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1 Introduction

1.1 The Scattering Amplitude Problem

The core objective of this paper is to design and implement iterative methods for the solution of a system
where the coefficient matrix is large, sparse, and nonsymmetric. These iterative methods should be more
efficient and robust than existing methods for solving such systems. We want to use the solutions of these
systems to compute the scattering amplitude. The scattering amplitude, in quantum physics, is the amplitude
of the outgoing spherical wave relative to that of the incoming plane wave [4]. It is useful when it is of interest
to know what is reflected when a radar wave is impinging on a certain object.

The scattering amplitude can be computed by taking the inner product of the right hand side vector g
of the adjoint system

ATy = g (1.1)

and the solution x of the forward system
Ax = b. (1.2)

For large, sparse systems, an iterative method is preferred. The conjugate gradient method is the preferred
iterative method for a symmetric positive definite matrix A [6]. However it is much more difficult to find this
solution for a matrix that is not symmetric positive definite. Since the scattering amplitude depends on both
the forward and adjoint problem, we want to use methods that take both the forward and adjoint problems
into account, like the quasi-minimal residual (QMR) [8] and generalized least squares residual (GLSQR)
methods [13].

1.2 Approximation of the Scattering Amplitude

Another important objective of this paper is to develop methods that approximate expressions of the form

uT f(A)v, (1.3)

where u and v are n-vectors and A is an n × n nonsymmetric matrix. The scattering amplitude can be
expressed as a bilinear form where f(A) represents the inverse operator. Instead of simply computing
f(A)v and then taking the inner product with u, in [3] the authors worked on (1.3) directly using Gaussian
quadrature, but they only considered the case where A is SPD. Thus, in [4] the authors looked into using
this approach for the scattering amplitude, where f(ATA) is used. The approaches from the work in [4]
exhibited very slow convergence; therefore, we want to explore alternative approaches. We want to try a
matrix that can be guaranteed to have real, positive eigenvalues and while not symmetric, is in some sense
SPD that allows us to use a conjugate gradient-like approach. It is not necessarily symmetry that we seek,
but we do want real, positive eigenvalues. The matrix we want to look at is the nonsymmetric saddle point
matrix from [2]
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M =

[
ATWA AT

−A 0

]
. (1.4)

We assume that the matrix W is symmetric positive definite, and want to choose W so that we can guarantee
M has real, positive eigenvalues.

2 Iterative Methods for Nonsymmetric Saddle Point Matrices

The matrix M , defined previously as (1.4) where A ∈ Rn×n is invertible and W is a symmetric positive
definite matrix, is a nonsymmetric saddle point matrix. It can be shown that if the matrix W is symmetric
positive definite, then xTMx ≥ 0.

2.1 Ensuring a Real Positive Spectrum

We want to choose W so that the matrix M has a real positive spectrum, so it is suitable for a conjugate
gradient iteration. To make this choice we need to first define

M(γ) ≡ J p(M) = J (M − γI) =

[
ATWA− γI AT

A γI

]
where p is a polynomial of degree one in the form p(ζ) = ζ − γ for γ ∈ R and

J ≡
[
I 0
0 −I

]
.

The goal here is to determine if there exists a symmetric positive definite matrixM(γ) with respect to which
M is symmetric positive definite. We say that M isM(γ)-symmetric ifM(γ)M = MTM(γ) = (M(γ)M)T .
Let us first define a generic nonsymmetric saddle point matrix

A =

[
Â B̂T

−B̂ Ĉ

]
with blocks Â, B̂, and Ĉ. Now defineM(γ) = J p(A). We can use the results from [7] that state the following:

Lemma 2.1. Let the matrix

J ≡
[
I 0
0 −I

]
be conformally partitioned with A. Then
(1) A is J -symmetric, i.e. JA = ATJ = (JA)T , and for any polynomial p,
(2a) p(A) is J -symmetric, i.e J p(A) = p(AT )J = (J p(A))T , and
(2b) A is J p(A)-symmetric, i.e (J p(A))A = AT (p(A)T )J = (J p(A)A)T .

