36 44 62 >500
AS 28 27 28 29 38 50

HAS 8 8 10 14 42 84

In Table 6 we consider the results with fixed coarse grid h = (1/2)6 for both
the GMG and DD algorithms. For this initial comparison we consider only the non-
overlapping DD algorithms, AS and HAS. Because our coarse grid is very fine for
this case, we achieve optimal results for all algorithms with complex shift E < k2

even for the GMG preconditioner where E ∼ k2 is the standard choice. The choice of
E = k3/2 or k depends on the size of Hck and the choice of algorithm. We note that the
fewest required iterations are obtained with the DD algorithms when compared to the
GMG. The choice of AS or the hybrid HAS depends on the size of Hck. However, the
non-hybrid algorithms have similar computational cost to GMG when all subdomain
system solves are done in parallel, and this is not possible with the hybrid HAS. Thus
we prefer to use non-hybrid methods when the corresponding hybrid methods provide
only slightly fewer iterations as with non-overlapping AS and HAS.
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Table 7: Number of BiCGstab iterations required preconditioned with RAS, AVE, and
HRAS with δ = 1, coarse grid Hc = (1/2)6 and subdomain diameter Hs = (1/2)0 for fixed
h = (1/2)7 and p = 4.

E = k3/2

L 100λ 110λ 120λ 130λ 140λ 150λ

RAS 29 33 30 31 32 35
AVE 29 30 29 31 31 35

HRAS 25 26 28 28 30 41

E = k
L 100λ 110λ 120λ 130λ 140λ 150λ

RAS 18 16 18 19 34 73
AVE 18 17 18 20 33 73

HRAS 5 5 6 11 25 70

The efficiency of the preconditioner can be further improved for fixed coarse grid
h = (1/2)6 by considering overlapping DD algorithms (see Table 7). We omit the results
with shift E = k2 because similar to Table 6 the overlapping algorithms perform poorly
with this choice. The most noticeable improvements compared to the non-overlapping
algorithms in Table 6 are seen for the highest frequency problems when Hck becomes
large for the RAS and AVE, and for the lowest frequency problems when Hck is small
for HRAS. For problems up to 120 wavelengths HRAS is a competitive choice, and this
is expected based on the recent work [5], but for a robust algorithm the AVE and RAS
preconditioners provide efficient preconditioners for all frequencies considered. With
all three preconditioners the optimal choice of E depends on the size of Hck.

Table 8: Number of BiCGstab iterations required preconditioned with GMG, RAS, AVE,
and HRAS with δ = 1, coarse grid Hc = (1/2)5, and subdomain diameter Hs = (1/2)1 for
fixed h = (1/2)7, and p = 4.

E = k2

L 100λ 110λ 120λ 130λ 140λ 150λ

GMG 263 275 328 385 380 432
RAS 452 451 467 432 463 496
AVE 433 456 445 441 460 >500

HRAS 298 281 320 327 345 387

E = k3/2

L 100λ 110λ 120λ 130λ 140λ 150λ

GMG >500 >500 >500 >500 >500 >500
RAS 78 109 98 71 73 91
AVE 76 91 101 78 74 81

HRAS 83 90 99 63 66 77
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We conclude this article in Table 8 by comparing our preferred overlapping DD
algorithms with GMG with coarse grid Hc = (1/2)5. This choice provides less compu-
tationally expensive approximation of the preconditioner compared to Tables 6–7, and
in practice we would like to choose Hc as large as possible and Hs as small as possible.

We see in Table 8 that with less DoF in the coarsest grid the GMG now requires
the standard choice of E ∼ k2 in order for BiCGstab to converge in less than 500
iterations. However, the DD methods perform best when E = k3/2. Because Hck is
increased all algorithms perform poorly when E = k, and thus we omit these results.
We see a significant decrease in the required iterations using DD algorithms compared
to GMG. We emphasize again that with parallel processing the computational cost of
the GMG, AVE, and RAS methods is similar, but HRAS is more expensive because
the coarse and subdomain solves cannot be done in parallel. Thus simulating high-
frequency problems with our high-order FEM algorithm, we prefer to use DD methods
to traditional GMG to approximate the shifted Laplacian preconditioner. In particular
we see the most efficient results with the overlapping RAS and AVE preconditioners.
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