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Abstract. Multiphase flow is a critical process in a wide range of applications, including carbon sequestration, contaminant
remediation, and groundwater management. It is modeled by a nonlinear system of partial differential equations derived by
considering the mass conservation of each phase (e.g., oil, water), along with constituitive laws for the relationship of phase
velocity to phase pressure. The constraint that the phase saturations sum to one, along with initial and boundary conditions,
closes this system. The nonlinearity of the constuitive laws, in conjuction with the coupling of the phases, often requires the
use of implicit discretization in time for both stability and accuracy. In this work we study a model of immiscible two-phase
flow in which the primary variables are the pressure of the wetting phase and the saturation of the nonwetting phase. We use
a finite volume method for spatial discretization and the backward Euler method for time discretization of the coupled system,
leading to a fully implicit solution method. In this setting the capillary pressure is the difference between the non-wetting phase
and wetting phase pressures. If the capillary pressure changes quickly with respect to saturation, then the operators associated
with each phase are diffusion-dominated, whereas if capillary pressures vary slowly, then the saturation depends strongly on
an advection-dominated, nearly hyperbolic, operator. These variations in character affect the performance of AMG-based
solvers. Here, we present our experience with the GMRES solution of the linear systems resulting from the linearization of the
coupled equations with algebraic multigrid (AMG) as a preconditioner, and with two constrained pressure residual multigrid
(CPR-AMG) preconditioners. AMG is implemented using the HYPRE software package from Lawrence Livermore National
Laboratory. Numerical expermients demonstrate that GMRES with AMG preconditioning for the coupled systems works
best in the diffusion-dominated case, but it suffers slow convergence and sometimes diverges in the advection-dominated case.
Similarly, the previously established CPR-AMG method that uses AMG to solve the pressure block, does not scale optimally
with problem size. The proposed CPR-AMG method that uses AMG to solve both the pressure block and the saturation block
generally performs well for advection-dominated problems and scales optimally with problem size.

1. Introduction. Multiphase flow is a feature of many physical systems and models of it are used
in many settings, including reservoir simulation, carbon sequestration, ground water management and con-
taminant transport. Modelling multiphase flow in highly heterogeneous media with complex geometries is
difficult, especially when realistic processes such as capillary pressure are included. The system describing
multiphase flow consists of nonlinear partial differential equations, constitutive laws and constraints. In this
paper, we focus on the iterative solution of linear systems arising in a fully implicit cell-centered finite vol-
ume discretization of single component isothermal two-phase flow model with capillary pressure. This fully
implicit time-stepping scheme is among the most robust for simulation of subsurface flow. Moreover, it can
serve as a basis for modeling more complex processes in which the physical quantities are tightly coupled.
These could be, for example, inclusion of additional components, miscibility between components, thermal
effects, and phase transitions.

The fully implicit discretization gives rise to a nonlinear system of equations at each time step. We
employ the standard Newton’s method with an exact Jacobian of the discretized equations to solve this
system. For the linear system, we use a preconditioned GMRES method with three different preconditioning
strategies: (1) a direct AMG preconditioner for the global system, (2) two-stage CPR-AMG with correction
for the pressure block, also known as the combinative two-stage approach, and (3) CPR-AMG with correc-
tion for both the pressure and saturation blocks, known as the two-stage additive approach. In this work,
we report our experience with the performance and scalability of these strategies.

The simulator for two-phase flow is implemented within Amanzi, the computational engine of the Ad-
vanced Simulation Capability for Environmental Management (ASCEM) project [1]. Amanzi is interfaced
with the Hypre package, a software library for high performance preconditioners and solvers for large, sparse
linear systems developed by Lawrence Livermore National Laboratory. In particular, we use BoomerAMG
[16] to define our algebraic multigrid preconditioners.

2. Problem Statement. We consider isothermal, immiscible two-phase flow through a porous medium.
For example, often in reservoir simulation, one phase is oil (the nonwetting phase) and the other is pure water
(wetting phase); alternatively, in groundwater management, one may consider a system of contaminated
water that infiltrates a domain saturated with air.
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Conservation of mass of each of the phases leads to the following coupled PDEs:
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in which S, S,, are the saturation, p,,, p, are the densities, ¢, g, are the source terms of the wetting and
non-wetting phases respectively, and ¢ is the porosity of the medium. We assume an extension of Darcy’s
law to multiphase flow and express the velocities v, v,, as

kro K
Ha

Here, K is the absolute permeability tensor. The terms k..o, tto, P, are the relative permeability, viscosity,
and pressure of phase « respectively, g is gravitational constant, and D is the depth. We also define the
phase mobility Ay, = kro/lte. To close the system, we also have the following constitutive law and constraint

(3) Vo = (VP, — pagVD), a=w,n.