Theorem 2.2. The symmetric matrix M(γ) is positive definite if and only if

λmin(Â) > γ > λmax(Ĉ) (2.1)

where λmin and λmax denote the smallest and largest eigenvalues, respectively, and

‖(γI − Ĉ)−1/2B̂(Â− γI)−1/2‖2 < 1. (2.2)

A sufficient condition that makes M(γ) positive definite can be derived from the above theorem.
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Corollary 2.3. The matrix M(γ) is symmetric positive definite when (2.1) holds, and, in addition,

‖B̂‖22 < (λmin(Â)− γ)(γ − λmax(Ĉ)). (2.3)

For γ = γ̂ ≡ 1
2 (λmin(Â) + λmax(Ĉ)), the right hand side of (2.3) is maximal and (2.3) reduces to

2‖B̂‖2 < (λmin(Â)− λmax(Ĉ)). (2.4)

Corollary 2.4. If there exists a γ ∈ R so that M(γ) is positive definite then A has a nonnegative real
spectrum and a complete set of eigenvectors that are orthonormal with respect to the inner product defined
by M(γ). In case B̂ has full rank, the spectrum of A is real and positive.

Using the previous results from [7], the following can be shown.

Theorem 2.5. Let A ∈ Rn×n be invertible, and W ∈ Rn×n be symmetric positive definite. If

‖W‖2 >
2κ2(A)

σn(A)
. (2.5)

then the matrix M defined in (1.4) has real, positive eigenvalues and M(γ)-orthogonal eigenvectors.

Proof: See [11].
Therefore, this selection of W makes the matrix M suitable for a conjugate gradient-like iteration.

2.2 Nonsymmetric Saddle Point Conjugate Gradient

Here we will introduce Nonsymmetric Saddle Point Conjugate Gradient (NspCG) method that solves a linear
system with the matrix M from (1.4). We know that there exists a conjugate gradient-like method for solving
systems with this matrix M because M is diagonalizable with real, positive eigenvalues. As a consequence of
(2.5), M(γ), where γ = 1

2λmin(ATWA), is symmetric positive definite, and therefore defines a proper inner
product, (u,v)G = vTGu. M is symmetric positive definite with respect to this inner product, meaning
that (u,Mv)M(γ) = (Mu,v)M(γ) and (u,Mu)M(γ) > 0 for all nonzero u.

Let the vectors p and b be defined as

b =

[
ATWc + d
−c

]
p =

[
d
0

]
. (2.6)

We are solving Mz = p, where z = [x y], and Ax = c and ATy = d. Therefore, the scattering amplitude
is pTx for given vectors c and d. This system can be solved using the following conjugate gradient method,
that is based on a given inner product (u,v)G = vTGu for solving a linear system of the form Mx = b.

Algorithm 2.1
Input: System matrix M , right hand side vector b, inner product matrix W , initial guess x0

Require: r0 = b−Mx0

for i = 0, 1, . . . until convergence do

αi = (x−xi,pi)G
(pi,pi)G

xi+1 = xi + αipi
ri+1 = ri − αiMpi
βi+1 = − (ri+1,pi)G

(pi,pi)G
pi+1 = ri+1 + βi+1pi

end for

We use the inner product matrix G = M(γ)M given by [7]. In [7] we see this choice of G gives a working
CG method from the following lemma.

Lemma 2.6. Suppose that the symmetric matrix M(γ) is positive definite. Then Algorithm 2.1 is well
defined for M and G =M(γ)M , and (until convergence) the scalars αi and βi+1 can be computed as

αi =
(ri, ri)M(γ)

(Mpi,pi)M(γ)
(2.7)
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βi+1 =
(ri+1, ri+1)M(γ)

(Mri, ri)M(γ)
. (2.8)

It can be shown that for this modified CG method, just as in classical CG, each residual is orthogonal
to all previous residuals, in an appropriate inner product.

Theorem 2.7. Each residual rk as defined in the above algorithm is orthogonal to all previous residuals
with respect to M(γ), i.e. (rTi , rj)M(γ) = 0, where i 6= j.

Proof: See [11].

