
KRYLOV RECYCLING FOR SEQUENCES OF SHIFTED SYSTEMS∗

MEGHAN J. O’CONNELL† AND MISHA E. KILMER†

Abstract. Solving many large scale sequences of shifted linear systems with multiple right-hand
sides is the main computational bottleneck of many problems, such as nonlinear inverse problems.
Specifically, this issue arises in the optimization problem found in diffuse optical tomography (DOT).
An inner-outer Krylov recycling method was developed in [8] for the non-shifted case to reduce this
computational cost. In this paper, we extend this approach to the shifted case for a single right-hand
side. Both real shifts as well as complex identity shifts are investigated. We show the value of our
approach with two examples from DOT, however, our method has the potential to be useful for other
applications as well.

1. Introduction. The need to solve large scale sequences of shifted linear sys-
tems with multiple right-hand sides arises in many important applications such as
solving nonlinear inverse problems. The expense of solving these systems can be the
computational bottleneck of the larger problem in which they are involved. Many ap-
proaches have been developed to address the computational cost associated with solv-
ing sequences of shifted systems. Some methods use Lanczos recurrences or Arnoldi
iterations, see e.g., [5, 7, 9, 11, 13]. Reduced order modeling also reduces this compu-
tational cost [3].

Imagine solving an optimization problem where the function evaluation requires
the solution of a shifted system of right-hand sides over the course of the optimiza-
tion. These system solves become the dominant computational cost. We were first
motivated to develop the method presented in this paper by solving the optimization
problem that arises in the nonlinear inverse problem in the context of diffuse optical
tomography (DOT) [4, 6]. The goal of solving an inverse problem is to find an image
of an unknown quantity. In order to find this image when the forward problem is non-
linear in the unknowns describing the desired quantity, we must solve an optimization
problem, which in turn requires solving the forward problem multiple times. The
forward model valuation, which requires the solution of a sequence of shifted systems,
links the measured data to the unknown image we seek. These forward model solves
are the main computational bottleneck of these image reconstruction problems. In
this paper, we extend the 2-level Krylov recycling method found in [8] to systems
with shifts in order to reduce this computational cost. At present, we only consider a
single right-hand side.

We are looking to solve shifted systems of the form(
A(k) + γ`E

)
x(k,`) = b, (1.1)

for symmetric A(k) and E and several values of k and ` via recycling. The method
we describe works for more general applications, but we will demonstrate on two
examples from DOT.

This paper is organized as follows. In Section 2, we provide an introduction to
recycling for a single system and give an overview of inner-outer recycling. In Section
3, we present our algorithm for inner-outer recycling for shifted systems with a single
right-hand side and give an analysis. In Section 4, we give numerical results for two
different DOT problems. Conclusions and future work can be found in Section 5.
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No. NSF DMS 1217156 and 1217161 and NIH R01-CA154774.
†Department of Mathematics, Tufts University, Medford, MA 02115.
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2. Background. We will begin by providing a brief discussion of recycling for
a single system and a single right-hand side as explained in [7]. We will consider the
linear system Ax = b, with symmetric A ∈ RN×N and b ∈ RN . Next, we explain
inner-outer recycling as in [8] for the same system. More on recycling can be found
in the literature, see [2, 7, 10, 15].

2.1. General Krylov Recycling. Let Ũ ∈ RN×nc be given as the space over
which we wish, initially, to look for solutions. Next, compute AŨ = K̃. Set K to
be the Q factor in the skinny QR factorization of K̃ and U = ŨR−1, where R is
the R factor. Now KTK = I. Next, we assume that the solution of Ax = b is in
Range(U) = Range(Ũ) and find the approximate solution

x0 = UKTb, (2.1)

giving an initial residual of r = b−KKTb. If this solution is not sufficient, then we
expand U using a Lanczos recurrence with (I−KKT )A and v1 = (I−KKT )b/‖(I−
KKT )b‖2 to generate

