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Abstract. We propose a two-sided Lanczos method for the nonlinear eigenvalue problem. This
two-sided approach provides approximations to both the right and left eigenvectors of the eigenvalues
of interest. The method implicitly works with matrices and vectors with in�nite size, but because
particular (starting) vectors are used, all computations can be carried out e�ciently with �nite
matrices and vectors. We speci�cally introduce a new way to represent in�nite vectors that span the
subspace corresponding to the conjugate transpose operation for approximating the left eigenvectors.
Furthermore, we show that also in this in�nite dimensional interpretation the short recurrences
inherent to the Lanczos procedure o�er an e�cient algorithm regarding both the computational cost
and the storage.
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1. Introduction. Let M : C → Cn×n be a matrix depending on a parameter
with elements which are analytic in ρD̄, where D̄ is the closed unit disk and ρ > 0
a constant. We present a new method for the nonlinear eigenvalue problem: �nd
(λ, x, y) ∈ ρD× Cn × Cn, where x 6= 0, y 6= 0, such that

M(λ)x = 0(1.1a)

M(λ)∗y = 0(1.1b)

where D is the open unit disk. We are interested in both the left and the right
eigenvectors of the problem. The simultaneous approximation of both left and right
eigenvectors is useful, e.g., in the estimation of the eigenvalue condition number and
the vectors can be used as initial values for locally convergent two-sided iterative
methods, e.g., those described in [10]. The NEP (1.1) has received considerable at-
tention in the numerical linear algebra community, and there are several competitive
numerical methods. There are for instance, so-called single vector methods such as
Newton type methods [10, 11], which often can be improved with subspace accelera-
tion, see [14], and Jacobi�Davidson methods [4]. These have been extended in a block
sense [7]. There are methods specialized for symmetric problems that have an (easily
computed) Rayleigh functional [12]. There is also a recent class of methods which can
be interpreted as either dynamically extending an approximation or carrying out an
in�nite-dimensional algorithm, see for instance [6, 2, 5] and references therein. For
recent developments see the summary papers [9, 8] and the benchmark collection [3].

We propose a new method that is based on the two-sided Lanczos method for
non-Hermitian problems. An intuitive derivation of the main idea of this paper is the
following. Suppose (λ, x) is a solution to (1.1a). By adding trivial identities we have
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an equality between vectors of in�nite length (cf. [6])

(1.2)


−M(0)

I
I

. . .



λ0

0! x
λ1

1! x
λ2

2! x
...

 = λ


1
1M

′(0) 1
2M

′′(0) · · ·
1
1I

1
2I

. . .



λ0

0! x
λ1

1! x
λ2

2! x
...

 .
Here, I is the n× n identity matrix. Throughout the paper we assume that 0 is not
an eigenvalue, so that M(0)−1 exists. (This does not represent a loss of generality, as
we can apply a shift in case 0 is an eigenvalue.) Let N ∈ Cn×∞ be de�ned by

N :=
[
N1 N2 N3 · · ·

]
:=
[
−M(0)−1M ′(0) − 1

2M(0)−1M ′′(0) − 1
3M(0)−1M (3)(0) · · ·

]
and de�ne a vector of in�nite length v := [vj ]

∞
j=1 = [λ

(j−1)

(j−1)!x]∞j=1, where vj ∈ Cn for

j = 1, 2, . . .. Relation (1.2) can now be more compactly expressed as

(1.3) v = λ (e1 ⊗N + S⊗ I)v, where S :=


0 0 · · ·
1
1

1
2

. . .

 ,
and e1 =

[
1 0 0 · · ·

]T
is the �rst basis vector. Equations (1.2) and (1.3) may be

viewed as a companion linearization for the nonlinear eigenvalue problem. Note that
a solution λ to (1.3) corresponds to a reciprocal eigenvalue of the in�nite-dimensional
matrix

(1.4) A := e1 ⊗N + S⊗ I.