(4) Pe(Sy) = Py — Py
(5) Sw+ S, =1

From equations (1) and (2), one can derive separate equations for pressure and saturation. The pressure
equation is elliptic or parabolic (diffusion); the saturation equation is hyperbolic or convection-dominated.
The pressure equation is solved implicitly, and depending on the time discretization strategies applied to
the saturation equation, several methods have been developed. In the case where the saturation equation is
discretized using an explicit method (e.g., forward Euler), it is referred as IMPES (implicit pressure explicit
saturation)[3]; for an implicit time discretization of the saturation equation, the method is known as the
sequential approach, which was first applied to the black-oil model by Watts in 1985 [29].

The appeal of these methods lies in the complete decoupling between pressure and saturation variables.
Each equation can be solved separately. In addition, knowing the characteristics of each equation facilitates
the design of efficient preconditioners, which is critical to achieving high performance. Both of these methods
have been successfully applied to many problems where the fully implicit method is difficult to implement or
shown to be too costly. However, the solution obtained from these approaches may lose accuracy if pressure
and saturation are strongly dependent, or if capillary pressure changes very quickly. The lack of accuracy
of these methods can be even more pronounced if more complex processes such as miscibility, thermal,
and phase transitions are included in the model. For a more complete summary of the advantages and
disadvantages of these approaches, we refer to [19].

Substitution of (3) and (4) into (1) and (2) and using the constraint (5) yields a system of two equations
and two unknowns. Using one popular choice of primary variables, the pressure in the wetting phase and
saturation in the nonwetting phase u = (P, S, ), we obtain

©) %) v (K (TP, - pugVD)) = g
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In this paper, we consider solving the system consisting of (6) and (7) together fully implicitly. We use
a cell-centered finite volume method for spatial discretization and the backward Euler method for time
discretization, similar to an approach defined in [13]. This will serve as a base model for adding more
complexity in the future. The finite volume method described below is known for its mass conservation
property. In addition, it can deal with the case of discontinuous permeability coefficients, and it is relatively
straightforward to implement. Under appropriate assumptions, this method also falls into the mixed finite
element framework [22]. For simplicity, we use a uniform grid. For each cell i, integration of the mass
conservation equations and the divergence theorem gives
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where the storage £, = ¢paSa and the flux Vo, = pavs terms are approximated using the mid-point rule
which is second-order accurate:

(9) §a=vlci/ciga, Qazvlci/qqa.

The surface integrals are discretized using two-point flux approximation (TPFA); dropping the phase sub-
script, this gives
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in which ~;; is the area of the face adjacent to cells 4, j. The index ij +1/2 signifies an appropriate averaging
of properties at the interface between cell i and j. The coefficients (pk,/u1);j41/2 are approximated by
upwinding based on the direction of the velocity field, i.e.,
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and the absolute permeability tensor on the faces are computed using harmonic averaging,

(13) K, = (Az; + Aa:j)( KiK; )
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Discretization in time using the backward Euler method gives a fully discrete system of nonlinear equations,
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3. Solution Algorithm. The system of nonlinear equations (14) can be written generically as F'(u) = 0
where F': R® — R"™. We solve the system using Newton’s method, which requires solution of a linear system
at each iteration k:

oF

au U=Uf

(15) (wptr — up) = —F (up).

In our case, the solution vector u consists of all the pressure and saturation unknowns at all the cell centers.
The Jacobian system resulting from the derivative OF/0u is often very difficult to solve using iterative
methods, and preconditioning is critical for rapid convergence of Krylov subspace methods such as GMRES
[25]. In the next section, we will discuss the linear system arising from the Newton’s method and give a
detailed description of the solution algorithm we will use to solve this system.