(I−KKT )AVm = Vm+1Tm ⇔
AVm = KKTAVm + Vm+1Tm (2.2)

where Tm is an m+ 1×m tridiagonal matrix. 1 We then compute the approximate
solution in Range([Vm U]) by looking for the solution that minimizes ‖b−A(Vmy+
Uz)‖2, as follows:

min
y,z

∥∥∥∥b−A[U Vm]

[
z
y

]∥∥∥∥
2

= min
y,z

∥∥∥∥[ KTb
ξe1

]
−
[

I KTAVm

0 Tm

] [
z
y

]∥∥∥∥
2

, (2.3)

where e1 denotes the first Cartesian basis vector in Rm+1 and ξ = ‖(I −KKT )b‖2.
The solution can then be found by finding the solution to the projected problem

min
y
‖Tmy − ξe1‖2,

then computing the z that satisfies (2.3), and finally, with ym := Vmy, setting
x = ym + Uz. Since Vmy is computed via short term recurrences (MINRES), we do
not have to explicitly store Vm.

2.2. Inner-Outer Krylov Recycling. As was shown in [8], we can adapt recy-
cling both to solve systems efficiently and also to create a projection matrix V, which
we can use to project our systems to smaller ones via Galerkin Projection. In the DOT
application, where we need to solve for multiple right-hand sides bj for each A(k),

this means we replace solves with (1.1) by solves with (VT (A(k) +γ`E)V)x̃ = b̃j and
set x = Vx̃. The method in [8] involves maintaining two recycle spaces. Let U be a
matrix whose columns span the outer-most recycle space. As described in [8], U con-
tains information from all systems and all right-hand sides and will ultimately become
the projection matrix. If the solution in this space is “good enough” as measured by

1The matrix recurrence in (2.2) is unchanged if (I−KKT )A is replaced by (I−KKT )A(I−KKT )
since A is symmetric.
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relative residual norm, the system is not further treated. Otherwise, a correction to
the solution is computed using recycling with a smaller recycle space (smaller matrix
Uj). The details are as follows for solving the linear system Ax = b.

Let Ũ,U,K as defined above. In addition, we let Ũj ⊂ Ũ ∈ RN×nj be given,

and then define Uj from Ũj analogous to how Ũ is computed to U. That is, AUj =
Kj and KT

j Kj = I. Note Range(Uj) ⊂ Range(U), which ensures Range(Kj) ⊂
Range(K). For more details about the selection for the DOT application, see [8].

If we decompose bj using the orthogonal projector KKT , we get

Ax = (I−KKT )bj + KKTbj

Ax−KKTb = (I−KKT )bj

A (x−UKTb)︸ ︷︷ ︸
g

= rj . (2.4)

Since g is the incremental change from the initial guess of UKTbj , found in (2.1),
it would make sense to solve (2.4) in order to construct a projection basis without
redundant information. However, let us assume U has too many columns to use
effectively as a recycle space due to the need to orthogonalize against K at each
iteration. Then if the initial residual, rj , is not small enough, we solve

min
y,z

∥∥∥∥rj −A[Uj ,Vm]

[
z
y

]∥∥∥∥ ,
where we use a Lanczos recurrence with (I − KjK

T
j )A and the same v1 = (I −

KKT )b/‖(I−KKT )b‖2 as before to generate Vm satisfying

(I−KjK
T
j )AVm = Vm+1Tm ⇔

AVm = KjK
T
j AVm + Vm+1Tm. (2.5)

Since rj is already orthogonal to Range(K), and Range(Kj) ⊂ Range(K), we can
show that y, z can be found by solving

min
y,z

∥∥∥∥[ 0
ξe1

]
−
[

I KT
j AVm

0 Tm

] [
z
y

]∥∥∥∥
2

.

Therefore, using ym := Vmy, we have g = ym + Ujz, where z = −KT
j AVmy and

we can get back to the original solution, x = ym − UjK
T
j Aym + UKTbj . Since

ym contains the information not already in Range(U), we update both U and Uj by
appending only that part of the solution.