The derivation of our new two-sided Lanczos procedure is based on applying the
Lanczos method (for non-Hermitian problems) to the in�nite-dimensional matrix A.
The method builds two bi-orthogonal subspaces using short recurrences. One subspace
serves the approximation of right eigenvectors, the other the approximation of the
left eigenvectors. In Section 2 we use that, analogous to companion linearizations for
polynomial eigenvalue problems, relation (1.3) is equivalent to (1.1a), which has been
used in [6] to derive one version of the in�nite Arnoldi method. For the approximation
of solutions to (1.1b) we derive a new and more involved relationship for the left
eigenvectors, also presented in Section 2. This leads to a new way to represent in�nite
vectors that span the subspace corresponding to the conjugate transpose operation for
approximating the left eigenvectors. With two particular types of (starting) vectors,
we can carry out an algorithm for the in�nite-dimensional operator A using only
�nite arithmetic. This is covered in Section 3, where we also treat the computation
of scalar products and matrix-vector products for the in�nite dimensional case. In
Section 4 we present an example to illustrate the performance of the new method,
and we conclude with a short discussion.

Throughout this paper we use bold symbols to indicate matrices or vectors of
in�nite dimensions, i.e., an in�nite matrix is denoted by A ∈ R∞×∞, and an in�nite-
dimensional vector is denoted by x ∈ R∞. Unless otherwise stated, the n-length blocks
of a vector of in�nite length are denoted with subscript, e.g., w = [wT1 , w

T
2 , . . . ]

T where
wj ∈ Cn for j ≥ 1.



INFINITE BI-LANCZOS FOR NONLINEAR EIGENVALUE PROBLEMS 3

2. In�nite dimensional reformulation. In our formalization of the operator
A we �rst need to de�ne its domain. This is necessary to prove equivalence between
(λ, x, y) which is a solution to (1.1) and the eigentriplet (µ,v,w) ofA, where µ = λ−1.
Let ‖ · ‖ denote the 2-norm. It will turn out to be natural to de�ne the operators on
a weighted, mixed 1-norm and 2-norm space de�ned by

`1(ρ) :=
{
w = [wj ]

∞
j=1 ∈ R∞ :

∞∑
j=1

ρj

j! ‖wj‖ <∞
}
.(2.1)

Note that some vectors in `1(ρ) correspond to sequences of vectors which are un-
bounded, i.e., ‖wj‖ → ∞ as j →∞, but do not grow arbitrarily fast, since w ∈ `1(ρ)
implies that

(2.2) ρj

j! ‖wj‖ → 0 as j →∞.

In the proofs of the propositions below we need to allow the vectors to have this
growth, to accommodate the fact that derivatives of analytic functions are not neces-
sarily bounded. We will let ρ be the convergence radius of the power series expansion
of the analytic function M , and set D(A) = D(A∗) = `1(ρ) as the domain of the
operator. The following two propositions do not only show the equivalence between
the nonlinear eigenvalue problem and the operator A, but also reveal the structure
of the left and right eigenvectors of A. The �rst result is an adaption of [6, Thm. 1]
for our discrete operator and only assuming a �nite convergence radius. Its proof is
omitted for brevity.

Proposition 2.1 (Right eigenvectors of A). Suppose M is analytic in λ ∈ ρD̄
and let A be de�ned by (1.4).

(i) If (µ,v) ∈ C×D(A)\{0} is an eigenpair of A and λ = µ−1 ∈ ρD, then there
exists a vector x ∈ Cn such that

(2.3) v =
[
λj−1

(j−1)! x
]∞
j=1

.

(ii) The pair (λ, x) ∈ ρD\{0} × Cn\{0} is a solution to (1.1a) if and only if the
pair

(
λ−1,v

)
∈ (C\ρ−1D̄)×D(A) is an eigenpair of A, where v is given by

(2.3).
We now study the equivalence between a left eigenpair of the nonlinear eigenvalue

problem and a left eigenpair of A. Also, the structure of the left eigenvectors of A
will be concretized.

Proposition 2.2 (Left eigenvectors of A). Suppose M is analytic in λ ∈ ρD̄
and let A∗ be de�ned by (1.4).