3.1. Linear System. For the set of primary variables u = (P, S, ), assuming unknowns corresponding
to physical variables are grouped together and unknowns associated with nodal points in the domain are
ordered lexicographically, each nonlinear Newton iteration entails the solution of a linear system of the form
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All the coefficients in equation (16) are evaluated at the linearization point Py, S,. In a more concise form,
the Jacobian matrix of the system has 2 x 2 block structure

_ (Arp Aps
(19) 7= <Asp Ass)
The characteristics of this matrix have been discussed in numerous papers [27, 6, 13, 17]. We summarize
some main points here:
e J is nonsymmetric and indefinite
e The block A, has the structure of a purely elliptic problem for pressure.
e The coupling block A, has the structure of a first-order hyperbolic problem in the non-wetting
phase saturation.
e The coupling block A, has the structure of a convection-free parabolic problem in the wetting phase
pressure.
e The block Ay has the structure of a parabolic (convection-diffusion) problem for saturation when
capillary pressure is present. Without capillary pressure, it has the form of a hyperbolic problem.
e Under mild conditions, i.e. modest time-step size, all A,p, Aps, Ags blocks are diagonally dominant.
In this paper, we want to present some numerical results that show how different models of capillary pressure
affect the algebraic properties of the (2,2)-block Ass in particular and the global system in general, which
consequently determines the success of AMG algorithms.

3.2. Decoupling Operators. Designing effective preconditioners for the Jacobian system (19) is chal-
lenging because of the strong coupling between pressure and saturation. To weaken the coupling between
pressure and saturation unknowns, one can often construct a decoupling operator D, which acts as a matrix
scaling to the original Jacobian

T—pn-17—= App Aps
(20) J=D J_<A~Sp e

A natural choice for D that promotes code reuse is an IMPES type operator [13]

(21) D= Dpp  Dps _ diag(A4,,) diag(Aps)
Dy, Dy diag(Asp) diag(Ass)

Other approaches include quasi-IMPES [18] and alternate block factorization [4] strategies. In general, the
decoupling operator applied to the Jacobian system results in clustering of the eigenvalues around one,
and this operator can act an effective preconditioner. For a more detailed discussion of the effects of this
decoupling step, we refer to [17]. Here however, we do not employ any decoupling strategies, in order to
examine the robustness of BoomerAMG for fully coupled systems. Moreover, when more complex processes
are added to the model, there is no guarantee that a good decoupling strategy exists.

3.3. Algebraic Multigrid. Multigrid is one of the most most efficient and scalable methods available
to solve large sparse linear systems [30]. Geometric multigrid uses a hierarchy of nested grids, whose con-
struction depends on the geometry of the problem and a priori knowledge of the grids. AMG methods such
as those developed in [26] have the advantage of not requiring an explicit hierarchy of nested grids. AMG
constructs coarse grids based on the matrix values only, which makes it suitable for solving a wider range of
problems on more complicated domains and unstructured grids. Despite its successful application to scalar
problems, using AMG for coupled systems is still relatively limited. Some attempts to use AMG to solve
fully coupled systems encountered in modeling multiphase flow for reservoir simulation include [10, 27]. In
this work, we use BoomerAMG [16], part of the Hypre package [14, 15] as a black-box AMG solver. We
note that in order to use BoomerAMG for the coupled system in our case, the Jacobian matrix needs to be
ordered by grid points, i.e.

Ay ... AN
(22) J = : -
Ani ... AnN
in which N is the number of grid points, and A;; are 2 X 2 matrices representing the couplings between
pressure and saturation at points ¢ and j. This is called the “point” method in [27].
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3.4. Two-stage Preconditioning with AMG. Unlike AMG, which has not been popular in reservoir
simulation until recently, two-stage preconditioners are widely used [17]. However, the idea of two-stage
iterative methods is not new [21], and first appeared in the context of multiphase flow modeling in the work
of Wallis [28]. We refer to this method as the constrained pressure residual (CPR) approach. There are
many variants of two-stage preconditioners. We discuss two algorithms here: the two-stage combinative
preconditioner - CPR-AMG(1), and the two-stage additive preconditioner - CPR-AMG(2) [2].

