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Abstract

We combine two algorithmic techniques for solving systems of linear inequalities, the relaxation
method of Agmon, Motzkin et al. and the randomized Kaczmarz method. In doing so, we obtain a family
of algorithms that generalize and extend both techniques. While we prove similar convergence results,
our computational experiments show our algorithms often vastly outperform the original methods.

1 Introduction

We are interested in determining the feasibility of systems of linear inequalities Az < b for b € R™ and
A an m x n matrix. We will denote the rows of A by the vectors aq, ao, ..., a;,. The set of all x € R"
that satisfy the above constraints is a convex polyhedral region, which we denote by P. This paper merges
two research trends that seem, for the most part, to have not met each other. The combination of the two
algorithmic branches of thought results in an interesting new family of algorithms which outperforms its
predecessors.

Motzkin’s method. The first branch of research in linear feasibility is the so-called relaxation method
or Motzkin’s method. The original relaxation or projection algorithm by Agmon [[Agm54]], and Motzkin and
Schoenberg [MS54] can be described as follows: Starting from any initial point xg, a sequence of points
is generated. If the current point z; is feasible we stop, else there must be a constraint o’z < b that is
most violated. The constraint defines a hyperplane H. If wy is the orthogonal projection of z; onto the
hyperplane H, choose a number A (normally chosen between 0 and 2), and the new point x;41 is given by
Tip1 = T; + Mwy — ;). Figure[1]displays the iteration visually.

Figure 1: three projections with A = 1, A < 1 and A > 1 and a visualization of several steps of the algorithm.

Many modifications and analyses of this technique have been published since the 1950s, creating an
extensive bibliography. For example, versions of the relaxation method have suggested various choices of
step-length multiplier, A\, and various choices of violated hyperplane. Not only does the rate of convergence



depend on A, but on the Hoffinan constants investigated first by Agmon [[Agm54] and then later Hoffmann
[Hof52]]. If the system of inequalities, Az < b is feasible, i.e. P # (), then there exists Hoffman constants
Lo and Lo so that d(z, P) < Leo|/(Ax — b)T||eo and d(z, P) < Ls||/(Az — b)T||2 for all x (here and
throughout, 2™ denotes the positive entries of the vector z with zeros elsewhere). The constants satisfy
Lo < /mLsy. With these constants, one can prove convergence rate results like the following (a spin-off
of Theorem 3 of [[Agm54]] which is easily proven in the style of [LL10]]):

Proposition 1. Consider a normalized system with ||a;|| = 1 for all i = 1, ..., m. If the feasible region P is
nonempty then the relaxation method converges linearly:

21 — A2\ * 21 — A2\ *
d(xy, P)? < (1 A2 ) d(xg, P)* < (1 A ) d(xg, P)%.

L2 mL3

A bad feature of the standard version of the relaxation method using real-valued data is that when the
system Ax < b is infeasible it cannot terminate, as there will always be a violated inequality. In the
1980’s the relaxation method was revisited with interest because of its similarities to the ellipsoid method
(see [AHO5,Bet04,|Gof80, Tel82] and references therein). One can show that the relaxation method is
finite in all cases when using rational data, in that it can detect infeasible systems. In some special cases the
method gives a polynomial time algorithm (e.g. for totally unimodular matrices [MTAS81]]), but there are also
examples of exponential running times (see [|[Gof82,(Tel82[). In late 2010, Chubanov [[Chul1f], announced
a modification of the traditional relaxation style method, which gives a strongly polynomial-time algorithm
in some situations [[VZ14]. Unlike [Agm54, MS54], who only projected onto the original hyperplanes that
describe the polyhedron P, Chubanov [Chull]] projects onto new, auxiliary inequalities which are linear
combinations of the input; see Figure

Figure 2: Left: Projecting onto original hyperplanes. Right: Projecting onto an induced hyperplane (like
those in Chubanov’s method).