(i) If (µ,w) ∈ C × D(A∗)\{0} is an eigenpair of A∗ and λ = µ−1 ∈ ρD, then
there exists a vector z ∈ Cn such that

(2.4) w =

∞∑
j=1

(ST ⊗ I)j−1N∗λjz.

(ii) The pair (λ, y) ∈ ρD\{0} × Cn\{0} is a solution to (1.1b) if and only if the
pair

(
λ−1,w

)
∈ (C\ρ−1D̄)×D(A∗) is an eigenpair of A∗, where w is given

by (2.4) with z = M(0)∗y.
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Proof. Suppose λA∗w = w, where w ∈ `1(ρ). We use induction to show that

(2.5) w1 =

k∑
j=1

λj

(j−1)!N
∗
j w1 + λk

k! wk+1

for any k. Relation (2.5) is easy to see for k = 1. Suppose (2.5) is satis�ed for k − 1,
i.e.,

(2.6) w1 =

k−1∑
j=1

λj

(j−1)!N
∗
j w1 + λk−1

(k−1)! wk.

Block row k of λA∗w = w reduces to

(2.7) λN∗k w1 + λ
k wk+1 = wk.

The induction is completed by inserting (2.7) in relation (2.6), which yields (2.5). Due

to the fact that w ∈ `1(ρ), (2.2) holds, and since |λ| < ρ, ‖λ
k

k! wk+1‖ < ρk

k! ‖wk+1‖ → 0
as k →∞. This implies that (2.5) holds also in the limit k →∞ and

(2.8) w1 =

∞∑
j=1

λj

(j−1)!N
∗
j w1 = (eT1 ⊗ I)

( ∞∑
j=1

λj(ST ⊗ I)j−1N∗w1

)
.

In the last equality in (2.8) we used that

(2.9) Sjek = (k−1)!
(j+k−1)! ek+j

and therefore (eTk ⊗I)(ST ⊗I)j−1 = eTk (ST )j−1⊗I = (k−1)!
(j+k−2)!e

∗
k+j−1⊗I for any k, as

well as (eTj ⊗ I)N∗ = N∗j . By setting z = w1 we have with (2.8) proven the �rst block
row of (2.4). The proof of the other rows follows from induction, since assuming that
wk = (eTk ⊗ I)w, where w is the right-hand side of (2.4), and using (2.7) we �nd that
wk+1 = (e∗k+1 ⊗ I)w.

To show (ii), �rst assume that w ∈ `1(ρ) satis�es λAw = w. This is the same
assumption as in (i) and therefore (2.8) is satis�ed. By setting y = M(0)−∗z =
M(0)−∗w1, we have that M(0)∗y =

∑∞
j=1M

(j)(0)∗y, i.e., (1.1b) is satis�ed.
To show the backward implication in (ii), we now assume that (λ, y) is a solution

to (1.1b). Let z = M(0)∗y and de�ne a vector w as (2.4). Then

λA∗w = λ

∞∑
j=1

(eT1 ⊗N∗ + ST ⊗ I)(ST ⊗ I)j−1N∗λjz

= λN∗
∞∑
j=1

1
(j−1)! (e

T
j ⊗ I)N∗λjz + λ

∞∑
j=1

(ST ⊗ I)jN∗λjz

= λN∗
∞∑
j=1

−1
j! M

(j)(0)∗y +

∞∑
j=2

(ST ⊗ I)j−1N∗λjz

= N∗λz +

∞∑
j=2

(ST ⊗ I)j−1N∗λjz =

∞∑
j=1

(ST ⊗ I)j−1N∗λjz = w.
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To show w ∈ `1(ρ) we now study the weighted `1-norm,

∞∑
k=1

ρk

k! ‖wk‖ ≤
∞∑
k=1

ρk

k!

∞∑
j=1

|λ|j(k−1)!
(j+k−2)! ‖M

(k+j−1)(0)∗‖‖ŷ‖(2.10)

≤
∞∑
k=1

ρk

k!