Algorithm 1. Two-stage Combinative - CPR-AMG(1)
1. At each iteration k let the residual be 7.
2. Solve uyq1/0 = Pflrk.
3. Update the residual r /0 = 7% — Aupqq/2-
4. Solve for the pressure correction Ay,0, = Ryrpi1/2
5. Update the solution ug41 = tyq1/2 + REG,
Algorithm 2. Two-stage Additive - CPR-AMG(2)
1. At each iteration k let the residual be 7.
Solve 412 = Pflrk.
Update the residual r1 /0 = 7% — Augq/2-
Solve for the pressure correction A,,0, = Rpri41/2
Solve for the saturation correction Ags6s = Rsrpy1/2
6. Update the solution ug11 = upq1/2 + Rgép + RT6,
The matrices R,, Rs denote the restriction of the global unknown vector to those associated with pressure

U o

and saturation respectively. That is, R, € R"*?" and for u = (15) >

T py. — r, _ (0
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Then, in matrix form, the action of the two-stage preconditioners can be expressed as

(24) w=M_! r=(- RIAIR,(A— PP
(25) w=M_}r=(I—-(RJA R, + RTAR)(A— P1)P['r

For the preconditioner P; in step 2 of both algorithms, we use the incomplete factorization with no fill ILU(0)
method. For the correction solve, we apply AMG with one V-cycle iteration. The combinative approach with
AMG was presented in [18, 20]. However, this method does not work well in the presence of fast changing
capillary pressure. We confirm this observation in the next section. To deal with fast changing capillary
pressure, we employ an additive CPR-AMG approach, which involves one extra AMG solve for the correction
of the saturation block. The intuition is that when the absolute value of the derivative of capillary pressure
|dP./dS,,| is large, the block Ass becomes diffusion dominated, and AMG can deal with it efficiently.

4. Numerical Results. In this section, we perform numerical experiments for the three aforementioned
preconditioners. All of them are implemented in Amanzi, a parallel open-source multi-physics C++ code
developed as a part of the ASCEM project [1]. Although Amanzi was first designed for simulation of
subsurface flow and reactive transport, its modular framework and concept of process kernels [11] allow new
physics to be added relatively easily for other applications. The two-phase flow simulator employed in this
work is one such example. Amanzi works on a variety of platforms, from laptops to supercomputers. It also
leverages several popular packages for mesh infrastructure and solvers through a unified input file. Here,
all of our experiments use a classical AMG solver through BoomerAMG in Hypre. The ILU(0) method is
from Euclid, also a part of Hypre. GMRES is provided within Amanzi. We use structured Cartesian grids.
This section has three parts. The first case is an oil-water model on a two-dimensional domain that is small
but hard to solve. The second part studies a three-dimensional example. In the last part, we examine the
scalability of the three preconditioning strategies. Unless specified otherwise, we use the benchmark problem
SPE10 [8] for permeability data.

4.1. Two-dimensional oil-water problem. The domain is a rectangle of dimensions 762 x 15.24
meters. The mesh is 100 x 20, which means that the problem is truly two-dimensional in the zz plane. We
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inject pure water into the domain through the boundary at the lower left corner, and oil and water exit the

domain through the top right corner. These correspond to the S, = 1.0, A, VP, -n = —50 m?3/day at the

inlet, and S, = 0.2, P, = 0 at the outlet. The simulation is run for 200 days with time step At = 20 days.
For capillary pressure models, we employ a simple linear model and the Brooks-Corey [7] model:

(26) Linear model: P.(S,) = Py(1—S,), Brooks-Corey: P.(S,)= PyS;/*

in which S,, is the effective saturation, P, is the entry pressure, and ) is related to the pore-size distribution.
For the Brooks-Corey model, the typical range of A is 0.2,3.0 [5, 12]. where A > 2 indicates narrow
distributions of pore sizes and A\ < 2 wide distributions. For example, sandpacks with broader distributions
of particle sizes have A ranging from 1.8 to 3.7 [23]. The Brooks-Corey capillary pressure curves for various
values of A are plotted in Figure 1. Other parameters are listed in Table 1 and example 1 of Table 2.

Fig. 1: Capillary pressure curves for Brooks-Corey model with entry pressure P; = 10° Pa.
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For all of the simulations presented here, the convergence tolerance for Newton’s method is ||F(z)|| <
107, and the linear tolerance for GMRES is ||Jdus, — F(uy)|| < 1072||F(uy)||. BoomerAMG is used as
a preconditioner. The number of V-cycle steps is set to 1. The coarsening strategy is the parallel Cleary-
Luby-Jones-Plassman (CLJP) coarsening [9]. The interpolation method is the classical interpolation defined
in [24], and the smoother is the forward hybrid Gauss-Seidel / SOR scheme.

Table 1: Input data for the quarter-five spot problem.