Kaczmarz method. The second research branch is that of the Kaczmarz method [Kac37,|GBH70]
which is one of the most popular solvers of overdetermined systems of linear equations due to its speed and
simplicity. Just like Motzkin’s, it is an iterative method which consists of a series of alternating projections.
The original Kaczmarz method simply cycles through the equations sequentially, so its convergence rate
depends on the order of the rows. One way to overcome this is to use the equations in a random order,
rather than sequentially [HS78,[HM93||NatO1]]. More precisely, we begin with Ax < b, a linear system of
inequalities where A is an m x n matrix with rows a; and z( an initial guess. For k = 0, 1, 2, ... one defines

((ai, zp) —bi)*
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where i is chosen from {1,2,...,m} at random with probability proportional to | a;||3. Strohmer and Ver-
shynin [SV09] provided an elegant convergence analysis of the randomized Kaczmarz method for consistent
equations. Later, Leventhal and Lewis [LL10] extended the probabilistic analysis from systems of equations



to systems of linear inequalities. They focused on giving bounds on the convergence rate that take into
account the numerical conditions captured by the constants L., and Ls. If one additionally makes use of a
projection parameter, A # 1, you can easily extend the convergence rate in [LL10] to account for this:

Proposition 2. If the feasible region, P, is nonempty then the Randomized Kaczmarz method with projec-
tion parameter A\ converges linearly in expectation:

2N — A2\ F
E[d(x, P)? §<1—> d(zo, P)>.

Note the similarities between Propositions [T] and 2} the convergence rate constants are identical for
normalized systems (|| A[|% = m).

The work of Strohmer and Vershynin sparked a new interest in the Kaczmarz approach and there have
been many recent developments in the method and its analysis. Needell [[NeelO] extended this work to
the case of inconsistent systems of equations, showing exponential convergence down to some fixed con-
vergence horizon, see also [WALIS]. In order to break this convergence horizon, one needs to modify
the Kaczmarz method since by design it projects exactly onto a given hyperplane. Built upon ideas by
Popa [Pop98||, Zouzias and Freris [ZF12] analyzed an extended randomized Kaczmarz method which incor-
porates an additional projection step to reduce the size of the residual. This was extended to the block case
in [NZZ13|. The relation of these approaches to coordinate descent and gradient descent methods has also
been recently studied, see e.g. [GO12,[Dum14,NSW14a|OZ15a|MNR15,HNR15,/0Z15a,|GR15].

Other variations to the Kaczmarz method include block methods [EIf80, EHL81, NW13,NT13, BN,
XZ02] which have been shown to offer acceleration for certain systems of equations with fast-multipliers.
Other acceleration and convergence schemes focus on sampling selections [AWL14,EN11,NSW14bl|OZ15b],
projection parameters [WM67,/CEG83}[Tan71,HN90], adding row directions [PPKR12]], parallelized imple-
mentations [LWS14,/ADG14], structure exploiting approaches [LW15,[LMY15], and the use of precondi-
tioning [[GPS16]. Some other references on recent work include [CP12,RM12]

For the most part, it seems that these two branches of research which address the same problems have
been developing disjointly from each other. For example, the idea of taking linear combinations of the con-
straints was first exploited in [[Chul 1], but was recently reproduced independently for equations in [GR15].
Another example is the manipulation of the projection parameter A [WM67,|(CEGS83,[Tan71, HN9OJ. It is a
goal of this paper to bridge the separation between these two branches of research that essentially study the
same iterative projection procedure. In this paper we explore a family of hybrid algorithms that use elements
from both groups of research.

1.1 Our Contribution: the Sampling Kaczmarz-Motzkin Method

Our proposed family of methods, which we refer to as the Sampling Kaczmarz-Motzkin (SKM) methods,
are intended to balance the pros and cons of the previously described methods. Namely, the relaxation
method forms iterates whose distance to the polyhedral solution space are monotonically decreasing; how-
ever, the time required to choose the most violated hyperplane in each iteration is costly. Conversely, the
Randomized Kaczmarz method has a very inexpensive cost per iteration; however, the method has slow
convergence when many of the constraints are satisfied. Our methods will still have a probabilistic choice,
like in randomized Kaczmarz, but make strong use of the maximum violation criterion within this random
sample of the constraints. Our method is easily seen to interpolate between what was proposed in [LL10]
and in [MS54].