∞∑
j=1

Mρ
|λ|j(k−1)!(k+j−1)!
(j+k−2)!ρj+k−1 ‖ŷ‖ =

Mρ‖ŷ‖
r

∞∑
j=1

∞∑
k=1

|λ|j
ρj

j+k−1
k! ,

where, since M is analytic, there exists a constant Mρ such that ‖M (j)(0)‖ ≤Mρ
j!
ρj .

Now note that Taylor expansion of ex gives the explicit expression
∑∞
k=1

j+k−1
k! =

(j − 1)(e − 1) + e. By combining this with (2.10) and |λ| < ρ we �nd that the
right-hand side of (2.10) is �nite and therefore w ∈ `1(ρ).

3. Derivation of the in�nite bi-Lanczos method. The algorithm proposed
in this paper is based on the Lanczos method for non-Hermitian eigenvalue problems
speci�ed in [1, Section 7.8.1]. We �rst introduce the standard method and then adapt
the algorithm in such a way that it can be used for the in�nite-dimensional problem.
Therefore we need to de�ne various operations for vectors and matrices of in�nite
dimension and also the Krylov subspaces created by the algorithms are described.

3.1. The bi-Lanczos method for standard eigenvalue problems. We base
our theory on the Lanczos method for non-Hermitian eigenvalue problems, also called
the bi-Lanczos method. The method uses an oblique projection building two bi-
orthogonal subspaces for the simultaneous approximation of left and right eigenvec-
tors. The short recurrences that are typical for this method lead to far less storage
requirements with respect to orthogonal projection methods for the same problem.
After k iterations we obtain the relations:

AQk = QkTk + βk+1qk+1e
T
k ,

A∗Q̃k = Q̃kT
∗
k + γ̄k+1q̃k+1e

T
k ,

Q̃∗kQk = Ik,

where for i = 1, . . . , k the columns of Qk are equal to the vectors qi, and q̃i are the
columns of Q̃k, ek is the kth unit vector, and the tridiagonal matrix Tk is de�ned as

Tk =


α1 γ2

β2 α2
. . .

. . .
. . . γk
βk αk

 .

Furthermore, the relations q̃∗k+1Qk = 0 and Q̃∗kqk+1 = 0 hold. After k iterations, one

can compute the eigentriplets (θ
(k)
i , z

(k)
i , z̃

(k)
i ), i = 1, 2, . . . , k, of Tk. The Ritz values

θ
(k)
i are the approximate eigenvalues of A, and the corresponding right and left Ritz

vectors are x
(k)
i = Qkz

(k)
i and y

(k)
i = Q̃kz̃

(k)
i , respectively.

3.2. Krylov subspace and in�nite-dimensional vector representations.

For our in�nite-dimensional problem where we work with the matrix A and vectors
of in�nite length, we need to build in�nite dimensional Krylov spaces, Kk(A,x) and
Kk(A∗, ỹ), for some starting vectors x and ỹ of in�nite length. To adapt the algorithm
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to the in�nite-dimensional problem we have to address the issue of storing vectors with
in�nite length. By choosing the starting vectors carefully we will be able to store only
a �nite number of vectors of length n. The Krylov subspaces will contain vectors that
are consistent with eigenvector approximations.

Proposition 3.1. Suppose x = e1 ⊗ x1 and ỹ = N∗ỹ1, where x1, ỹ1 ∈ Cn.

(a) For any k ∈ N, Akx =

k+1∑
j=1

(ej ⊗ zk−j+1), where z0 = 1
k!x1 and for

i ∈ {1, . . . , k} zi is given by the recursion zi =

i∑
`=1

(k−i+`)!
(`−1)!(k−i)!N`zi−`.

(b) For any k ∈ N, (A∗)kỹ =

k+1∑
j=1

(ST ⊗ I)j−1N∗z̃k−j+1, where z̃0 = ỹ1 and for

i ∈ {1, . . . , k} z̃i is given by the recurrence relation z̃i =

i∑
`=1

1
(`−1)!N

∗
` zi−`.