3 Matrices, Moments, and Quadrature

3.1 Gaussian Quadrature

In Section 1 it is given that the scattering amplitude is computed by gTA−1b. This expression is a component
of the solution x of the linear system Ax = b. Therefore, it is not necessary to compute the entire solution
x. This chapter will be a review of techniques used to approximate expressions of bilinear form

uT f(W )v, (3.1)

where W is a symmetric positive definite matrix. To approximate uT f(W )v directly, the eigendecomposition
W = QΛQT and Q is orthogonal, can be used. [3] The scattering amplitude relates to (3.1) in that it is a
bilinear form of this kind, where f(λ) = λ−1. With substitution we get that

uT f(W )v = uTQf(Λ)QTv. (3.2)

Therefore,

uT f(W )v = αT f(Λ)β =

n∑
i=1

f(λi)αiβi, (3.3)

where α = QTu and β = QTv. which is the Riemann Stieltes integral:

uT f(W )v =

∫ b

a

f(λ) dα(λ), (3.4)

where

α(λ) =


0 if λ < a = λ1∑i
j=1 αjβj if λi ≤ λ < λi+1∑n
j=1 αjβj if b ≤ λn ≤ λ

(3.5)

and a and b are the smallest and largest eigenvalues of A [3]. Now we can arrive at the quadrature formula∫ b

a

f(λ) dα(λ) =

N∑
j=1

wjf(tj) +

M∑
k=1

vkf(zk) +R[f ] (3.6)

where the weights wj , vk, and the nodes tj are unknown, and the nodes zk are prescribed. For example, for
a Gaussian rule, M = 0 since no nodes are prescribed, but for a Gauss-Lobatto rule, M = 2 and the zk’s are
a and b. We can compute the nodes and weights of the quadrature rules by applying the Lanczos process to
the symmetric matrix W . Then the eigenvalues of the matrix Tk, that is produced by Lanczos, will represent
the nodes of the quadrature rule, and the first components of the corresponding eigenvectors of the matrix
Tk can be used to compute the weights. The advantage to this is that we do not have to find a full solution
of the forward problem Ax = b, so it is much more efficient.
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3.2 Bilinear forms involving matrix functions of Nonsymmetric Matrices

In Section 3.1, we were computing uT f(W )v where W is assumed to be SPD, but now we want to apply
the same ideas for a situation in which the matrix (M) is not SPD, but is at least SPD in some sense.
Therefore, we will focus on the adaptation of techniques from “matrices, moments and quadrature”, that
is, methods for computing expressions of the form (3.1), to the nonsymmetric saddle point case in such a
way as to benefit from the accelerated convergence of NspCG achieved during the first phase. For this task,
it is helpful to note that if Qk =

[
q1 q2 · · · qk

]
is a matrix consisting of the normalized residuals

generated by Algorithm 2.1, then it can be shown that

QTkM(γ)MQk = Tk,

where Tk is a symmetric positive definite tridiagonal matrix. This relation is analogous to that between
the normalized residual vectors generated by CG applied to a symmetric positive definite matrix A, which
are the Lanczos vectors, and the Jacobi matrix produced by the Lanczos algorithm. This Jacobi matrix is
closely related to Gaussian quadrature rules for bilinear forms involving functions of A. It is proposed to
use the matrix Tk to obtain a Gaussian quadrature rule for approximating expressions of the form uT f(G)v,
where G =M(γ)M .

Of particular interest is the case where f(λ) = λ−1, u = p, and v =M(γ)b where the vectors p and b
are defined as in (2.6). It follows that

uT f(G)v = pTM−1b = dTA−1c

is the scattering amplitude for given vectors c and d. By approximating this quantity using Gaussian
quadrature as described in the previous section, the expense of explicitly solving Ax = c or Mz = b can be
avoided.

4 Numerical Results

In this section, we will analyze the results from the modified Conjugate Gradient method (NspCG) from
Algorithm 2.1 on the matrix (1.4) with right hand side (2.6) to solve Ax = c and ATy = d. Here, W = wI,
where the scalar w is chosen so that W satisfies Theorem 2.5. These examples are from [4].

• Example 1 : This example uses the matrix created by A=sprand(n,n,0.2)+speye(n) in Matlab where
n=100, and the maximum number of iterations is 200. This creates a random sparse n×n matrix, where
0.2 is the density of uniformly distributed nonzero entries, and adds this to the identity. In Figure
1 NspCG gains a few decimal places of accuracy within the first few iterations. It takes GMRES at
least 100 iterations to gain the same accuracy, and GLSQR 150 iterations to do the same. Eventually
QMR gains a few decimal places of accuracy, and BiCG shows some signs of convergence at about 150
iterations.

• Example 2 : This example uses the ORSIRR 1 matrix from the Matrix Market collection, which
represents a linear system used in oil reservoir modeling. This matrix can be obtained from
http://math.nist.gov/MatrixMarket/.