Initial wetting phase pressure 10° Pa
Initial nonwetting phase saturation 0.8
Residual wetting phase saturation 0.0

Nonwetting phase density 700 kg/m?3
Wetting phase density 1000 kg/m?
Nonwetting phase viscosity 10.0 cP
Wetting phase viscosity 1cP
Porosity 0.2

Table 2: Parameters for capillary pressure models

Parameters Ex1 | Ex2 Ex 3 Ex 4
Linear entry pressure Py 10° 10% 103 108
Brooks-Corey entry pressure Py | 10° 10° | 2 x 10* | 106
Brooks-Corey A 2.5 0.8 2.5 0.8
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Fig. 2: Permeability field obtained from SPE10 model 1 data.
The x-direction is scaled down by 1/20 for visualization.

In order to explore the effects of different models for capillary pressure on solver performance, we use the
four sets of parameters listed in Table 2. In Example 1, the parameters are chosen such that the L., norm
of the derivative of capillary pressure P’ is large, leading to a diffusion-dominated case (see equation (16)).
In Example 2, the parameters are tuned to reduce the Lo, norm of P, leading to an advection-dominated
case. Example 3 is a more extreme case of example 2, in which P/ is further decreased, leading to a strongly
advection-dominated case. We also note the difference between the linear model and the Brooks-Corey
model for capillary pressure. The derivative P/ for the linear model is a constant value, which means that
the character of the problem, i.e. diffusion-dominated or advection-dominated, is the same everywhere for
the whole domain. In the Brooks-Corey model, P, depends on the saturation of the wetting phase, and
the problem can be diffusion-dominated in one part of the domain, while advection-dominated in another
part. This can cause further difficulties for AMG based solvers, whose optimal performance is sensitive to
the characteristics of the problem.

The performance of the three strategies are given in Tables 3, 4, and 5. NI denotes the number of
nonlinear iterations, LI the number of linear iterations, LI/NI the average number of linear iterations per
nonlinear iterations, and Time the total time of the whole simulation in seconds.

Table 3: Performance of three preconditioning strategies for set of parameters in example 1 of Table 2

Linear Brooks Corey
Methods/Models T /NT T Time [ NT | LI | LI/NT [ Time
AMG 33| 771 | 233 | 67.6 | 51 | 1534 | 30.1 | 2005

CPR-AMG(1) 33 | 3370 | 102.1 | 428.8 | 51 | 8786 | 172.3 | 1713.6
CPR-AMG(2) 33 | 1175 | 35.6 | 171.9 | 51 | 2195 | 43.0 467.5

From Table 3, it is clear that AMG is the best method for both capillary pressure models in terms of both
the number of linear iterations per Newton step and the total run time in the diffusion-dominated case.
For the linear model, AMG takes about 4 times fewer linear iterations than CPR-AMG(1), and it is more
than 6 times faster in total run time. The reason for this discrepancy is that CPR-AMG(1) is a two-stage
preconditioner, and it requires an extra global solve using ILU. Similarly, CPR-AMG(2) needs one more
AMG solve than CPR-AMG(1), and thus the run time per linear iteration of CPR-AMG(2) is higher than
that of CPR-AMG(1). However, CPR-AMG(2) still outperforms CPR-AMG(1) for both capillary pressure
models in terms of both the number of linear iterations per Newton step and the total run time. The same
conclusion can be made for the Brooks-Corey model.



8 Q. BUI, H. ELMAN, AND J.D. MOULTON

Table 4: Performance of three preconditioning strategies for set of parameters in example 2 of Table 2

Linear Brooks Corey
Methods/Models T L1 /NT [ Time [ NT| T | LI/NT | Time
AMG 37 | 4665 | 126.1 | 332.7 | 65 | 4082 | 62.5 | 523.4

CPR-AMG(1) 37 | 1916 | 51.8 | 293.1 | 65 | 5462 | 84.0 | 3788.5
CPR-AMG(2) 37 | 1212 | 32.8 | 2074 | 65 | 3462 | 53.3 877.6

Table 5: Performance of three preconditioning strategies for set of parameters in example 3 of Table 2

Linear Brooks Corey
NI | LI | LI/NI| Time | NI | LI | LI/NI | Time

Methods/Models

AMG - - - - - 5
CPR—AMG(l) 49 | 1474 30.1 312.1 | 61 | 2683 44.0 633.9
CPR—AMG(2) 49 | 3091 63.1 602.5 | 61 | 8492 | 139.2 | 1929.7

The results for the advection-dominated case reported in Table 4 show that AMG applied to the coupled
system does not perform well, especially for the linear model of capillary pressure. In this case, AMG is the
worst method in terms of both the number of linear iterations per Newton step and total run time. CPR-
AMG(2) is the best method for the same performance measures. For the Brooks-Corey model, although
CPR-AMG(2) takes the smallest number of linear iterations per Newton step, its total run time is slower
than that of AMG. Again, this is due to the fact that CPR-AMG(2) needs one global ILU solve and two
AMG solves for the A,, and A, blocks.