Proof. For brevity the details of the proofs (using induction) are left out.
As we have seen in Propositions 2.1 and 2.2, the right and left eigenvectors of

interest have the form (2.3) and (2.4), respectively. Proposition 3.1 has shown that
by choosing starting vectors x = e1 ⊗ x1 and ỹ = N∗ỹ1 the vectors that span the
Krylov subspaces are of the form

a =

ka∑
j=1

(ej ⊗ aj),(3.1a)

ã =

kã+1∑
j=1

(ST ⊗ I)j−1N∗ãj ,(3.1b)

respectively. Also linear combinations of vectors from the same Krylov subspaces, and
therefore also the approximate eigenvectors, will be of this form. We will distinguish
the two types of vectors (3.1a) and (3.1b) by a tilde. These vectors can be seen as a
truncated version of the vectors in (2.3) and (2.4). Vectors of the form (3.1a) have
a �nite number of nonzeros and therefore storing only the nonzero entries gives a
�nite representation of the vector of in�nite length, i.e., by storing the vectors aj , for
j = 1, . . . , k. The vectors of in�nite length of type (3.1b) can also be stored with a
�nite number of vectors in Cn, namely by storing the vectors ãj , for j = 1, . . . , k.

3.3. Scalar products and matrix vector products. The previously intro-
duced types of in�nite-dimensional vectors, (3.1a) and (3.1b), will be used in the
algorithm for the in�nite-dimensional problem. Various operations involving these
types of vectors of in�nite length, such as scalar products and matrix vector prod-
ucts, have to be adapted to the in�nite-dimensional case. First we introduce two
di�erent scalar products.

Proposition 3.2. Suppose a,b ∈ C∞ are two vectors of type (3.1a) given by

a =

ka∑
j=1

(ej ⊗ aj) and b =

kb∑
j=1

(ej ⊗ bj). Then, a∗b =

min(ka,kb)∑
j=1

a∗j bj.

Proof. This follows straightforwardly from the de�nition of the vectors.
Another scalar product used in the bi-Lanczos algorithm is a product of vectors

of type (3.1a) and (3.1b). It can be computed e�ciently in in�nite dimensions as
explained in the next proposition.
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Proposition 3.3. Suppose ã,b ∈ C∞ are of type (3.1b) and (3.1a), respectively,

given by ã =

kã∑
j=1

(ST ⊗ I)j−1N∗ãj and b =

kb∑
`=1

(e` ⊗ b`). Then,

(3.2) ã∗b =

kã∑
j=1

kb∑
`=1

(`−1)!
(j+`−2)! ã

T
j Nj+`−1b`.

Proof. The proof follows easily from the de�nition of the in�nite vectors and
rearrangement of sums. It is omitted for brevity.

To translate the �nite dimensional matrix vector multiplication to the in�nite-
dimensional case two variants of matrix vector products have to be investigated, one
with the matrix A and a vector of type (3.1a), and one with the matrix A∗ and a
vector of type (3.1b).

Proposition 3.4 (Action of A). Suppose a ∈ C∞ is of type (3.1a) given by

a =

ka∑
j=1

(ej ⊗ aj). Then,

(3.3) Aa =

ka+1∑
j=1

(ej ⊗ bj),

where bj = 1
j−1aj−1 for j = 2, . . . , ka + 1, and b1 =

ka∑
j=1

Njaj.

Proof. This can be proven with induction. The computation is analogous to the
one needed in the proof of Proposition 3.1(a).

Proposition 3.5 (Action of A∗). Suppose ã ∈ C∞ is of type (3.1b) given by

ã =

kã∑
j=1

(ST ⊗ I)j−1N∗ãj. Then,

(3.4) A∗ã =

kã+1∑
j=1

(ST ⊗ I)j−1N∗b̃j ,

where b̃j = ãj−1 for j = 2, . . . kã + 1, and b̃1 =

kã∑
j=1

1
(j−1)!N

∗
j ãj.

Proof. Analogous to the computation in the proof of Proposition 3.1(b).

3.4. The in�nite bi-Lanczos method. As we have seen, every vector of in-
�nite length can be represented by a �nite number of vectors of length n. In the
algorithm these vectors of in�nite length are denoted by matrices whose columns corre-
spond to the length-n vectors representing the in�nite-dimensional vector. The index
of the matrices in the new algorithm indicate the number of columns of the matrix, i.e.,
Rk ∈ Cn×k, and we denote the `th column of Rk by Rk,`, i.e., Rk = [Rk,1, . . . , Rk,k].