3. Inner-Outer Recycling for Shifted Systems. We will now give our new
extension of inner-outer recycling for shifted systems with a single right-hand side.
The extension to shifted systems needs to address the following: how to recover the
solution to the shifted problem and what information from the shifted solution to
include in the recycle spaces. We consider solving(

A(k) + γ`E
)
x(k,`) = b, (3.1)

with a variant of inner-outer recycling, as we now describe.
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3.1. The Method. Without loss of generality, we will assume that the first
value of γ` we wish to solve for is 0, and we need to solve (3.1) for L values of γ`,
between γ1 = 0 and γL. This is due to the fact we can always create a “zero shift”

by letting Â(k) = (A(k) + γ1E) for the smallest shift, γ1, we want to solve, and then
we write the remaining shifts relative to γ1: γ` = γ1 + γ̂`, and solve the remaining

systems by rewriting the matrices as (Â(k) + γ̂`E).
As before, assume U ∈ RN×nc is generated from the recycle space Ũ such that

A(k)U = K and KTK = I. Select Ũ` ∈ RN×n` from among the columns of Ũ.
Generate U` from Ũ`, such that (A(k) + γ`E)U` = K` and KT

` K` = I. For the
shifted system, U` will be a shift specific recycle space instead of a right-hand side
specific recycle space as in subsection 2.2.

First, we estimate that our solution is in Range(U) (i.e. it is Uq for some q),

r(k,`) = b−
(
A(k) + γ`E

)
Uq

= b− (Kq + γ`EUq) .

Using Petrov-Galerkin projection, we put KT r(k,`) = 0, and find the estimate

x(k,`) ≈ U
(
I + γ`K

TEU
)−1

KTb. (3.2)

When γ` = 0, this gives the same initial solution as (2.1)
As in (2.4), we would like to solve for the incremental change from this initial

guess, if the initial residual r(k,`) is not small enough. Using x(k,`) = g + xi, where
xi is the initial guess found on the right of (3.2), the goal is to recover g. Therefore,
the problem we want to solve is(

A(k) + γ`E
)
g = b−

(
A(k) + γ`E

)
xi (3.3)

= (I−KKT )b− (I−KKT )(EU)(
1

γ`
I + KTEU)−1KTb

The last line comes from the fact that KT r(k,`) = 0 and is of value in terms of
illustrating the relationship to the residual for the γ` = 0 system.

If the initial residual is not small enough, we solve

min
g∈S
‖r(k,`) −

(
A(k) + γ`E

)
g‖2,

over an appropriate S. We want S to contain Range(U`) and to generate the
space with which to augment U`, we use the Krylov subspace generated by (I −
K`K

T
` )
(
A(k) + γ`E

)
and

v1 =
((

I−K`K
T
`

)
r(k,`)

)
/‖
(
I−K`K

T
`

)
r(k,`)‖2.

We call the reader’s attention to the following important fact, which makes this inner-
outer recycling approach different than the MRHS case in [8]: K is in Range(A(k)),
while K` is in Range(A(k) + γ`E). We obtain

(I−K`K
T
` )
(
A(k) + γ`E

)
Vm = Vm+1Tm ⇔(

A(k) + γ`E
)
Vm = K`K

T
`

(
A(k) + γ`E

)
Vm + Vm+1Tm.
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We can then find y, z by solving

min
y,z

∥∥∥∥[ KT
` r

(k,`)

ξe1

]
−
[

I KT
`

(
A(k) + γ`E

)
Vm

0 Tm

] [
z
y

]∥∥∥∥
2

, (3.4)

where ξ = ‖
(
I−K`K

T
`

)
r(k,`)‖2. Therefore, g = ym + U`z, where ym = Vmy,

z = KT
` r

(k,`) −KT
`

(
A(k) + γ`E

)
Vmy and we estimate the solution as

x(k,`) = ym + U`K
T
` r

(k,`) −U`K
T
`

(
A(k) + γ`E

)
ym + xi. (3.5)