Method (SKM method). Suppose A € R™*", b € R™. Let xyp € R"™ be given. Fix 0 < A < 2. We
iteratively construct approximations to a solution lying in P in the following way:

1. Choose a sample of  constraints, 7y, uniformly at random from among the rows of A.
T

2. From among these (3 constraints, choose ), := argmax a;
(b —af, xx—1)" €Tk

agy, -

Tp—1 — bi.

3. Define zj := xp_1 + A

lla 1

4. Repeat.

In practice, one would want to occasionally check for feasibility of the current iterate. When we use
termination throughout the paper, we refer to the iterates becoming feasible and the sequence becoming
constant. Note that the SKM method with 3 = m recovers the Motzkin relaxation methods, while the SKM
method with § = 1 gives a variant of the randomized Kaczmarz method. We now state our main result.

Theorem 1. Let A be normalized so ||a;||? = 1 for all rows .

(a) If the feasible region P is nonempty then the SKM method with samples of size 5 converges at least
linearly in expectation and the bound on the rate depends on the number of satisfied constraints in the
hyperplane arrangement. More precisely, let s;_; be the number of satisfied constraints after iteration
k —1and Si_1 = max{m — sx_1, m — [ + 1}; then, in the kth iteration,

2\ — A2 2) — A2\ ¥
E PYl< (1222 L. P2< (1= P)2.
e PP < (1= =g Jator. P < (1 B 220 ) . P

(b) If the feasible region P is generic and nonempty (i.e., full-dimensional and every vertex satisfies exactly
n constraints with equality), then an SKM method with samples of size 5 < m — n will converge to a
single face F' of P and all but the constraints defining F' will eventually be satisfied. Thus, the method is
guaranteed an increased convergence rate after some index K (provided the method does not terminate
earlier); for k > K

Eld(wy, P)?] < (1 _ MY( - (2)\—)\2

k—K
d(zo, P).
mL2 m— B+ 1)Lg> (0, P)

(c) If P is nonempty and A, b are rational, then the SKM methods can detect feasibility. Moreover, the
expected number of steps required for the SKM methods with projection parameter 0 < A < 2 and
xo = 0 to detect feasibility is no more than

{ 4L — 4 —logn

] m2L2 —‘ '
08 \ M-\ N?)

We implemented the SKM methods on a 32GB RAM 8-node cluster, each with 12 cores of Intel Xeon E5-
2640 v2 CPUs running at 2 GHz, and ran them on systems while varying the projection parameter, A\, and
the sample size, 8. In particular, we considered systems Ax < b where A has entries consisting of Gaussian
random variables and b is chosen to force the system to have a solution set with non-empty interior. We
additionally considered systems where the rows of A are highly correlated (each row consists only of entries
chosen uniformly at random from [.9, 1] or only of entries chosen uniformly at random from [—1, —.9]) and b
is chosen to force the system to have a solution set with non-empty interior. We vary the size of A € R™*",
which we note in each example presented below.

2 Experiments



In Figure [3| we provide evidence that there is an optimal choice for the sample size, 5. We measure
the average computational time necessary for SKM with several choices of sample size 5 to reach halting
residual error 2714, Regardless of choice of projection parameter, \, we see a minimum occur between 1
and m.
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Figure 3: Left: Average computational time required for SKM on Gaussian random system of size n =
100, m = 40000 to reach halting residual error 2714, Right: Average computational time required for SKM
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Figure 4: Left: Iterations vs. residual error for SKM on Gaussian random system of size n = 100, m =
50000 for sample sizes varying from 1 to m. Right: Time vs. residual error for SKM on Gaussian random
system of size n = 100, m = 50000 for sample sizes varying from 1 to m.