Because of the short recurrences, k steps of the algorithm require the storage of
only six vectors of length ≤ kn, three for each subspace. Furthermore, the compu-
tation of the approximate eigenvectors for the solution of (1.1) entails the storage of
(only) k vectors of length n for each subspace. To clarify this, recall from Section 3.1

that from the eigentriplet (θ
(k)
1 , z

(k)
1 , z̃

(k)
1 ) of Tk we can deduce an approximate eigen-

triplet (θ
(k)
1 , Qkz

(k)
1 , Q̃kz̃

(k)
1 ) for A. Note that the columns of Qk represent vectors
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of type (3.1a) and thus a linear combination of the columns is itself a representation

of a vector of this type. The same reasoning holds for the columns of Q̃k with vec-

tors of type (3.1b). Suppose sr stands for the �rst n-length block of Qkz
(k)
1 and the

�rst n-length block of Q̃kz̃
(k)
1 is represented by s`. Proposition 2.1 states that sr is

an approximation to x and that ((θ
(k)
1 )−1, sr) is an approximate solution to (1.1a).

Similarly, by Proposition 2.2 we know that s` is an approximation to λz = λM(0)∗y.

Hence ((θ
(k)
1 )−1, θ

(k)
1 M(0)−∗s`) is an approximate solution to (1.1b).

Algorithm: In�nite bi-Lanczos

Input: Vectors q1, q̃1 ∈ Cn, with q̃∗1M
′(0)q1 = 1, P0 = P̃0 = [ ], P1 = [q1], P̃1 = [q̃1], γ1 = β1 = 0.

Output: Approximate eigentriplets ((θ
(k)
i )−1, x

(k)
i , y

(k)
i ) to nonlinear eigenvalue problem (1.1).

for k = 1, 2, . . . , until convergence

1: Compute Rk+1 := [b1, . . . , bk+1] ∈ Cn×(k+1) with (3.3) where, ka = k,

a` = Pk,` for ` = 1, . . . , k.

2: Compute R̃k+1 := [̃b1, . . . , b̃k+1] ∈ Cn×(k+1) with (3.4) where, kã = k,

ã` = P̃k,` for ` = 1, . . . , k.

3: Rk+1 = Rk+1 − γk[Pk−1, 0, 0]

4: R̃k+1 = R̃k+1 − β̄k[P̃k−1, 0, 0]

5: Compute αk = ãTb with (3.2) where ã` = P̃k,`, ` = 1, . . . , k, and

b` = Rk+1,` for ` = 1, . . . , k + 1 and kã = k and kb = k + 1.

6: Rk+1 = Rk+1 − αk[Pk, 0]

7: R̃k+1 = R̃k+1 − ᾱk[P̃k, 0]

8: Compute ωk = ãTb with (3.2) where ã` = R̃k+1,`, b` = Rk+1,`

for ` = 1, . . . , k + 1, where kã = kb = k + 1.

9: βk+1 = |ωk|1/2

10: γk+1 = ω̄k/βk+1

11: Pk+1 = Rk+1/βk+1

12: P̃k+1 = R̃k+1/γ̄k+1

13: Compute eigentriplets (θ
(k)
i , z

(k)
i , z̃

(k)
i ) of Tk.

14: Test for convergence.

end

Compute approximate eigenvectors x
(k)
i and y

(k)
i (as described in Section 3.4).

The dominating component in terms of computational complexity of the algorithm
corresponds to the scalar products of type (3.2) in steps 5 and 8 of the algorithm.
This particular scalar product involves a double sum and leads to a total complexity
O(nk3), but for some applications, e.g., the one considered in Section 4, it can be
computed by using matrix-matrix products (for relatively small matrices) reducing
the cost signi�cantly. Furthermore, per iteration two linear systems of equations must
be solved, in steps 1 and 2, which is done using a pre-computed LU-factorization. In
the same two steps,

∑ka
j=1M

(j)(0) aj , and
∑kã
j=1(M (j)(0))∗ ãj are computed.