For the strongly advection-dominated problem with parameters in example 3, AMG diverges for both
linear and Brooks-Corey capillary pressure models. The performance of CPR-AMG(2) is also affected in this
case, and CPR-AMG(1) is the most efficient method. This seems to suggest that using AMG to solve for the
correction for the saturation block A, does not work well when the operator associated with the A, block
is strongly advection-dominated or near hyperbolic. However, the two-stage preconditioner CPR-AMG(2)
is still more robust than direct AMG, since unlike AMG, this method still converges.

4.2. 3D Case. We use a homogeneous permeability field of 100 millidarcy, but the grid is stretched to
induce anisotropy. The model dimensions are 250 x 1000 x 60 meters and the cell size is 5 x 10 x 0.5 meter.
Thus, the mesh is 50 x 100 x 120, and the problem has 1.2 million unknowns in total. Water is injected into
the domain at one bottom corner and the outlet is at the opposite corner. The injection rate is 5 m?/day.
The parameters for the capillary pressure model is from example 1 of Table 2. The simulation is run for 100
days with time step At = 20 days.

Table 6: Performance in the 3D case for the set of parameters in example 1 of Table 2

Linear Brooks Corey
Methods/Models T /N7 T Time [ NT | LI [ LI/NT | Time
AMG 16 | 282 | 17.63 | 103.1 | 20 | 452 | 22.6 | 144.7

CPR-AMG(1) 16 | 2698 | 168.63 | 803.2 | 20 | 6069 | 303.45 | 1940.8
CPR-AMG(2) 16 | 712 35.6 | 299.5 | 20 | 1900 | 95.0 741.1

Table 6 shows the performance results of the diffusion-dominated case for this 3D example, which are
consistent with those of the previous 2D example. AMG is still the best method in terms of both the
linear iteration counts per Newton step and the time it takes to complete the simulation for both capillary
pressure models. CPR-AMG(2) does not perform quite as well as AMG, but it is much more efficient than
CPR-AMG(1) for both performance measures and capillary pressure models.

4.3. Scaling Results. To perform a scalability study, we run a test problem on a box of dimensions
20 x 20 x 20 meters. The initial mesh is 20 x 20 x 20 and is repeatedly refined in the z-direction. The domain
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has constant material properties. The parameters for the water retention models are listed in example 4 of
Table 2. Note that this set of parameters corresponds to a diffusion-dominated problem.

Weak Scaling for Linear Model Weak Scaling for Brooks-Corey Model

C — CPR-AMG(1) C — CPR-AMG(1)
£ 7 — CPR-AMG(2) £ o | — CPRAMG(2)
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Fig. 3: Weak scaling for different strategies.

The results shown in Figure 3. indicate that the performance of CPR-AMG(2) and AMG methods is
independent of the mesh size. The number of linear iterations per Newton step does not grow as the mesh
is refined which is optimal multigrid performance. The average number of linear iterations per Newton step
for CPR-AMG(2) is quite high compared to AMG in the Brooks-Corey case. CPR-AMG(1), however, does
not scale as well as the other two methods. The linear iteration counts for CPR-AMG(1) grows linearly as
the mesh is refined.

5. Conclusions. In this work, we have implemented a fully implicit parallel two-phase flow simulator
along with three different preconditioning strategies to solve the linear systems resulting from linearization
of the coupled equations. Numerical experiments demonstrate that GMRES with AMG preconditioning
for the coupled systems works best in the diffusion-dominated case in both two-dimensional and three-
dimensional examples. However, this method exhibits slow convergence and sometimes diverges for the
advection-dominated or near hyperbolic case. The combinative CPR-AMG(1) method is the most robust,
but it does not scale optimally with problem size. It is also slower than other methods in most cases, with the
exception of the near hyperbolic case when AMG diverges. The additive CPR-AMG(2) method performs
well in most cases except the near hyperbolic case. It is the best method for our advection-dominated
two-dimensional example. It also scales optimally with problem size for both advection-dominated and
diffusion-dominated case.
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