For the experiments in Figures and [6] we fixed the projection parameter at A\ = 1.6 (for reasons
discussed below). Note that in Figure 4] SKM with 5 = 1 so outperforms SKM with 3 = 1 (randomized
Kaczmarz method) that it is impossible to distinguish the performances of SKM with 8 ~ m or 8 ~ n.
Only in Figure [5| when we restricted ourselves to considering 5 > 1 were we able to distinguish between



the performances of SKM with these other sample sizes. On the left of Figure 5] we see the residual error
decreases more quickly per iteration as the sample size, /3 increases. However, on the right, when measuring
the computational time, SKM with 3 ~ m /10 performs best.
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Figure 5: Left: Iterations vs. residual error for SKM on Gaussian random system of size n = 100, m =
50000 for sample sizes varying from 50 to m. Right: Time vs. residual error for SKM on Gaussian random
system of size n = 100, m = 50000 for sample sizes varying from 50 to m.

In Figure [6] we ran experiments varying the halting error and see that the sample size selection,
depends additionally on the desired final distance to the feasible region, P. On the right, we attempted to
pinpoint the optimal choice of 8 by reducing the sample sizes we were considering.
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100, m = 50000 to reach halting residual errors for 3 between 1 and m. Right: Average computational time
required for SKM on Gaussian random system of size n = 100, m = 50000 to reach halting residual errors
for 5 between 1 and m/5.
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Figure 7: Left: Iterations vs. fraction of constraints satisfied for SKM methods run on Gaussian random
system of size n = 100, m = 50000. Right: Time vs. fraction of constraints satisfied for SKM methods run
on Gaussian random system of size n = 100, m = 50000.

Like [SV09], we observe that ‘overshooting’ (A > 1) outperforms other projection parameters, A < 1.
In Figure [3| we see that the optimal projection parameter, A is system dependent. For the experiments in
Figure 3| we ran SKM on the same system until the iterates had residual error less than 2714 and averaged
the computational time taken over ten runs. The best choice of A differed greatly between the Gaussian
random systems and the correlated random systems; for Gaussian systems it was 1.4 < A < 1.6 while for
correlated systems it was A = 2.

Our bound on the distance remaining to the feasible region decreases as the number of satisfied con-
straints increases. In Figure [/} we see that the fraction of satisfied constraints initially increased most
quickly for SKM with sample size, 1 < 8 < m and projection parameter, A > 1. On the left, we show that
SKM with 5 = m is faster in terms of number of iterations. However, on the right, we show that SKM with
1 < B8 < m outperforms 8 = m in terms of time because of its computational cost in each iteration.

2.1 Remarks and Future Work

While Theorem [I] suggests that the optimal choice of 8 could be between 1 and m — n, our experiments
suggest the optimal choice for 5 could be stated exactly for certain types of systems of inequalities. One can
show the optimal choice of 3 in a fixed iteration under certain assumptions on the residual and the number of
satisfied constraints is a value bounded away from both 1 and m — n (this follows from the proof of Theorem
and standard runtime analysis arguments). Exactly describing this optimal choice of § for a given system
or class of systems in the general setting would be a significant contribution to this field. We believe such a
result can be built upon the theory and framework we present here, but requires further analysis.
Additionally, the optimal choice of projection parameter ) is system dependent (e.g., for certain systems,
one should choose A = 1 while for certain full-dimensional systems, one should choose A > 1). Theoret-
ically, the convergence rate we provided in Theorem [I] Part (a) depends upon A in a weak way; one would
always choose A = 1. However, we see experimentally that overshooting outperforms other choices of \.
Additionally, one can easily imagine that for systems whose polyhedral feasible region is full-dimensional,
choosing A > 1 will outperform A < 1, as eventually, the iterates could ‘hop’ into the the feasible region.



The proof of Theorem [I| Part (b)) suggests a possible reason why we see this in our experiments. Theorem I]
Part (b) is a consequence of the fact that if the method does not terminate then it will converge to a unique
face of P. If A > 1, then this face cannot be a facet of P, as if the method converged to such a face, it would
eventually terminate, ‘hopping’ over the facet into P. Thus, for A > 1 the number of faces of P the method
can converge to is decreased.

Further work is needed before stating that overshooting outperforms other choices of projection param-
eter, A for any particular class of systems or for defining the optimal sample size, [ for a class of systems.
In our future work we intend to present the optimal values of 5 and A and to explore the dual versions of
our family of algorithms. Moreover we will explore Chubanov’s style of generation of additional linear
inequalities that have proven to speed computation.
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