3.2. Identifying and Updating Recycle Spaces. Now that we have found
the solution to the shifted problem via recycling, we will discuss how to construct
our recycle spaces. In [8], the initial recycle spaces included an invariant subspace
consisting of 10 eigenvectors corresponding to the smallest eigenvalues and solutions
to the initial system. This was because the corresponding subspace was found to be
nearly invariant across all A(k). In addition, U was seeded with solutions to the initial
system for all right-hand sides, while Uj contained only the approximate invariant
subspace and the solution to the jth right-hand side. We adopt an analogous strategy
here, but U will have solutions to the initial system for all shifts and U` will have
only the initial solution to the system corresponding to the shift γ`.

If the initial residual for shift ` is such that we need to perform the inner recycling,
we append information from ym to both U and U`. This ensures that U contains
information pertinent to the entire set of shifted systems, while U` is kept small. This
is important for keeping computational costs down.

Note that appending a column to U means that K must also be increased by one
column. We must (a) compute A(k)ym and (b) orthogonalize the result against the
previous columns of K to get our new K. We then (c) update the initial residual
estimate for any shifted systems we haven’t yet solved to reflect the projection onto
the space as increased in dimension by 1. In this way, new information about the
systems that are “close by” in terms of neighboring γ` is used to improve the current
solution space.

The overhead involved in appending information to U` is the cost of computing
(A(k) + γ`E)ym (but note that A(k)ym has already been computed) and then or-
thogonalizing the result against the previous columns of K`. Note again that we only
append columns when there’s a system for which the inner Krylov recycling became
necessary to reduce the residual.

The next subsection outlines our algorithm (but note that the sequential updating
approaches noted here have been replaced by more expensive calls to qr factorizations
to keep the algorithm looking more tidy and make the general idea easier to follow.)

3.3. The Algorithm. Algorithm 1 describes our inner-outer recycling process
for shifted systems with one right-hand side.

3.4. Complex Identity Shift. We will now consider the special case of a com-
plex identity shift, that is, E = I and the shift is iγ`. Therefore, the problem is(

A(k) + iγ`I
)
x(k,`) = b. (3.6)

The algorithm provided in the previous subsection will work for this special case, but
we need to be careful about how we construct and update U and U`. We will initialize
and update U and U` just as in Algorithm 1, but if we are dealing with a complex
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Algorithm 1: Krylov Recycling for Shifted Systems

1 U0 ⇐ 10 eigenvectors of A(0)

2 X(0) ⇐ solutions to
(
A(0) + γ`E

)
X(0) = b for all γ`

3 U⇐ basis for Range([U0,X
(0)])

4 U` ⇐ [U0,X
(0)(:, `)]

5 for k = 1 : K do
6 for ` = 1 : L do
7 % Check if U is a good enough space

8 K̃ = A(k)U

9 [K,R] = qr(K̃, 0)
10 U = U/R

11 r(k,`) = b− (K + γ`EU)
(
I + γ`K

TEU
)−1

KTb

12 if ||r
(k,`)||
||b|| > tol then

13 % MINRES recycling using U`

14 K̃` =
(
A(k) + γ`E

)
U`

15 [K`,R] = qr(K̃`, 0)
16 U` = U`/R
17 Solve (3.4)

18 Find x(k,`) by solving (3.5)

19 r(k,`) = (I−K`K
T
` )(r(k,`) −

(
A(k) + γ`E

)
ym)

20 U⇐ [U,ym]
21 U` ⇐ [U`,ym]

22 end

23 end

24 end

shift, we only append the imaginary component of x(0,`) and ym. This means that
U and K will remain real. Let Ũ` = Ũ(:, i1 : i2), and [K`,R] = (A(k) + iγ`I)Ũ`, so
U` = Ũ`R

−1. It is clear that K`, U`, and Vm will be complex. In the case when
many shifts are used, it may be necessary to add information from the real component
of some x(0,`) to the initial U. This is because as you move farther away from the “zero
shift” the solutions can change significantly and only adding the complex component
is not sufficient. We also note that letting E = I provides some savings in (3.3) and
(3.4) since we no longer need to find EU or Eym.