In Figure 2 NspCG again gains a few decimal places of accuracy within the first few iterations, then
levels off. GMRES takes about 400 iterations to reach the same accuracy, then converges by 800 iterations.
BiCG and QMR take 1000 iterations to reach the same level of accuracy. GLSQR never converges at all.

4.1 Block Approach

In the case W = wI it is easy to block tridiagonalize M using Krylov subspaces generated by LSQR. This
suggests developing a CG-like iteration based on block Lanczos using the same nonstandard inner product.

• Example 1 : In Figure 3 both NspCG and block NspCG start off the same, at 60 iterations block
NspCG converges much more quickly. GMRES takes 100 iterations to converge. BiCG doesn’t reach
a very high level of accuracy at all.
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Figure 1: Example 1

• Example 2 : In Figure 4 we see that NspCG and block NspCG have about the same performance,
plateauing off at 200 iterations. GMRES converges at 500 iterations, while BiCG never converges.
From Figure 3, block Lanczos with reorthogonalization is a substantial improvement over NspCG, but
only yields slight improvement in Figure 4.

4.2 Preconditioning

Conjugate gradient has very rapid convergence for a symmetric positive definite matrix A that is nearly
identity. We need to apply preconditioning techniques to make our matrix M satisfy this criterion. The idea
is to apply ILU preconditioning, while taking into account the structure of the nonsymmetric saddle point
matrix M . The matrix W in the (1,1) block is assumed to be SPD; therefore it has a Cholesky factorization
W = GGT . We can use the incomplete QR factorization GTA ≈ Q̃R̃ to obtain the factorization M ≈ LU ,
where

L =

[
R̃T 0

−G−T Q̃ G−T Q̃

]
, U =

[
R̃ Q̃TG−1

0 Q̃TG−1

]
, (4.1)

where C = GTAR̃−1 ≈ Q̃. The resulting preconditioned system matrix is given by

L̃−1MŨ−1 =

[
CTC −CTC + CT Q̃

CTC − Q̃TC −CTC + CT Q̃+ Q̃TC

]
. (4.2)

The above matrix has the structure similar to that of M from (1.4), and is near I.

• Example 1 : In Figure 5 we see that NspCG converges in only 10 iterations, where it takes all other
methods about 80 iterations, if they even converge at all.

• Example 2 : We see similar results from above in this Figure 6.

The problem with this preconditioning approach is that the preconditioned matrix is no longer symmetric
positive definite with respect to the nonstandard inner product.
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Figure 2: Example 2

5 Conclusions and Future Work

The results from this paper show that the NspCG method is much more consistent and reliable than GLSQR
or QMR. NspCG only takes a few iterations to make fairly significant progress while GLSQR takes many
iterations in most cases, and QMR rarely makes any progress. The downside to NspCG is that after initially
making good progress during the first iterations, it tends to plateau or exhibit very slow convergence.

We are still in the beginning stages of this project. Therefore we would like to look at a few variations on
our approach for future work. First of all, we would like to consider varying the (2,2) block in the original
matrix M as follows:

M =

[
ATW1A AT

−A AW2A
T

]
, (5.1)

where W1 ≈ (AAT )−1w1, and W2 ≈ (ATA)−1w2, and we can get W1 and W2 through an incomplete Cholesky
factorization of AAT and ATA. Now we see that (5.1) is approximately equal to the following matrix,[

w1I AT

−A W2I

]
, (5.2)

which is well conditioned provided that w1 and w2 are chosen so that the matrix satisfies Theorem 2.2, even
when A is ill-conditioned. Also, as an alternative to choosing W1 and W2 so that M is approximately equal
to (5.2), we can try using (5.2) as our system matrix, and vary the right-hand side from iteration to iteration.

References

[1] Brezinski, C., Redivo-Zaglia, M. ”Look-Ahead in BiCGSTAB and Other Product-Type Methods for
Linear Systems,” BIT, 35 (1995), pp. 275-285.

[2] Golub, G. H., Lambers, J. V. Private communication, (November 6, 2007).

[3] Golub, G. H., Meurant, G. ”Matrices, Moments, and Quadrature”. Proceedings of the 15th Dundee
Conference, June-July (1993), Longman Scientific and Technical, (1994), pp. 105-156.

7



Figure 3: Example 1 Block Approach
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Figure 4: Example 2 Block Approach

Figure 5: Example 1 with preconditioning
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Figure 6: Example 2 with preconditioning
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