4. Numerical experiments. Our approach is intended for large and sparse
problems. We illustrate the properties and competitiveness of the algorithm by com-
puting solutions to an arti�cial large-scale NEP stemming from a second order delay-
di�erential equation,

(4.1) M(λ) = −λ2I +A0 + e−λA1,
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where A0 and A1 are randomly generated sparse matrices with normally distributed
random entries. For the experiments we choose the matrices to be of dimension
n = 1000. The total number of iterations is equal to k = 50.
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Figure 4.1: Eigenvalue approximations of
the in�nite bi-Lanczos method applied to
problem (4.1). Circles correspond to approx-
imations that have converged after k0 = 30.

i |θ(k0)i |−1 κ((θ
(k0)
i )−1)

1 1.029 · 10−1 1.267 · 103

2 1.157 · 10−1 2.510 · 103

3 1.157 · 10−1 2.510 · 103

4 1.440 · 10−1 1.697 · 103

5 1.440 · 10−1 1.697 · 103

6 1.593 · 10−1 1.846 · 103

Table 4.1: The condition numbers for the
converged eigenvalues. The values are com-
puted using the approximate eigentriplets af-
ter k0 = 30 iterations of in�nite bi-Lanczos.

Figure 4.1 shows the approximated eigenvalues, and distinguishes the ones converged
after k0 = 30 iterations by a circle around them, which are obviously the ones closest to
zero. The two-sided approach has the advantage that during the process a condition
number estimate is available, enabling the user to de�ne a satisfying convergence
criterion. The condition numbers shown in Table 4.1 correspond to the converged
eigenvalues and can be computed as (cf. [13])

κ(λ,M) :=
α‖x‖2‖y‖2
|λ| |y∗M ′(λ)x|

=

(
|λ|2‖I‖2 + ‖A0‖2 + |e−λ|‖A1‖2

)
‖x‖2‖y‖2

|λ| |y∗(−2λI − e−λA1)x|
.

We also compare the in�nite bi-Lanczos method to the in�nite Arnoldi method
(IAR) as presented in [6]. Figure 4.2 shows for both methods the error in the eigenval-
ues against the iterations, and Figure 4.3 contains the error of both methods against
the computation time in seconds. For the in�nite bi-Lanczos method the Ritz values
converge in fewer iterations.
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Figure 4.2: Convergence diagram, eigen-
value error against the iterations.
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Figure 4.3: Convergence diagram, eigen-
value error against the computation time (s).

This increasing convergence behavior can be explained by the two subspaces that are
build in the in�nite bi-Lanczos. In fact, with respect to one multiplication with A
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per iteration of IAR, in�nite bi-Lanczos contains per iteration a multiplication with
both A and A∗. Because of the short recurrences the computation time of in�nite
bi-Lanczos can be kept decently low (and may even outperform IAR), as shown in Fig-
ure 4.3. One has to take into account that for growing dimensions in�nite bi-Lanczos
might become unstable, which here explains the stagnation of the approximation er-
ror in Figure 4.2 and Figure 4.3. Although the observations above have been seen for
several problems, the �gures are very much problem dependent; the sparsity pattern
and the nonlinearity of the problem will be decisive for the performance of di�erent
methods.

5. Discussion and conclusions. We have proposed a new two-sided Lanczos
method for the nonlinear eigenvalue problem. The method works implicitly with ma-
trices and vectors with in�nite size. The new way of representing left type of in�nite
vectors is crucial to frame the two-sided method. We intend to make the code adap-
tive, as the condition numbers which become available as the iterations proceed may
be used to de�ne a satisfying convergence criterion. We have seen that in�nite bi-
Lanczos can have faster convergence per iteration than the in�nite Arnoldi method
(IAR), which could be expected because in general two-sided methods have faster
convergence (per iteration), and moreover, since in�nite bi-Lanczos uses a low-term
recurrence it has a lower orthogonalization cost per iteration than IAR.
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