3.5. Algorithm Analysis. We will now discuss the computational costs asso-
ciated with Algorithm 1. We include an invariant subspace in U and U` formed from
eigenvectors corresponding to the smallest eigenvalues from our initial non-shifted sys-
tem. While Krylov solvers can usually take advantage of the shift invariant property
[14], our method of recycling cannot take advantage of this property since the pres-
ence of the shift changes the space where U` gets mapped. Even though the invariant
subspace may not deflate the spectrum for the shifted systems, it will deflate part of
the spectrum for the non-shifted problem. Additionally, the right-hand side of (3.3)
for the non-shifted and shifted problem is made small across spectral components in
the K direction. This is the large K and not the smaller, shift specific K`.

There is a cost associated with the QR factorizations done to compute both K
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and K`. However, the initial work can be done up front and saved for many inverse
problems if the same E is used. Once inside the loop over shifts, we are only adding
one column at a time to both U and Uj . As was shown in [8], we can compute K
and K` such that we do not need to do a full re-orthogonalization every time they
are computed. An efficient alternative for computing the initial K` is given in section
3.2 of [12], but there is a potential trade off in accuracy.

For problems with many shifts, the overhead cost associated with our method is
offset by the decreasing number of iterations. The overhead cost in the initialization
can be computed off-line for the DOT problem, since A(0) is the same across many im-
ages. Therefore, the eigenvectors can be precomputed and reused for many problems.
If the same shifts are used across problems as well, the basis for the Range([U0,X

(0)])
can also be precomputed. The overhead costs for the main loop of the algorithm in-
clude, updating K and finding the initial residual and solution. If we have to do
recycling, we have to update K`, solve (3.4), and update the solution and residual.
We argue that small number of MINRES iterations required offsets these costs.

4. Numerical Results. In this section, we will look at how we can use the
inner-outer recycling for shifted systems in the DOT setting for two different shifts.
In DOT, we are looking to recover images of optical absorption in human tissue.
We model the photon flux/fluence with a time-domain diffusion model. The inverse
problem involves using the data captured at the detectors by illuminating the tissue
with signal sources to determine the absorption, µ(x). In order to reduce our search
space, we will adopt the PaLs approach, as in [1], to parametrize the absorption field,
µ(·). This means that we assume that we can express µ(·) in terms of a finite set of
parameters, p = [p1, . . . , pnp

]T , giving us µ(·) = µ(·,p). The optimization problem
we ultimately want to solve is,

min
p∈R`

‖M(p)− D‖2, (4.1)

where M(p) is a vector of estimated observations for all sources and all frequencies
and D is the corresponding vector from the acquired data. All of the experiments were
run using a laptop with a 3.20 GHz processor and 16.0 GB RAM using MATLAB
R2015b.

4.1. Experiment 1. For the DOT problem, we discretize the diffusion equation
in the frequency domain. A single function evaluation amounts to solving(
A(k) + iγ`I

)
X(k,`) = B for all ` at which we have collected data, then computing

CTX(k,`), where C represents the detectors and B the sources. A(k) represents the
discretized diffusion operator with varying absorption, so the k-th system corresponds
to evaluating the diffusion equation for an absorption coefficient that depends on the
k-th estimate of parameters, p(k). In 4.1, M(p) is formed by stacking the vectorized
form of CTX(k,`) for all frequencies. Though this application requires we solve each
system for both multiple shifts and multiple right-hand sides, we will compute the
solution for each across all shifts, independently, using our new approach. Extension
of our method to handle multiple right-hand sides is the subject of on-going research.

In this numerical experiment we consider a 201 × 201 mesh, and discretize with
finite differences as in [6], which gives us 40401 degrees of freedom for the forward
problem. We adopt the technique in [8] to identify A(k) with a SPD matrix, which
now has 39999 degrees of freedom. We will use one right-hand side from the DOT
problem, which will be a multiple of a column of the identity matrix. The shift in

this application is, γ` = 2π106ω`

ν , where ω` is the frequency and ν is the speed of light
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in the medium. We will solve the problem for 21 frequencies, 0 : 10 : 200 MHz, and
10 systems. As was stated above, since we are using many shifts we will add the real
component, as well as the imaginary component, of the initial solution for ` = 6, 11,
and 16 to the initial U. Table 4.1 shows the number of (unpreconditioned) MINRES
iterations for a sample of systems and shifts for this experiment with and without
recycling. It also shows the initial relative residuals and the number of columns of
U and U`. We used a tolerance of 10−7. Figure 4.1 shows the number of MINRES
iterations for each shift and all systems. It is clear that the iterations generally
decrease from one shift to the next, and system to system, using our approach.

Our Approach MINRES
System Shift Initial Relative Residual Cols U Cols U` Its Its

1

1 6.997652e-05 34 11 138 463
5 1.488217e-07 38 11 11 463
13 1.249818e-07 46 11 6 460
21 1.703870e-07 54 11 12 455

3

1 3.110010e-05 76 13 117 491
5 1.273549e-07 80 13 8 490
13 1.388263e-07 88 13 7 487
21 1.185384e-07 96 13 4 480

5

1 1.903012e-05 118 15 92 480
5 1.228727e-07 122 15 5 479
13 1.555352e-07 130 15 8 476
21 1.192817e-07 138 15 4 471

7

1 4.306398e-06 160 17 49 481
5 1.130465e-07 163 17 3 481
13 1.089243e-07 171 17 2 478
21 1.210036e-07 179 17 4 473

9

1 2.146463e-06 200 19 29 481
5 1.063270e-07 201 19 1 481
13 1.020278e-07 208 19 1 478
21 1.236055e-07 216 19 4 473

Table 4.1: Comparison of the inner-outer approach for shifted systems as described
in Algorithm 1 vs. MINRES for Experiment 1.

4.2. Experiment 2. In Experiment 2, we will be using the same A(k) matrices
and the same right-hand side as in Experiment 1. E will be a real valued, diagonal
matrix representing a random perturbation of the background of the image of the
absorption coefficient. The shifts will be 0, .01, .02, .03, .04. We might encounter this
scenario if we were to try to gather statistical or sensitivity information during the
optimization process. Table 4.2 shows the number of (unpreconditioned) MINRES
iterations for Experiment 2 with and without recycling. We used a tolerance of 10−7.
Once again, the iterations generally decrease from one shift to the next, and system
to system, using our approach.

5. Conclusions and Future Work. We developed an inner-outer Krylov recy-
cling approach for solving sequences of shifted systems with a single right-hand side.
Two numerical examples show the success of our approach in the DOT setting.
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Fig. 4.1: The number of MINRES iterations for Experiment 1 for all shifts. The
iteration counts for the “zero shift” are found in the red curve above the rest. Shifts
2 and 3 are the next two largest curves for the earlier systems, while shift 21 is the
next largest by system 9.

We are currently investigating different ways to construct U and U`. For the
complex identity shift, we are looking at better selection strategies for adding the real
component from the initial solution to U. We are also considering how we could use
the same K` across all shifts. In addition, we are looking at ways to identify when
we might need to purge or refresh the information in our recycle spaces.

In this paper, only one right-hand side was considered, but we would like to
extend the method to multiple right-hand sides. Since our recycle space, U, could get
very large for multiple right-hand sides, we are considering ways to bin information
for shifts that are “close”. In the DOT problem, we would also want to use the
recycle space constructed from inner-outer recycling for shifted systems with multiple
right-hand sides as a projection basis for reduced order modeling.
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